(Translated by https://www.hiragana.jp/)
A309731 - OEIS
login
A309731
Expansion of Sum_{k>=1} k * x^k/(1 - x^k)^3.
9
1, 5, 9, 20, 20, 48, 35, 76, 72, 110, 77, 204, 104, 196, 210, 288, 170, 405, 209, 480, 378, 440, 299, 816, 425, 598, 594, 868, 464, 1200, 527, 1104, 858, 986, 910, 1800, 740, 1216, 1170, 1960, 902, 2184, 989, 1980, 1890, 1748, 1175, 3216, 1470, 2475, 1938, 2704, 1484, 3456, 2090
OFFSET
1,2
COMMENTS
Dirichlet convolution of natural numbers (A000027) with triangular numbers (A000217).
LINKS
FORMULA
G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k/(1 - x^k)^2.
a(n) = n * (d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-1) * (zeta(s-2) + zeta(s-1))/2.
a(n) = Sum_{k=1..n} k*tau(gcd(n,k)). - Ridouane Oudra, Nov 28 2019
MAPLE
with(numtheory): seq(n*(tau(n)+sigma(n))/2, n=1..30); # Ridouane Oudra, Nov 28 2019
MATHEMATICA
nmax = 55; CoefficientList[Series[Sum[k x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DirichletConvolve[j, j (j + 1)/2, j, n], {n, 1, 55}]
Table[n (DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 55}]
PROG
(PARI) a(n)=sumdiv(n, d, binomial(n/d+1, 2)*d); \\ Andrew Howroyd, Aug 14 2019
(PARI) a(n)=n*(numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Apr 19 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 14 2019
STATUS
approved