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PREFACE

In spite of the large number of existing mathematical tables, until now
there has been no table of sequences of integers. Thus someone coming
across the sequence 1, 2, 5, 15, 52, 203, 877, 4140, . . . would have had
difficulty in finding out that these are the Bell numbers,and that they have
been extensively studied. This handbook remedies this situation. The
main table contains a list of some 2300 sequences of integers, collected
from all branches of mathematics and science. The sequences are arranged
in numerical order, and for each one a brief description and a reference
is given.

The first part of the book describes how to use the table, gives methods
for analyzing unknown sequences, and contains an illustrated description
of the most important sequences.

Who will use this handbook? Anyone who has ever been confronted
with a strange sequence, whether in an intelligence test in high school, e.g.,

1,8, 11, 69, 88, 96, 101, 111, 181, 609, . ..
(guess!!), or in solving a mathematical problem, e.g.,
1,2,5, 14, 42, 132, 429, 1430, . ..
(the Catalan numbers), or from a counting problem, e.g.,
1,1,2,4,9, 20, 48, 115, 286, 719, . . .

(the number of rooted trees with n points), or in physics, e.g.,
1,0, 3, 22, 192, 2046, 24853, . ..

1For many more terms and the explanation, see the main table.
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PREFACE

(coefficients of the partition function for a cubic lattice), or in chemistry,
eg.,
1,1,1,2,3,5,9, 18, 35,75, 159, .. ..

(the number of distinct hydrocarbons of the methane series), or in elec-
trical engineering, €.g.,

3,7, 46, 4336, 134281216, . . .

(the number of Boolean functions of n variables), will find this handbook
useful.

Besides identifying sequences, the handbook will serve as an index to
the literature for locating references on a particular problem, and for
quickly finding numbers like 7', the number of partitions of 30, the 18th
Catalan number, or the expansion of 7 to 60 decimal places. It might also
be useful to have around when the first signals arrive from Betelgeuse
(sequence 2311 for example would be a friendly beginning).
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CHAPTER
i

DESCRIPTION OF THE BOOK

1t is the fate of those who toil at the lower employments of life, to be
driven rather by the fear of evil, than attracted by the prospect of good; to be
exposed to censure, without hope of praise; to be disgraced by miscarriage, or
punished for neglect, where success would have been without applause, and
diligence without reward.

Among these unhappy mortals is the writer of dictionaries; whom man-
kind have considered. not as the pupil, but the slave of science, the pionier of
literature, doomed only to remove rubbish and clear obstructions from the
paths of Learning and Genius, who press forward to conquest and glory, with-
out bestowing a smile on the humble drudge that facilitates their progress.
Every other authour may aspire to praise; the lexicographer can only hope to
escape reproach, and even this negative recompense has yet been granted
to very few.

Samuel Johnson, Preface to the “Dictionary,” 1755

1.1 DESCRIPTION OF ATYPICAL ENTRY

The main table is a list of about 2300 sequences of integers. A typical
entry is:

256 1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269
FIBONACCI NUMBERS A(N) = A(N — 1) + A(N — 2). REF HW1 148. REC 11 20 62. HO1.

and consists of the following items:

256 the sequence identification number
1,2,3,5,8,13,21,... the sequence itself
FIBONACCI NUMBERS a name or descriptive phrase (in this case a recurrence)

A(N)=A(N- 1) + A(N—2) for the sequence
REF references
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HW1 148 G. H. Hardy and E. M. Wright, “*An Introduction to the
Theory of Numbers,” Oxford Univ. Press. 3rd ed..
page 148, 1954

REC 11 20 62 Recreational Mathematics Magazine, Volume 11, page
20, 1962.
HO1 V. E.Hoggatt, Jr.. **Fibonacci and Lucas Numbers,”

Houghton Mifflin, Boston, 1969

1.2 ARRANGEMENT

The entries are arranged in lexicographic order, so that sequences
beginning 1, 2, 1 come before those beginning 1, 2, 2, and so on.

1.3 NUMBER OF TERMS GIVEN

Whenever possible enough terms are given to fill two lines. If fewer
terms are given, it is because they have never been calculated so far as
the author knows. (He would be very pleased to be corrected.) Finding
the next term in the following sequences is known to be difficult (others of
a similar type can be located via the index):

11, 48, 66-68, 124, 125, 129, 142, 143, 149, 150, 181, 189, 195, 226, 246,
248, 271, 304, 309, 317, 321-325, 329, 330, 358, 373, 380, 393,435, 450,
465, 477, 516, 559-561, 580, 581, 595, 596, 614, 615, 621, 648, 650, 730,
731, 745, 757, 782, 788, 809, 812, 911, 954, 972, 994, 998, 1052, 1099,
1115, 1133, 1167, 1210, 1244, 1245, 1339, 1340, 1403, 1404, 1467, 1518,
1537, 1803, 2248, 2342.

These sequences all represent unsolved problems.

1.4 REFERENCES

To conserve space, journal references are extremely abbreviated. They
usually give the exact page on which the sequence may be found, but
neither the author nor the title of the article. To find out more the reader
must go to a library; this book is meant to used in conjunction with a
library. Quite a small one will do. A considerable fraction of the sequences
will be found in the following nine great works:

Indexes Dickson [D12]
Lehmer [LE1]
Fletcher, Miller, Rosenhead, and Comrie [FMR]

Tables Davis [DA2]
Abramowitz and Stegun {ASI]
David, Kendall, and Barton [DKB]

Combinatorics Riordan [R1]
David and Barton [DB1]
Comtet [CO1]
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and in four journals:

American Mathematical Monthly [AMM]
Fibonacci Quarterly [FQJ

Journal of Combinatorial Theory [JCT]
Mathematics of Computation [MTAC]

Unusual sequences may send the reader to more exotic sources, but in
any case he should first check Chapter 111 where additional information
about some of the commoner sequences is given, and the index to see if
other sequences (and hence references) of a similar type are listed.

