(Translated by https://www.hiragana.jp/)
A349087 - OEIS
login
A349087
a(n) = n! * Sum_{k=0..floor(n/4)} (-1)^k / (4*k)!.
2
1, 1, 2, 6, 23, 115, 690, 4830, 38641, 347769, 3477690, 38254590, 459055079, 5967716027, 83548024378, 1253220365670, 20051525850721, 340875939462257, 6135766910320626, 116579571296091894, 2331591425921837879, 48963419944358595459, 1077195238775889100098
OFFSET
0,3
FORMULA
E.g.f.: cos(x/sqrt(2)) * cosh(x/sqrt(2)) / (1 - x).
a(n) = round(c * n!), where c = 0.9583581... = A346440.
MATHEMATICA
Table[n! Sum[(-1)^k/(4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[Cos[x/Sqrt[2]] Cosh[x/Sqrt[2]]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 25 2022
STATUS
approved