OFFSET
1,12
COMMENTS
All of these factorizations are co-balanced (A340596).
EXAMPLE
The factorization f = (3*6*10) has prime factor choices (3,2,2), (3,3,2), (3,2,5), and (3,3,5), of which only (3,2,5) has all different parts, so f is counted under a(180).
The a(n) factorizations for n = 2, 12, 24, 36, 72, 120, 144, 180, 288:
(2) (2*6) (3*8) (4*9) (8*9) (3*5*8) (2*72) (4*5*9) (3*96)
(3*4) (4*6) (6*6) (2*36) (4*5*6) (3*48) (5*6*6) (4*72)
(2*12) (2*18) (3*24) (2*3*20) (4*36) (2*3*30) (6*48)
(3*12) (4*18) (2*5*12) (6*24) (2*5*18) (8*36)
(6*12) (2*6*10) (8*18) (2*6*15) (9*32)
(3*4*10) (9*16) (2*9*10) (12*24)
(12*12) (3*4*15) (16*18)
(3*5*12) (2*144)
(3*6*10)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Length[Union[Sort/@Select[Tuples[First /@ FactorInteger[#]&/@#], UnsameQ@@#&]]]==1&]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 01 2024
STATUS
approved