(Translated by https://www.hiragana.jp/)
A307410 - OEIS
login
A307410
Numerators of the product in the singular series.
0
1, 1, 1, 1, 3, 1, 5, 1, 1, 3, 9, 1, 11, 5, 3, 1, 15, 1, 17, 3, 5, 9, 21, 1, 3, 11, 1, 5, 27, 3, 29, 1, 9, 15, 5, 1, 35, 17, 11, 3, 39, 5, 41, 9, 3, 21, 45, 1, 5, 3, 15, 11, 51, 1, 27, 5, 17, 27, 57, 3, 59, 29, 5, 1, 11, 9, 65, 15, 21, 5, 69, 1, 71, 35, 3, 17, 3, 11, 77, 3, 1, 39, 81, 5, 45
OFFSET
1,5
COMMENTS
Differs from A305444 at n=35,65,70,...
FORMULA
a(n) = numerator of Product_{p|n;p>2}(p-2)/(p-1) where p is a prime number.
MAPLE
f:= proc(n) numer(mul((p-2)/(p-1), p=select(type, numtheory:-factorset(n), odd))) end proc:
map(f, [$1..100]); # Robert Israel, Apr 07 2019
MATHEMATICA
Table[Times@@(DeleteDuplicates[DeleteCases[DeleteCases[Exp[MangoldtLambda[Divisors[h]]], 1], 2]] - 2)/Times@@(DeleteDuplicates[DeleteCases[DeleteCases[Exp[MangoldtLambda[Divisors[h]]], 1], 2]] - 1), {h, 1, 85}]
Numerator[%]
PROG
(PARI) a(n) = my(f=factor(n)[, 1]~); numerator(prod(k=1, #f, if (f[k]>2, (f[k]-2)/(f[k]-1), 1))); \\ Michel Marcus, Apr 07 2019
CROSSREFS
Cf. A005597.
Sequence in context: A176801 A339903 A187367 * A305444 A002945 A171232
KEYWORD
nonn,frac,look
AUTHOR
Mats Granvik, Apr 07 2019
STATUS
approved