Journal references usually give volume, page, and year, in that order.
(See the example at beginning of this chapter.) Years after 1899 are abbre-
viated, by dropping the 19. Earlier years are not abbreviated. Sometimes
to avoid ambiguity we use the more expanded form of: journal name
(series number), volume number (issue number), page number, year.

References to books give volume (if any) and page. (See the example
at the beginning of this chapter.)

The references do not attempt to give the discoverer of a sequence, but
rather the most extensive table of the sequence that has been published.

1.5 WHAT SEQUENCES ARE INCLUDED?

Rule 1 The sequence must consist of nonnegative integers. (Se-
quences alternating in sign have been replaced by their absolute values.
Interesting sequences of fractions have been entered by numerators and
denominators separately. Some sequences of real numbers have been
replaced by their integer parts, others by the nearest integers.)

Rule 2 The sequence must be infinite.
A few, like the Mersenne primes, have been given the benefit of the
doubt.

Rule 3 The first two terms must be 1, n, where n is between 2 and
999,

An initial 1 has béen silently inserted before the first term if this is
greater than 1, and extra 1's and 0’s at the beginning have been silently
deleted. (See the beginning of Chapter 11 for examples.)

Rule 3 Enough terms must be known to separate the sequence from
its neighbors in the table.

Rule 4 The sequence should have appeared in the scientific litera-
ture, and must be well-defined and interesting.

The selection has inevitably been subjective, but the goal has been to
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include a broad variety of sequences and as many as possible.

1.6 HOW ARE ARRAYS OF NUMBERS TREATED?

Arrays of numbers (binomial coefficients, Stirling numbers of the first
kind, etc.) have been entered by rows, columns, or diagonals, whichever
seemed appropriate.

1.7 SUPPLEMENTS

It is planned to issue supplements to the Handbook from time to time,
containing new sequences and corrections and extensions to the original
sequences. Readers wishing to receive these supplements should notify
the author.



CHAPTER
n

HOW TO HANDLE A STRANGE SEQUENCE

21 HOW TO SEE IF A SEQUENCE IS IN THE TABLE

Obtain as many terms of the sequence as possible. The initial terms
are handled as follows: Recall that the sequence must begin 1, n, where n
is between 2 and 999. Find the first term in the sequence that is greater
than 1, and replace all the terms that come before it by a single 1. Then
look it up in the table. The initial 1 is just a marker, and need not be in the
original sequence. For example, if the sequence begins

1,2,3,5,8,13,... seeunder 1,2,3,5,8,13,...
2,3,5,8,13,... seeunder 1,2,3,5,8,13,...
-1,1,0,1,1,2,3,5,8,... seeunder 1,2,3,5,8,...

1,0,0, 2, 24, 552, 21280, . .. see under 1, 2, 24, 522, 21280, ...

2.2 IF THE SEQUENCE IS NOT IN THE TABLE

(i) Try changing or redefining the sequence. Some typical changes
are inserting or deleting an initial term (e.g., seq. 46 occurs asboth 1,2, 1,
2,3,6,9,18,...and 1, 2, 3, 6,9, 18, . . .); adding or subtracting 1 or 2
from all the terms (e.g., seq. 309 occurs asboth 1, 2, 3, 6, 20, 168, . . . and
1, 4, 18, 166, . . .); and multiplying all the terms by 2 or dividing by any
common factor.

(i) If all these methods fail, and it seems certain that the sequence
is not in this handbook, please send the sequence and anything that is
known about it, including appropriate references, to the author for possible
inclusion in later editions.!

1Address: Mathematics Research Center, Bell Telephone Laboratories, Inc., Murray
Hill, New Jersey 07974.
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2.3 FINDING THE NEXT TERM

Suppose the beginning of a sequence is given as

0 1 2 3 4 5 6 7

a, a, a, az a, as; as a,

and a rule or explanation for it is desired. If nothing is known about the
history of the sequence or if it is an arbitrary sequence, nothing can be
said and any continuation is possible. (Any n + 1 points can be fitted by
an nth degree polynomial.)

But the sequences normally encountered, and those in this handbook,
are distinguished in that they have been produced in some intelligent and
systematic way. Occasionally such sequences have a simple explanation,
and if so, the methods given below may help to find it. These methods
can be divided roughly into two classes: those which look for a systematic
way of generating the nth term a, from the terms a,, . . ., a,_, before it,
e.g., an=a,_, + a,_,, i.e., methods which seek an internal explanation;
and those which look for a systematic way of going from n to a,,, €.g., a, is
the number of divisors of n, or the number of trees with n nodes, or the
nth prime number, i.e., methods which seek an external explanation. The
former methods are described in the rest of this chapter, the latter in
Chapter I11.

In practice it is usually clear for one reason or another when a correct
explanation for a sequence has been found.

(For the related problems of defining the complexity of a sequence,
and extrapolating a sequence of real numbers, see the interesting work
of Martin-Lof [IC 9 602 66] and Fine [IC 16 331 70 and FI1].)

24 LOOK FOR A RECURRENCE

Let the sequence be a,, a,, a,, a,, . . .. Is there a systematic way of
getting the nth term a, from the preceding terms a,_,, d,_», . . .? A rule
for doing this, such as a, =a%_, — a,_,, is called a recurrence, and of
course provides a method for getting as many terms of the sequence as
desired.

In studying sequences and recurrences it is useful to define a generat-
ing function (gf) associated with the sequence, usually an ordinary gf:

A(x)=ag+ ax+ a,x*+asx3+- - -,

but sometimes an exponential gf’

x3

3§+...

2
E(x) = a, + a,ﬁ+ azg—!+ a
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(These are formal power series having the sequence as coefficients; ques-
tions of convergence do not arise.)

Once a recurrence has been found for the sequence, techniques for
solving it will be found in the works by Riordan [R1 19], Batchelder [BAT],

and Levy and Lessman [LE2].

