(Translated by https://www.hiragana.jp/)
A325277 - OEIS
login
A325277
Irregular triangle read by rows where row 1 is {1} and row n is the sequence starting with n and repeatedly applying A181819 until a prime number is reached.
48
1, 2, 3, 4, 3, 5, 6, 4, 3, 7, 8, 5, 9, 3, 10, 4, 3, 11, 12, 6, 4, 3, 13, 14, 4, 3, 15, 4, 3, 16, 7, 17, 18, 6, 4, 3, 19, 20, 6, 4, 3, 21, 4, 3, 22, 4, 3, 23, 24, 10, 4, 3, 25, 3, 26, 4, 3, 27, 5, 28, 6, 4, 3, 29, 30, 8, 5, 31, 32, 11, 33, 4, 3
OFFSET
1,2
COMMENTS
The function A181819 maps p^i*...*q^j to prime(i)*...*prime(j) where p through q are distinct primes.
FORMULA
T(n,k) = A325239(n,k) for k <= A323014(n).
A001222(T(n,k)) = A323023(n,k) for n > 1.
EXAMPLE
Triangle begins:
1 26 4 3 51 4 3 76 6 4 3
2 27 5 52 6 4 3 77 4 3
3 28 6 4 3 53 78 8 5
4 3 29 54 10 4 3 79
5 30 8 5 55 4 3 80 14 4 3
6 4 3 31 56 10 4 3 81 7
7 32 11 57 4 3 82 4 3
8 5 33 4 3 58 4 3 83
9 3 34 4 3 59 84 12 6 4 3
10 4 3 35 4 3 60 12 6 4 3 85 4 3
11 36 9 3 61 86 4 3
12 6 4 3 37 62 4 3 87 4 3
13 38 4 3 63 6 4 3 88 10 4 3
14 4 3 39 4 3 64 13 89
15 4 3 40 10 4 3 65 4 3 90 12 6 4 3
16 7 41 66 8 5 91 4 3
17 42 8 5 67 92 6 4 3
18 6 4 3 43 68 6 4 3 93 4 3
19 44 6 4 3 69 4 3 94 4 3
20 6 4 3 45 6 4 3 70 8 5 95 4 3
21 4 3 46 4 3 71 96 22 4 3
22 4 3 47 72 15 4 3 97
23 48 14 4 3 73 98 6 4 3
24 10 4 3 49 3 74 4 3 99 6 4 3
25 3 50 6 4 3 75 6 4 3 100 9 3
MATHEMATICA
red[n_]:=Times@@Prime/@Last/@If[n==1, {}, FactorInteger[n]];
Table[NestWhileList[red, n, #>1&&!PrimeQ[#]&], {n, 30}]
CROSSREFS
Row lengths are 1 for n = 1 and A323014(n) for n > 1.
Sequence in context: A304736 A371280 A286448 * A257573 A182973 A360565
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Apr 15 2019
STATUS
approved