(Translated by https://www.hiragana.jp/)
A335362 - OEIS
login
A335362
Triangle T(n,d) read by rows: the number of mixed trees with n>=1 nodes and 0<=d<n arcs.
6
1, 1, 1, 1, 2, 3, 2, 5, 10, 8, 3, 12, 32, 40, 27, 6, 30, 99, 178, 187, 91, 11, 74, 298, 692, 1019, 854, 350, 23, 188, 890, 2538, 4751, 5692, 4074, 1376, 47, 478, 2627, 8886, 20260, 31188, 31856, 19602, 5743, 106, 1235, 7734, 30270, 81170, 152509, 200413, 177266, 96035, 24635
OFFSET
1,5
EXAMPLE
The triangle starts
1;
1, 1;
1, 2, 3;
2, 5,10, 8;
3,12,32,40,27;
There are T(3,1)=2 mixed trees on 3 nodes with one directed edge (the edge can point towards the middle node or away from it).
PROG
(PARI) \\ Here R(n) is rooted mixed trees as g.f.
EulerMTS(p)={my(n=serprec(p, x)-1, vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
R(n) = {my(p=x+O(x^2)); for(n=2, n, p=x*EulerMTS(2*y*p + p)); p}
T(n) = {my(p=R(n)); [Vecrev(p) | p<-Vec(p + (subst(subst(p + O(x*x^(n\2)), x, x^2), y, y^2) - (2*y+1)*p^2)/2)]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Mar 23 2023
CROSSREFS
Cf. A000055 (column d=0), A000238 (diagonal d=n-1), A000106 (column d=1), A006965 (row sums), A335601 (subdiagonal d=n-2).
Sequence in context: A296662 A353299 A349790 * A371395 A059098 A082050
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jun 03 2020
EXTENSIONS
Completed row n=9. - R. J. Mathar, Jun 11 2020
Terms a(46) and beyond from Andrew Howroyd, Mar 23 2023
STATUS
approved