For example, consider seq. 256, the Fibonacci numbers: 1, 1, 2, 3, 5,
8, 13, 21, 34,. ... These are generated by the recurrence a, = a,_, +
a, -, and from this it is not difficult to obtain the generating function

I+x+ 2+ 30454 =
l—x—x

and the explicit formula for the nth term

=L[(l + \/g)n+l _ (1 _ \/§)n+l]
a, Vs — — .
2.4.1 METHOD OF DIFFERENCES

This is the standard method for finding recurrences. In simple cases,
it will even find an explicit formula for the nth term of a sequence, e.g.,
if this is a polynomial (such as a, = n? + 1) or a simple exponential (such
asa,=2"+n+1).

If the sequence is

dy, dy, Ay, A3, A4, . . .,
its first differences are the numbers
Aay = a, — a,, Aa, = a, — ay, Aa, = az — a., RN
its second differences are

Azao = Aa] - Aao, A2a| = Aaz - Aa,, Azag = Aa3 - Aag, « e ey

and so on. The Oth differences are the original sequence: A, = a,,
Aa, = a,, A%a, = a,, . . .; and the mth differences are

A™a, = A™"qg, ., — A™ g,

or, in terms of the original sequence,

Amq, =2 (7 )amen-i- (1

Therefore if the differences of some order can be identified, Eq. (1)
gives a recurrence for the sequence.
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Furthermore, if the differences a,, Aa;, A%a,, Adq,, . . . are known for
some fixed value of k&, then a formula for the nth term is given by
ares=3 (m) Amay. @
m=0
Example (i) Seq. 1562
n 1 2 3 4 5 6 7 8
a, 1 5 12 22 35 51 70 92
Aa, 4 7 10 13 16 19 22
A?a, 3 3 3 3 3 3
Ada, 0 0 0 0 0

Since A%, =3, Aap,+1— Aa, =3, 0r ap,r—2a,.+,+ a, =3, a recur-
rence for the sequence. An explicit formula is obtained from Eq. (2) with
k=1:

npr =1 +4(7) + 3('2') =1+4n+3n(n— 1) =2(n+1)Gr+2).

In general, if the mth differences are zero, a, is a polynomial in n of
degree m — 1.

Example (ii) Seq. 1382

n 1 2 3 4 5 6 7
a, 1 4 11 26 57 120 247
Aa, 3 7 15 31 63 127
Ala, 4 8 16 32 64

Here A%a,=2"*!, Aa,=2"*'—1, and a, =2"*!'— n — 2. Equation
(2) gives the same answer.

Example (iii) Seq. 552 (the Pell numbers)

n 1 2 3 4 5 6 7
a, 1 2 5 12 29 70 169
Aa, 1 3 7 17 41 99
Ala, 2 4 10 24 58
} A%a, 1 2 5 12 29

Since % A%a, = a,, Eq. (1) gives the recurrence a, ,, —2a,.; — a, =0.
Calculating further differences shows that A™a, = 2[™2 and so Eq. (2)
gives the formula

Apor = 2 (”m )z[mlzl_

m=0
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Example (iv) Seq. 469

n 1 2 3 4 5 6 7 8
a, 1 2 4 10 26 76 232 764
Aa, 1 2 6 16 50 156 532
n! Aa, 1 1 2 4 10 26 76

Notice that Aa, is divisible by n, and in fact n~! Aa, = a,—-;, SO that
dn .1 = a, + na,_,. Again Eq. (2) gives a formula for a,.

2.4.2 OTHER METHODS OF ATTACK

Is the sequence close to a known sequence, such as the powers of 2?
If so, try subtracting off the known sequence. For example, seq. 1382
(again): 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, . . .. The last
four numbers are close to powers of 2: 512, 1024, 2048, 4096; and then
itiseasytofinda,=2"—n—1.

Is a simple recurrence such as a, = aa, -, + Ba, -, likely? For this to
happen, the ratio p, = a,.,/a, of successive terms must approach a con-
stant as n increases. Use the values a, to a; to determine « and 8 and then
see if ag, a;, . . . are generated correctly.

If the ratio p, has first differences which are approximately constant,
this suggests a recurrence of the type a, = ana,_, + - - -. For example,
seq. 704: 1, 2, 7, 30, 157, 972, 6961, 56660, 516901, . . . has successive
ratios 2, 3.5, 4.29, 5.23, 6.19, 7.16, 8.14, 9.12, . . . with differences ap-
proaching 1, suggesting a, - na,_, + ?. Subtracting na,_, from a,, we
obtain the original sequence 0, 1, 2, 7, 30, 157, 972,. .. again, so a, =
na,_;+a,_,.

This example illustrates the principle that whenever p, = a,.,/a, seems
to be close to a recognizable sequence r,, one should try to analyze the
sequence b, = d,4, — rydy.

A recurrence of the form a, = na, _, + (small term) can be identified
by the fact that the 10th term is approximately 10 times the 9th. For ex-
ample, seq. 766: 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, .. .,
a, = na,_, + (—1)".

The recurrence a, = a2_, + - - - is characterized by the fact that each
term is about twice as long as the one before. For example, seq. 331:
1, 2, 3, 7, 43, 1807, 3263443, 10650056950807,. .., and a,=a%_, —
a,,+1.

2.4.3 FACTORIZING

Does the sequence, or one obtained from it by some simple operation,
have many factors?

Example (i) Seq. 1614: 1, 5, 23, 119, 719, 5039, 40319,.... As it
stands, the sequence cannot be factored, since 719 is prime, but the addi-
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tion of 1 to all the terms gives the highly composite sequence 2,6 =2 - 3,
24=2-3-4,120=2-3-4-5, ..., which are the factorial numbers (see
Section 3.13).

The presence of only small primes may also suggest binomial coeffi-
cients:

Example (ii) Seq. 577 (the Catalan numbers): 1, 2, 5, 14=2-7,
42=2-3-7,132=4-3-11,429=3-11-13,1430=2-5-11 - 13, 4862

=2-11-13-17,...and
_ 1 2n
ST nF (n )
(see Section 3.5).
Sequences arising in number theory are sometimes multiplicative, i.e.,
have the property that a,,, = a,,a, whenever m and n have no common

factor. For example, seq. 86: 1, 2, 2, 3, 2, 4, 2, 4...., the number of
divisors of n.

