Notes on minimization the area of self-intersection of a folded rectangle.

Mikhail Gaichenkov, October,2023
The problem of minimization the area of self-intersection of a folded rectangle: rectangle with sides $\mathrm{a}, \mathrm{b}(\mathrm{a}<\mathrm{b})$ is bent along the line that passes through the center of the rectangle in order to get the minimum area of crossing intersections: a unique rectangle exists for two solutions with equal area but different shapes - triangle and pentagon. The unique ratio of sides $\mathrm{a} / \mathrm{b}=\mathrm{T}=0.81502370129163 \ldots$ is derived based on the real root of the quintic. If $\mathrm{a} / \mathrm{b}<\mathrm{T}$ ('long' rectangle) the angle to bent is $\mathrm{p} / 4$. If $\mathrm{a} / \mathrm{b}=1$ (square) the angle is $\mathrm{Pi} / 8$.
In more details:
$\frac{a}{b}=\frac{1+4 t_{0}^{3}-t_{0}^{4}}{4 t_{0}+\left(1+t_{0}\right)\left(1-t_{0}\right) \sqrt{6 t_{0}^{3}-1-t_{0}^{4}}}$,
$t_{0}-$ the real root of eq. $t^{5}+3 t^{4}+4 t^{3}+t-1=0$
$t_{0} \approx 0,45913372331020753947 \ldots$
$\frac{a}{b} \approx 0,81502370129163108687409 \ldots$

Overview.

Let the sides of the rectangle: a, b and $\mathrm{a}<\mathrm{b}$ (the case $\mathrm{a}=\mathrm{b}$ will be reviewed separately), also let the angle $\beta: \operatorname{tg} \beta=\mathrm{a} / \mathrm{b}$. Also α is the angle to band the rectangle.

There are a few cases:

1. The angle α changes from 0 to β
2. $\quad \alpha$ changes from β to $(\pi / 2-\beta)$
3. α changes from $(\pi / 2-\beta)$ to $\pi / 2$

Case 1.

Let $\operatorname{tg} \alpha=t$, then the area:

$$
\begin{aligned}
& S=\frac{2\left(1+t^{2}\right)}{4\left(1-t^{2}\right)} *\left(a b-t a^{2}+a b-t b^{2}\right)=\frac{\left(1+t^{2}\right)\left(2 a b-\left(a^{2}+b^{2}\right) t\right)}{4\left(1-t^{2}\right)}=\frac{2 a b-\left(a^{2}+b^{2}\right) t+2 a b t^{2}-\left(a^{2}+b^{2}\right) t^{3}}{4\left(1-t^{2}\right)} \\
& S^{\prime}=\frac{\left(-\left(a^{2}+b^{2}\right)+4 a b t-3\left(a^{2}+b^{2}\right) t^{2}\right)\left(4-4 t^{2}\right)-\left(2 a b-\left(a^{2}+b^{2}\right) t+2 a b t^{2}-\left(a^{2}+b^{2}\right) t^{3}\right)(-8 t)}{\left(4-4 t^{2}\right)^{2}}= \\
& =\frac{-4\left(a^{2}+b^{2}\right)+32 a b t-16\left(a^{2}+b^{2}\right) t^{2}+4\left(a^{2}+b^{2}\right) t^{4}}{\left(4-4 t^{2}\right)^{2}}
\end{aligned}
$$

So, we get the eq:
$-\left(a^{2}+b^{2}\right)+8 a b t-4\left(a^{2}+b^{2}\right) t^{2}+\left(a^{2}+b^{2}\right) t^{4}=0$
Due to $\mathrm{a} / \mathrm{b}=\operatorname{tg} \beta$, then $\mathrm{k}=\sin 2 \beta=2 \operatorname{tg} \beta /\left(1+\operatorname{tg}^{2} \beta\right)=\frac{\frac{2 a}{b}}{1+\left(\frac{a}{b}\right)^{2}}=\frac{2 a b}{a^{2}+b^{2}}$
This results in the eq: $t^{4}-4 t^{2}+4 k t-1=0$
Here k changes from 0 to 1 (β changes from 0 to $\pi / 4$).
Consider the functions: $f=t^{4}-4 t^{2}-1$ and $g=-4 k t$ for further analysis.

Case 2.
Pentagon converts into the triangle.

The minimum area of self-intersection appears at $\sin 2 \alpha=1$, i.e. $\alpha=\pi / 4$, and the area is $\frac{\mathrm{a}^{2}}{2}$ If α gets to $(\pi / 2-\beta)$, the intersections is like below.

Case 3.
α changes from $(\pi / 2-\beta)$ to $\pi / 2$, we get the pentagon or a rectangle like below

The case of square.
$\operatorname{tg} \beta=1$, the root of the eq. $t^{4}-4 t^{2}+4 t-1=0$ is $\mathrm{t} 1=\sqrt{2}-1$
This means $\alpha=\pi / 8$ and $\mathrm{S}=(\sqrt{2}-1) a^{2}$.
Now, consider
$f=t^{4}-4 t^{2}-1$ and $g=-4 k t$. If $\mathrm{k}<\mathrm{C}=\frac{5}{3 \sqrt{3}}$ then the line g does not cross the f for $\mathrm{t} \in$
$(0,1)$. If $\mathrm{k}=\mathrm{C}$ then g touches f at $\mathrm{t} 0=\frac{1}{\sqrt{3}}$. If k changes from $\mathrm{k} 1=1$ to $\mathrm{k} 2=\frac{5}{3 \sqrt{3}}$ then the appropriate root t 1 also changes: $\left(\sqrt{2}-1, \frac{1}{\sqrt{3}}\right)$.

