(Translated by https://www.hiragana.jp/)
A295514 - OEIS
login
a(n) = 2^bil(n) - bil(n) where bil(0) = 0 and bil(n) = floor(log_2(n)) + 1 for n > 0.
1

%I #14 Dec 04 2017 02:55:20

%S 1,1,2,2,5,5,5,5,12,12,12,12,12,12,12,12,27,27,27,27,27,27,27,27,27,

%T 27,27,27,27,27,27,27,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,

%U 58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,121,121,121

%N a(n) = 2^bil(n) - bil(n) where bil(0) = 0 and bil(n) = floor(log_2(n)) + 1 for n > 0.

%H Robert Israel, <a href="/A295514/b295514.txt">Table of n, a(n) for n = 0..10000</a>

%F From _Robert Israel_, Dec 03 2017: (Start)

%F G.f. (1-x)^(-1)*(1+Sum_{k>=0} (2^k-1)*x^(2^k)).

%F a(n) = 4*a(floor(n/2)) - 5*a(floor(n/4)) + 2*a(floor(n/8)) for n >= 4. (End)

%p 1,seq((2^k-k)$(2^(k-1)),k=1..8); # _Robert Israel_, Dec 03 2017

%t a[n_] := 2^IntegerLength[n, 2] - IntegerLength[n, 2];

%t Table[a[n], {n, 0, 58}]

%Y Cf. A000325.

%K nonn

%O 0,3

%A _Peter Luschny_, Dec 02 2017