2.4.4 SELF-GENERATING SEQUENCES

This section describes some recurrences of a simple yet unusual type.
They have been called (rather arbitrarily) self-generating.

In the first two examples let 4 = {a, =1, a,, a,, . . .} be a sequence
of 1's and 2’s.

(i) Ifevery 1in A is replaced by 1, 2 and every 2 by 2, 1 a new se-
quence A’ is obtained. Imposing the condition that 4 = A4’ forces A4 to be
seq. 71: 1,2,2,1,2,1,1,.... Sequences 21 and 36 are of the same type.

(i) LetA”={by, by, b,, ...}, where b, is the length of the nth run in
A. (A run is a maximal string of identical symbols.) The condition 4 = A"
forces A tobeseq. 76:1,2,2,1,1,2,1,2,2,1,....

In the remaining examples, A = {a, = 1,4,,a,, . . .} is a nondecreas-
ing sequence of integers.

(iii) Let c, be the number of times noccurs inA4,forn=1,2,....If
c,=n,Aisseq.89:1,2,2,3,3,3,4,4,4,4,....Ifc,=a,_,,Aisseq.91:
1,2,2,3,3,4,4,4,5,5,5,6,6,6,6, .. ..(Seq. 965 is related to the latter
sequence.)

(iv) The condition that a,,, — a, be the smallest positive integer not
equal to a; — a;forany ij < nforcesatobeseq.416:1,2,4,8,13,21,. ...
The conditions a, = 1, a, = 2, and that a, be the smallest integer which
can be written uniquely as the sum of two distinct preceding terms force
Atobeseq.201:1,2,3,4,6,8, 11, 13, . ... Sequences 231, 254, 425, and
909 have similar explanations.
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ILLUSTRATED DESCRIPTION OF SOME
IMPORTANT SEQUENCES

While Chapter 11 studied ways of getting the nth term of a sequence
from the preceding terms, this chapter considers externally generated
sequences, such as the sequences in which the nth term is the number of
graphs with n nodes or the nth triangular number. An informal and illus-
trated description is given of some of the most important such sequences.

3.1 GRAPHS AND TREES

Stated informally, a graph consists of a finite set of points (or nodes)
some of which are joined by lines (or edges). Figure 1 illustrates seq. 479,
the number of graphs with n nodes.

g'=| o 92=2 o o o—o
g3=4

o o o0—0

o o
g4=" o o 0—0

NN KX
8!

i
NIOv. B>

Fig. 1. Seq. 479, graphs or reflexive symmetric relations.

A digraph, or directed graph, is a graph with arrows on the edges
(Fig. 2, seq. 1229). Figure 3 shows seq. 1069, digraphs of functions, i.e.,
digraphs with exactly one arrow directed out of each node.

17
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Q
o
"
(2]
o
o
o
o

J.
AN
£

Fig. 2. Seq. 1229, digraphs or reflexive relations.

fi=1 o fo:3 O )

7 B O~ Op o 070
000 &>

Fig. 3. Seq. 1069, functional digraphs.

A tree is a connected graph containing not closed paths (Fig. 4, seq.
299). A rooted tree is a tree with a distinguished node called Eve, or the
root. Figure 5 illustrates seq. 454, the number of rooted trees with n
nodes. The generating function (gf) of this sequence is

r(x)=x+x2+23+4x*+ 95+ - - -
and satisfies
r(x) = x exp[r(x) +4r(x2) + 4r(x®) +- - - ].
The generating function for trees,
tx) =x+x2+x3+2x*+ 355+ 6x8+ - - -

is then given by
t(x) = r(x) —42(x) +¥r(x?).
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t|=1 o tz" 73‘1 o0—0—0

lyr2  omo—oro _<
e

~+ X <

Fig. 4. Seq. 299, trees.

n=1(1) r2=1(2) rs=2(9)

A

(1)

(2) v

rq=4(64) (6) 3

(24) (12) (24) (4)
rs=9(625)

(12 (60) (120)  (120) (20) (60)

(60)

Fig. 5. Seq. 454, rooted trees. (The numbers in parentheses give seq. 771, labeled rooted
trees.)

(60)

Any of these graphs may be labeled by (if there are n nodes) attaching
the numbers from 1 to n to the nodes. For example in Fig. 5, the numbers
in parentheses give the number of ways of labeling each tree, and then
the total number of labeled rooted trees with n nodes is n*~!, seq. 771.
Usually when graphs are mentioned in the main table they are unlabeled
unless stated otherwise.

13
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The degree of a node is the number of edges meeting it. Figure 6 shows
seq. 118, series-reduced trees, or trees without nodes of degree 2.

For further information about the preceding sequences and for the
enumeration of other kinds of graphs, see Riordan [R1] and Harary [HAS].

04:1 >—o

as-1 +
v X P

Z%H_c
R R S
s e A HE A<

Fig. 6. Seq. 118, series-reduced trees.

3.2 RELATIONS

A relation R on a set S is any subset of § X S, and xRy means (x, y)
€ R or “xis related to y.”” A relation is reflexive if xRx for all x in S, sym-
metric if xRy = yRx, antisymmetric if xRy and yRx = x =y, and transi-
tive if xRy and yRz = xRz.

The most important types of relations are:

(1) unrestricted, or digraphs with loops of length 1 allowed (seq. 784:
2, 10, 104, 3044, 291968, . . .);

(2) symmetric, or graphs with loops of length 1 allowed (seq. 646:
2, 6, 20, 90, 544, 5096, 79264, . . .);

(3) reflexive, or digraphs (Fig. 2, seq. 1229 again);

(4) reflexive symmetric, or graphs (Fig. 1, seq. 479 again);
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(5) reflexive transitive, or topologies (Fig. 7, seq. 1133: 1, 3, 9, 33,
139, 718, 4535, ?. For the connection between digraphs and topologies,

see Birkhoff [BI1 117]);

(6) reflexive symmetric transitive, or partitions (Fig. 20, p. 24, seq.
244);

(7) reflexive antisymmetric transitive, or partially ordered sets (Fig.
8, seq. 588: 1, 2, 5, 16, 63, 318, 2045, 7).

ay=1 o

SRR
A S AN
FANRRY/LN/AN

Fig. 7. Seq. 1133, topologies.

