(Translated by https://www.hiragana.jp/)
A307733 - OEIS
login
A307733
a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-1} a(k) * a(n-k-1).
1
1, 1, 4, 14, 54, 220, 934, 4090, 18344, 83850, 389214, 1829736, 8693962, 41685714, 201442188, 980091814, 4797070022, 23603701828, 116688837886, 579312087802, 2887020896016, 14437318756818, 72424982972862, 364366674463824, 1837954750285458
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = (1 - x + x*A(x)^2) / (1 - x - x^2).
G.f.: (1 - x - x^2 - sqrt(1 - 6*x + 3*x^2 + 2*x^3 + x^4)) / (2*x).
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
nmax = 24; CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 6 x + 3 x^2 + 2 x^3 + x^4])/(2 x), {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 05 2020
STATUS
approved