(Translated by https://www.hiragana.jp/)
A336736 - OEIS
login
A336736
Number of factorizations of n whose distinct factors have disjoint prime signatures.
3
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 1, 1
OFFSET
1,4
COMMENTS
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
EXAMPLE
The a(n) factorizations for n = 36, 360, 720, 192, 288:
(36) (360) (720) (192) (288)
(6*6) (5*72) (8*90) (3*64) (8*36)
(2*2*9) (8*45) (9*80) (4*48) (9*32)
(3*3*4) (9*40) (10*72) (6*32) (16*18)
(10*36) (16*45) (12*16) (2*144)
(5*8*9) (5*144) (3*8*8) (6*6*8)
(5*9*16) (4*6*8) (2*2*72)
(8*9*10) (3*4*16) (2*9*16)
(3*4*4*4) (3*3*32)
(2*2*8*9)
(3*3*4*8)
(2*2*2*36)
(2*2*2*2*2*9)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
prisig[n_]:=If[n==1, {}, Last/@FactorInteger[n]];
Table[Length[Select[facs[n], stableQ[#, Intersection[prisig[#1], prisig[#2]]!={}&]&]], {n, 100}]
CROSSREFS
A001055 counts factorizations.
A118914 is sorted prime signature.
A124010 is prime signature.
A336737 counts factorizations with intersecting signatures.
Sequence in context: A227350 A107345 A358780 * A000688 A295879 A322453
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 06 2020
STATUS
approved