A

S T VAN }
bg=16 © o o o ooI ov oA II 0}
N N X Y u s J}

¢ Al

Fig. 8. Seq. 588, partially ordered sets.
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This assumes that the graphs are unlabeled, i.e., that the elements of
the set S are indistinguishable. If the elements of S are labeled 1 through
n, the corresponding numbers are:

(n 27

(2) 2n(n+l)/2

(3) 2n(n l)

@ 2®
(these four [(1)-(4)] are not in the table, but the sequences of their ex-
ponents are);

(5) seq. 1476: 1, 4, 29, 355, 6942, 209527, 9535241, ?

(6) seq. 585: the Bell numbers or the number of equivalence relations
on a set of n objects (see Fig. 22, p. 25);

(7) seq. 1244: 1, 3, 19, 219, 4231, 130023, 6129859, 2.

3.3 GEOMETRIES

The numbers of topologies were shown in Fig. 7; the following are also
basic geometrical sequences:

A linear space is a system of (abstract) points and lines such that every
two points lie on a unique line, and every line contains at least two points.
A geometry is a system of points, lines, planes, . . . with an analogous
definition. Figure 9 shows seq. 462: 1, 1, 2, 4, 9, 26, 101, 950, ?, the
number of geometries with n points. (See Crapo and Rota [JM2 49 127
70]. The * denotes 5 points in general position in 4-dimensional space.)
The planar figures in Fig. 9 form seq. 271: 1, 1, 2, 3, 5, 10, 24, 69, 384, ?,
the number of linear spaces (Doyen [BSM 19 424 67]).

gz=1 o0—o

932 o0—o0—o A
U N o .~

e e O LA

Qz&ﬁ@

Fig. 9. Seq. 462, geometries (for * see text).




3.4 COMBINATIONS AND FIGURATE NUMBERS

3.4 COMBINATIONS AND FIGURATE NUMBERS
The most basic combinatorial number is the binomial coefficient

n)_n(n—l)(n—2)---(n—-r+1)_ n!
(’ - 1-2-3---r “rn=r)"

which is the number of selections, or combinations, of n unlike things
taken r at a time, has gf

n

(1+x)r=3 (',') X,

r=0

and is the (r + 1)th term in the (n + 1)th row of Pascal’s triangle

1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

These are also called figurate numbers since they are the numbers of
points in certain figures. For example, () and (%) are the triangular and
tetrahedral numbers (Fig. 10, seqs. 1002, 1363).

° oo
o o o o o o
o o o o o o o o0 o0 o
o o o o o o o o o0 o © 0 o0 0 o
1 3 6 10 15

N
S

1 4 10

Fig. 10. Seqs. 1002 and 1363, the triangular and tetrahedral numbers.

17
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Other examples of figurate numbers are the polygonal numbers P(r, s) =
4r(rs — s + 2). Figure 11 shows seq. 1350, the square numbers P(r,2) =
r?; and seq. 1562, the pentagonal numbers P(r, 3) =4r(3r—1).

Many other figurate numbers, including cubes, fourth powers, etc., will
be found in the table. For further pictures see Hogben [HO3].

o o0 o0 o0
o o o0 o o o o0 o o
o o o o 0o o o o o o0 o0 o
o o o oo o o o o o 0o o0 o o
o o o o o o o o o0 o o 0o 0 o0 o
1 4 9 16 25
[
o o
) o
[ ° o o °
o o o o (] o
° o o o (-]
o o o ° o o oo °
o °° o o o o
o o ] o ]
o o o o o o o o oo
o o ) [ o o o )
o o o o oo o 0o oo o 0o o0 o o
1 5 12 22 35

Fig. 11. Segqs. 1350 and 1562, the square and pentagonal numbers.

3.5 CATALAN NUMBERS AND DISSECTIONS

Next to the figurate numbers, the Catalan numbers are the most fre-
quently occurring combinatorial numbers. (Gould [GO4] lists over 240
references.) They are defined by

i ()
and form seq. 557: 1,2, 5, 14,42, 132,429, 1430, 4862, 16796, . . .. A gfis
1+x+22+53+- = (2x)7[1 — (1 —4x)'2].
Some of the interpretations of c, are:

(1) The number of ways of dissecting a convex polygon of n+ 2 sides
into n triangles by drawing nonintersecting diagonals (Fig. 12a).

(2) The number of ways of completely parenthesizing a product of
n + 1 letters (so that there are two factors inside each set of parentheses).
The examples for n = 1, 2, 3 (arranged to show the correspondence with
the dissections of Fig. 12a) are:

n=1 (ab); n=2 a(bc), (ab)c;
n=3 (ab)(cd), a((bc)d), ((ab)c)d, a(b(cd)), (a(bc))d.
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(3) The number of bifurcated rooted planar trees with n + 1 end-
points. (A planar tree is one which has been drawn on a plane, and bifur-
cated means that each edge splits in two at each node. See Fig. 12b. The
trees are drawn to show the correspondence with the dissections and the
parentheses.)

(4) In an election with two candidates A and B, each receiving n
votes, ¢, is the number of ways the votes can come in so that A is never
behind B (Feller [FE1 1 71] and Comtet [CO1 1 94]).

7
QSP & N
888 ©
QB8 ©

DO O

(b) C1 =1

C2:=2

C3=5

G K

Fig. 12. Seq. 577, the Catalan numbers.

Figure 13 illustrates seq. 942, the number of different dissections of a
polygon when two dissections are considered to be the same if a rotation
or reflection sends one into the other.

