(Translated by https://www.hiragana.jp/)
A293604 - OEIS
login
A293604
Expansion of e.g.f.: exp(x * (1 - x)).
15
1, 1, -1, -5, 1, 41, 31, -461, -895, 6481, 22591, -107029, -604031, 1964665, 17669471, -37341149, -567425279, 627491489, 19919950975, -2669742629, -759627879679, -652838174519, 31251532771999, 59976412450835, -1377594095061119, -4256461892701199
OFFSET
0,4
LINKS
FORMULA
a(n) = (-1)^n * A000321(n).
a(n) = a(n-1) - 2 * (n-1) * a(n-2) for n > 1.
E.g.f.: Product_{k>=1} (1 + x^k)^(mu(k)/k). - Ilya Gutkovskiy, May 23 2019
a(n) = Hermite(n, 1/2). - G. C. Greubel, Jul 12 2024
MATHEMATICA
CoefficientList[Series[E^(x*(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 13 2017 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x))))
(PARI) a(n) = polhermite(n, 1/2); \\ Michel Marcus, Oct 13 2017
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-x^2) ))); // G. C. Greubel, Jul 12 2024
(SageMath)
[hermite(n, 1/2) for n in range(31)] # G. C. Greubel, Jul 12 2024
CROSSREFS
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), this sequence (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).
Sequence in context: A082437 A308440 A039817 * A000321 A293573 A039922
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 12 2017
STATUS
approved