So, we can consider the inverse function $k=\frac{1+4 t^{2}-t^{4}}{4 t}$
Let $\mathrm{s}=\operatorname{tg} \beta=\frac{a}{b}$ and $\mathrm{u}=\frac{b}{a}$, this results in $\mathrm{s}=\frac{1-\sqrt{1-k^{2}}}{k}, \mathrm{u}=\frac{1+\sqrt{1-k^{2}}}{k}$.

$$
S=\frac{2 a b-\left(a^{2}+b^{2}\right) t+2 a b t^{2}-\left(a^{2}+b^{2}\right) t^{3}}{4\left(1-t^{2}\right)}=\frac{\left(1+t^{2}\right)}{4\left(1-t^{2}\right)} *\left(2 a b-\left(a^{2}+b^{2}\right) t\right)=
$$

$$
=\frac{\left(1+t^{2}\right)}{4\left(1-t^{2}\right)} * a^{2} *\left(2 u-\left(1+u^{2}\right) t\right)
$$

$$
u=\frac{1+\sqrt{1-k^{2}}}{k}=\frac{1+\sqrt{(1-k)(1+k)}}{k}=\frac{1+\sqrt{\left(1-\frac{1+4 t^{2}-t^{4}}{4 t}\right)\left(1+\frac{1+4 t^{2}-t^{4}}{4 t}\right)}}{\frac{1+4 t^{2}-t^{4}}{4 t}}=
$$

$$
=\frac{4 t\left(1+\sqrt{\left.\frac{(t+1)^{2}(t-1)^{2}\left(1+2 t-t^{2}\right)\left(t^{2}+2 t-1\right)}{16 t^{2}}\right)}\right.}{1+4 t^{2}-t^{4}}=\frac{4 t+(t+1)(1-t) \sqrt{6 t^{2}-1-t^{4}}}{1+4 t^{2}-t^{4}}
$$

$$
S=\frac{\left(1+t^{2}\right)}{4\left(1-t^{2}\right)} * a^{2} *\left(2 \frac{4 t+(t+1)(1-t) \sqrt{6 t^{2}-1-t^{4}}}{1+4 t^{2}-t^{4}}-\left(1+\left(\frac{4 t+(t+1)(1-t) \sqrt{6 t^{2}-1-t^{4}}}{1+4 t^{2}-t^{4}}\right)^{2}\right) t\right)
$$

The graph of $S(t)$ at $\left(\sqrt{2}-1, \frac{1}{\sqrt{3}}\right)$ and (0.3, 0.9):

There is such a special t 0 : if $\mathrm{t}<\mathrm{t} 0$ then $\mathrm{S}<\frac{a^{2}}{2}$, and $\mathrm{t}>\mathrm{t} 0, \mathrm{~S}>\frac{a^{2}}{2}$. $\mathrm{t} 0=0.459133$.. $u=\frac{4 t 0+(t 0+1)(1-t 0) \sqrt{6 t 0^{2}-1-t 0^{4}}}{1+4 t 0^{2}-t 0^{4}}=1.226958 .$.
$\operatorname{tg} \beta=\frac{a}{b}=\frac{1}{u}=0.8150237$. . Finally, if $\frac{a}{b}<0.8150237 \ldots$, then the optimal figure is the triangle with the area $\frac{a^{2}}{2}$ and $\alpha=\pi / 4$
If $\frac{a}{b}>0.8150237 \ldots$, the optimal figure is the pentagon with the area S and $\alpha=\operatorname{arctg}$ (t 1), and the pentagon with the same area and $\alpha=\pi / 2-\operatorname{arctg}(\mathrm{t} 1)$.
The tables for different $\frac{a}{b}$ and the angles α :
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \frac{a}{b} & 1 & 0.9 & 0.8150237 & 0.7 & 0.6 \\ \hline \alpha & \pi / 8,3 \pi / 8, & \begin{array}{c}0.40117, \\ -/ 2-0.40117,\end{array} & \begin{array}{c}\pi / 4,0.430423, \\ -0 / 2-0.430423, \\ -0.40117,\end{array} & \pi / 4,-\pi / 4 & \pi / 4,-\pi / 4 \\ -\pi / 2,-3 \pi / 8,430423, \\ -\pi / 2+0.40117 & -\pi / 2+0.430423\end{array}\right]$

The special case for $\frac{a}{b}$ (approx. $0.8150237 \ldots$...) results in the optimal figures are pentagon and triangle with $S=\frac{a^{2}}{2}$.

SUMMARY

Theorem

Rectangle with sides $a, b(a<b)$ is bent along the line that passes through the center of the rectangle in order to get the minimum area of crossing intersections: a unique rectangle exists for two solutions with equal area but different shapes - triangle and pentagon. The unique ratio of sides $\mathrm{a} / \mathrm{b}=\mathrm{T}=0.81502370129163 \ldots$ is derived based on the real root of the quintic. If $\mathrm{a} / \mathrm{b}<\mathrm{T}$ ('long' rectangle) the angle to bent is $\mathrm{pi} / 4$. If $\mathrm{a} / \mathrm{b}=1$ (square) the angle is $\mathrm{Pi} / 8$.
In more details:
$\frac{a}{b}=\frac{1+4 t_{0}^{3}-t_{0}^{4}}{4 t_{0}+\left(1+t_{0}\right)\left(1-t_{0}\right) \sqrt{6 t_{0}^{3}-1-t_{0}^{4}}}$,
$t_{0}-$ the real root of eq. $t^{5}+3 t^{4}+4 t^{3}+t-1=0$
$t_{0} \approx 0,45913372331020753947 \ldots$
$\frac{a}{b} \approx 0,81502370129163108687409 \ldots$