Figure 14 illustrates seq. 391, giving in(n+ 1) + 1, the maximum
number of pieces obtained by slicing a pancake with n slices. The numbers

19
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of n-sided polygons in the nth diagram of Fig. 14 form seq. 1181: 0,0, 1,
3, 12, 70, 465, 3507, 30016, ... (Robinson [AMM 58 462 51]). Seq.
491: 2, 4,8, 15, 26, 42, 64, 93, 130, 176, . . . gives (n + 2)(n + 3)/6, the
maximum number of pieces obtained with n slices of a cake.

faz1 A

o1 [

st O

- 6 0
e & Q@ @

Fig. 13. Seq. 942, dissections of a polygon.

@@@@

-

Fig. 14. Seq. 391, slicing a pancake.

"




3.7 KNOTS

3.6 NECKLACES AND IRREDUCIBLE POLYNOMIALS

Figure 15 illustrates seq. 203, T,, the number of different necklaces
that can be made from beads of two colors, when the necklaces can be
rotated but not turned over. This is also the number of irreducible binary
polynomials whose degree divides n, an important sequence in digital
circuitry; and has the formula T, = X ¢(d)2"9, where ¢(d) is the Euler
totient function (seq. 111, Section 3.14) and the sum is over all divisors
d of n. (See Berlekamp [BE2 70] and Golomb [CMA 1 358 69].) If turn-
ing over is allowed, the number of different necklaces is given by seq.
202: 2, 3, 4, 6, 8, 13, 18, 30, 46, 78,. ... (See Gilbert and Riordan
[1JM 5 657 61].)

T|=2 ° [ ]

O O O
= QO Q Q
we (3O QO O Q O

Fig. 15. Seq. 203, necklaces.

3.7 KNOTS

Figure 16 shows seq. 322: 0, 0, 1, 1, 2, 3, 7, 18, 41, 123, 367, ?, the
number of knots with n crossings, in which the crossings alternate. (See
Tait [TA1 1 334] and Conway [JL2 343].)

03,,(? 1(@
- ® 0
-® B @
- B D B
8 80O

Fig. 16. Seq. 322, knots.
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3.8 STAMPS

Figure 17 shows seq. 576: 1, 1, 2, 5, 14, 39, 120, 358, 1176, 3527,. ..
(six more terms are known), the number of ways of folding a strip of

stamps.

wr | e | ]

8 I

[l M 10 10 0
Mo @ o W

Fig. 17. Segq. 576, folding a strip of stamps.

[
Ll

A polyomino with p squares is a connected set of p squares from a
chessboard pattern. Polyominoes are free if they can be rotated and turned
over (Fig. 18), and fixed otherwise. Unless otherwise stated, all polyomi-
noes are free. Polyominoes may also be formed from triangles, rectangles,
cubes (Fig. 19), etc. In no case is a formula known for the general term.

(See Golomb [GO2].)
aq=1 (] =1 (]

03=2 D:D EE

az=5 [OT11] D:B EE] % CBJ
w2 o o ofbh dd  BH =i

EEH II— |_|—Hj II— l:l #:I

Fig. 18. Seq. 561, square polyominoes.
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Fig. 19. Seq. 731, polyominoes made from cubes.

3.10 BOOLEAN FUNCTIONS

A Boolean (or switching) function is a function f(x,, . . ., x,), where
each variable x; is O or 1, and f takes on the values 0 or 1.

These arise in the design of logical circuits, when the names of the
variables do not matter. So it is natural to say that two such functions are
equivalent if they differ only in the names of the variables (so that x; + x,x,
is equivalent to x, + x,x3), and to ask for the number of inequivalent func-
tions. The answers to this (which is seq. 1405: 4, 12, 80,3984, . . .)and to
many similar questions (allowing complementation of the variables, etc.)
are given by the Pdlya counting theory (Section 3.11).

Two generalizations that will be found in the table are (i) Post functions,
which are functions f(x,, . . ., x,), where each x; and fcan take any value
from 0 to m — 1; and (ii) switching networks, which are n-input, k-output
networks such that each of the outputs is a-Boolean function of the n
inputs. For details see Harrison [HA2, MU3 85].

3.11 POLYA COUNTING THEORY

A large number of counting problems involving graphs, necklaces,
Boolean functions, and patterns of various kinds have been solved by the
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theorems of Redfield, Polya, and De Bruijn. (See Riordan [R1 131],
De Bruijn [BE6 144], Harrison [HA2 127, MU3 85], and Harary [HAS
1781.)

3.12 PARTITIONS

The following are the most important sequences of partitions.
The main such sequence is number 244: 1, 2, 3,5,7, 11, . . ., giving the
number of partitions of n into integer parts (Fig. 20). A gf is

1+x+22+33+ 5 +---=]] (1 —x)1.
i=1

(See Gupta [RS2] and David et al. [DKB 273].)
Those partitions of n in which all parts are distinct form seq. 100:
1,1,2,2,3,4,5,...with gf

l+x+x2+23+2¢+- =[] (1 +x).
i=1

The partitions of the even numbers into parts which are powers of two
form the binary partition function b(n), seq. 378: 1, 2, 4, 6, 10, 14, 20,
26, 36, 46, . . ., with recurrence b(n) = b(n— 1) + b([3n]).

p() =1 1

p2) = 2 2,12

p(3) =3 3,21, 18

p@é) =5 4, 31, 22, 212, 14

pis) =17 5,41, 32, 312, 221, 213, 18

p(6) =11 6, 51, 42, 412, 32, 321, 313, 23, 2212, 214, 1°

p(7) =15 7, 61, 52, 512, 43, 421, 413, 3%1, 322, 3212, 314, 231, 2213, 215, 17

Fig. 20. Seq. 244, the number of partitions of n.

