OFFSET
1,2
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - (k^k*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
MATHEMATICA
a[n_] := DivisorSum[n, #^(#*n) &]; Array[a, 8] (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) {a(n) = sumdiv(n, d, d^(d*n))}
(PARI) N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k*x)^k)^(1/k)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 16 2019
STATUS
approved