(Translated by https://www.hiragana.jp/)
A301700 - OEIS
login
A301700
Number of aperiodic rooted trees with n nodes.
43
1, 1, 1, 2, 4, 10, 21, 52, 120, 290, 697, 1713, 4200, 10446, 26053, 65473, 165257, 419357, 1068239, 2732509, 7013242, 18059960, 46641983, 120790324, 313593621, 816046050, 2128101601, 5560829666, 14557746453, 38177226541, 100281484375, 263815322761, 695027102020
OFFSET
1,4
COMMENTS
An unlabeled rooted tree is aperiodic if the multiset of branches of the root is an aperiodic multiset, meaning it has relatively prime multiplicities, and each branch is also aperiodic.
LINKS
EXAMPLE
The a(6) = 10 aperiodic trees are (((((o))))), (((o(o)))), ((o((o)))), ((oo(o))), (o(((o)))), (o(o(o))), ((o)((o))), (oo((o))), (o(o)(o)), (ooo(o)).
MATHEMATICA
arut[n_]:=arut[n]=If[n===1, {{}}, Join@@Function[c, Select[Union[Sort/@Tuples[arut/@c]], GCD@@Length/@Split[#]===1&]]/@IntegerPartitions[n-1]];
Table[Length[arut[n]], {n, 20}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
MoebiusT(v)={vector(#v, n, sumdiv(n, d, moebius(n/d)*v[d]))}
seq(n)={my(v=[1]); for(n=2, n, v=concat([1], MoebiusT(EulerT(v)))); v} \\ Andrew Howroyd, Sep 01 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 23 2018
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 01 2018
STATUS
approved