Figure 21 illustrates the number of planar partitions of n, seq. 1016,
with gf

T+x+324+63+---=]] (1—x)1.
i=1

Figure 22 shows S(n, k), the Stirling numbers of the second kind, or
the number of partitions of a set of n labeled objects into k parts.
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=1 1
n2)=3 2 11 1
1
r3)=6 3 21 2 111 11 1
1 1
1
r(4)=13 4 31 3 2 211 21 2
1 2 1 1
1
1111 111 11 11 1
1 11 1 1
1 1
1
Fig. 21. Seq. 1016, planar partitions.
Y I 2 3 4 Total
1 1 1
2 12 1.2 2
3 123 1,23 1.2,3 5
2,13
3,12
4 1234 1,234 2,134 1,2,34 1,3,24 1.2.3.4 15
3.124 4,123 1.4,23 2.3.14
12,34 13,24 2,4,13 3,41
14,23

Fig. 22. S(n, k), the Stirling numbers of the second kind, and seq. 585, the Bell numbers.

The numbers continue:

row sums

B(n)
1 1
1 1 2
1 3 1 5
1 7 6 1 15
1 15 25 10 1 52
1 31 9 65 15 1 203
1

63 301 350 140 21 1 877
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A gf for S(n, k) is
xt= > 8(n, k) x(x—1) -+ (x—k+1).
0

k=

Both the columns and diagonals of this array will be found in the main
table.

The row sums are the Bell numbers B(n), seq. 585. B(n) is also the
number of equivalence relations on a set of n objects (Section 3.2) and
has gf

x? x3 _ erei
1+x+25+5§+---—e .
(See Abramowitz and Stegun [AS1 835], David et al. [DKB 223], and
Comtet [CO1 2 38].)

3.13 PERMUTATIONS

A permutation of n objects is any rearrangement of them, and is spec-
ified either by a table:

1 2 3 4 5
35 41 2
or by a product of cycles: (134)(25), both of which mean replace 1 by 3,
3by4,4by 1,2 by 5, and 5 by 2.
Figure 23 shows s(n, k), the Stirling numbers of the first kind, or the

numbers of permutations of n objects containing & cycles. The numbers
continue:

row sums
n!
1 1
1 1 2
2 3 1 6
6 11 6 1 24
24 50 35 10 1 120
120 274 225 85 15 1 720

720 1764 1624 735 175 21 1 5040
A gf for s(n, k) is
x(x—1) - (x—n+1) =2 (—1)"~*s(n, k)x*.
k=0

Both the columns and diagonals of this array will be found in the main
table. The row sums are the factorial numbers n!, seq. 659, the total num-
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ber of permutations of n objects. References are as given above for the

Stirling numbers of the second kind.

Factorial n is the product 1 -2 -3 - - - n of the first » numbers. The
products of the first n even numbers, (2n)!!=2-4 -6 - (2n) =2" - n!,
seq. 742: 2, 8, 48, 384, 3840. 46080, . . ., and of the first n odd numbers,
2n—1"=1-3-5---2n—1)= (2n)'/(2"-
105, 945, 10395, . . ., are called double factorials.

n'), seq. 1217: 1, 3, 15,

Nk 1 2 3 4 Total
1 N 1
2 (12) (D@ 2
3 (123) (1)@23) (H(2)3) 6
(132) (2)(13)
(3)(12)
4 (1234) | (D@34) (D243) | (D@34 | (DR)BN) 24
(1243) | @(134) 2)143) | (DB)24)
(1324) | 3)124) (3)142) | ()4)(23)
(1342) | @123) @132 | B)14)
(1423) | (12)34) (13)24) | ()@4)(13)
(1432) (14)(23) 3)®(12)

Fig. 23. s(n, k), the Stirling numbers of the first kind; and seq. 659, the factorial numbers.

D2=1

12
21
123
231

1234
2143

1234
3142

1234
4123

1
3

23
12
1234
2341

1234
3412

1234
4312

1234
2413

1234
3421

1234
4321

Fig. 24. Seq. 766, derangements.

Figure 24 shows D,, the number of derangements of n objects, or the
permutations in which every object is moved from its original position
(seq. 766). These are also called subfactorial or rencontres numbers, and

have the recurrence D, = nD, _, + (—1)". (See Riordan [R1 57].)
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Figure 25 illustrates seq. 587, the Euler numbers E, , or the number of
permutations of n objects which first rise and then alternately fall and
rise. (Only the second rows of the permutations are shown.)

The even numbered Euler numbers form seq. 1667: 1, 5, 61, 1385,
50521, ..., and have gf

x*
l+12,+54,+6la -+ = Sec X.
(Often these are called the Euler numbers instead of seq. 587.)
The odd numbered Euler numbers form seq. 829: 1, 2, 16, 272, 7936,

353792, ..., and are called the tangent numbers T, = E,,_,. They have
ef
x+2§3+16§ - -=tan x.
E =1 1
E,=1 12
E;=2 132 231
E,=5 1324 1423 2314 2413 3412

E;=16 13254 14253 14352 15243
15342 23154 24153 24351
25143 25341 34152 34251
35142 35241 45132 45231

Fig. 25. Seq. 587, the Euler numbers.

The Bernoulli numbers B, are defined by

2’1E2n -1

Bu= 1y

and form the sequence
11 l ] 5 69173617

with gf

The numerators and denominators form seqs. 1677 and 1746.
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Finally the Genocchi numbers are defined by G, =22-2" n E,,_,, and

form seq. 1233: 1, 1, 3, 17, 155, 2073, 38227,.. ., with gf
X x3 x° x7 1
1ﬁ+lﬁ+33_!+ l7m+' . -=tan5x.

The Euler, tangent, Bernoulli, and Genocchi numbers arise in all
branches of mathematics. For applications and properties see Jordan
[JO2], David and Barton [DB1], Comtet [CO1] and Gould [AMM 79
44 72]; for tables see Fletcher et al. [FMR 1 65] and Knuth and Buck-
holtz [MTAC 21 663 67].

