(Translated by https://www.hiragana.jp/)
A362533 - OEIS
login
A362533
Decimal expansion of lim_{n->oo} ( Sum_{k=2..n} 1/(k * log(k) * log log(k)) - log log log(n) ).
4
OFFSET
1,1
COMMENTS
If u(n) = Sum_{k=2..n} ( 1/(k*log(k)*log log(k)) - log log log(n) ), then (u(n)) is convergent, while the series v(n) = Sum_{k=2..n} 1/(k*log(k)*log log log(k)) diverges (see link). This is an extension of A001620 and A361972.
Note that ( log log log(x) )' = 1 / ( x * log(x) * log log(x) ).
FORMULA
Limit_{n->oo} 1/( 2*log(2)*log log(2) ) + 1/( 3*log(3)*log log(3) ) + ... + 1/( n*log(n)*log log(n) ) - log log log(n).
EXAMPLE
2.69574...
CROSSREFS
Sequence in context: A021375 A190407 A057052 * A346406 A078437 A372363
KEYWORD
nonn,cons,more
AUTHOR
Bernard Schott, Apr 24 2023
STATUS
approved