3.14 SEQUENCES FROM NUMBER THEORY

The table contains many number-theoretic sequences, of which the
following are typical:

(1) The prime numbers, lucky numbers, and other sequences gener-
ated by sieves (seqs. 241, 377, 1035, 1048);

(2) the Euler totient function ¢(n): the number of integers not ex-
ceeding and relatively prime to n (seq. 111);

(3) from the Goldbach conjecture: the number of ways of writing
2n as a sum of two primes (various sequences—see index);

(4) quadratic partitions of primes: a prime of the form 4n + 1 has a
unique representation as a® + b? with a = b. Sequences 169 and 33 give
a and b;

(5) the number of integers less than or equal to 2" expressible in the
form u? + v2, where u and v are integers (seq. 265);

(6) Mersenne primes: the numbers n such that 2" — 1 is prime (seq.
248);

(7) from Euler’s proof that there are an infinity of primes: let p, = 2,

2, . . .» Py be primes, and define p, ., to be the smallest (largest) prime
factor of p,p, - - - p, + 1 (segs. 329, 330);

(8) Beatty sequences: if a, 8 are positive irrational numbers such that

(1/a) + (1/B8) = 1, then the Beatty sequences

[a], [2a], [3a],. .. and [B], [28], [38],. ..

together contain all the positive integers without repetition, where [x]
denotes the greatest integer less than or equal to x. (See Honsberger
[HO2].) For example, a = $(1 + V/5) = 1.61803. . . gives segs. 917: 1, 3,
4,6,8,9,...and 509: 2,5,7, 10, 13, 15, . ...

The following test for Beatty sequences is due to R. L. Graham. If
a,,a,, . . .is a Beatty sequence, then the values of a,, . . ., a,_, determine

29
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a, to within 1. Look at the sums a, + a,—1, @Gs+ dy_»s,.. ., Gu_1 + a,.
If all these sums have the same value, V say, then a, must equal V or
V + 1; but if they take on the two values V and V + 1, and no others, then
a, must equal ¥V + 1. If anything else happens, it is not a Beatty sequence.
For example, in seq. 917, a, + a, = 2 so a, must be 2 or 3 (itis 3); a, + a,
=4 s0 a; must be 4 or 5 (it is 4); a, + a; = 5 and g, + a, = 6, 50 a, must
be 6 (it is); and so on.

For further information about number-theoretic sequences see the
comprehensive works of Dickson [DI2] and Lehmer [LE1].

3.15 PUZZLE SEQUENCES

This section describes some sequences with simple yet unexpected
generating principles. They have all been given as puzzles at one time or
another. Of course all of the sequences given in Chapters 11 and 111 make
good puzzles.

(1) Sequences related to well-known constants (e.g., seq. 1291: 1, 4,
1,4,2,1,3,5,6,2, 3, ..., the decimal expansion of \/2) or to other com-
mon sequences (seq. 2127: 1, 15, 29, 12, 26, 12,26, 9, . . . is related to the
calendar—guess!). See also seqs. 684, 880, 1679, 1812, etc.

(2) Sequences depending on the binary expansions of numbers (e.g.,
seq. 41: 1,2,1,2,2,3,1,2,2,... gives the number of 1’s in the binary
expansion of n + 1; see also seqs. 360, 388).

(3) Sequences depending on the English words or Arabic numerals
used to describe them (e.g., seq. 2218: 1, 21, 21000, 101, 121, 1101, ...,
the smallest number requiring n words in English; see also seqs. 1818,
1897).

(4) The terms not in some well-known sequence (e.g., seq. 1319: 4,
6,7,9, 10, 11, 12, 14, 15, . . ., the non-Fibonacci numbers).

(5) Sequences obtained by bisecting (i.e., taking every other term of)
well-known sequences (e.g., seq. 1067: 1, 3, 7, 18, 47, 123, 322,...,a
bisection of seq. 924, the Lucas numbers; see also seqs. 569, 1101).

(6) Sequences obtained by alternating the terms of two sequences
(seq. 889: 3,2,1,7,4,1,1,8,5,2,9,..., mixing 7 and e, is the only
example given).

The following pleasing puzzles are not in the table because they are
finite or are not integers.

(7 %.3%.1,3,6, 12,24, 30, 120, 240, 1200, 2400, English money in
1950.

(8) 3,8, 8, 4, 89, 75, 30, 28, ?, planetary diameters in thousands of
statute miles.
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9) 8,5,4,9,1,7,6,3,2,0;0r8, 8000000000, . . ., 18, 18000000000,

.., 18000000,..., 18000,..., 80,..., 88,..., 85,..., 84,...,

1,...,15,...,5,...,4,..., the numbers arranged in alphabetical
order (in English).

(10) 12,13, 14, 15, 20, 22, 30, 110, 1100, the number 12 written to the
bases 10, 9, 8, ..., 2.

(11) 14, 18, 23, 28, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, 110, 116,
125, 137, 145, 157, 168, 181, 191, 207, 215, 225, 231, 238, 242, the local
stops on the New York IRT subway.

(12) 1714, 1727, 1760, 1820, 1910, 1936, dates of the accessions of
the Georges to the English throne.

(13) 1732, 1735, 1743, 1751, 1758, 1767, 1767, 1782, 1773, 1790,
1795, 1784, 1800, 1804, 1791, 1809, 1808, 1822, 1822, 1831, 1830, 1837,
1833, 1837, 1843, 1858, 1857, 1856, 1865, 1872, 1874, 1882, 1884, 1890,
1917, 1908, 1913, dates of birth of presidents of the U.S.A.

(14) The integers 1, 2, 3, ... drawn next to a mirror. (See Fig. 26.)

(15) O, T,T,F,F,S,S,E,.N, T,E, T.,T,F,F,S,S,E,N, T, T,T.T, . . .,
the initial letters of the English names for the numbers.

O 3™ O

Fig. 26. A puzzle.

3.16 SEQUENCES FROM LATTICE STUDIES IN PHYSICS

In the last twenty years physicists have studied a number of basic
combinatorial problems related to crystal lattices. Typical problems are to
find the number of self-avoiding paths of length n on a given lattice, or the
number of ways a particular graph can be drawn on the lattice. A number
of such sequences will be found in the main table. For further informa-
tion see Montroll [BE6 96], Sykes et al. [JMP 7 1557 66], Kasteleyn
[HA1 43], Percus [PE3], and Domb [ACP 15 229 69].
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