(Translated by https://www.hiragana.jp/)
The On-Line Encyclopedia of Integer Sequences (OEIS)
login

Revisions by G. C. Greubel

(See also G. C. Greubel's wiki page)

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of 1/((1-8*x)*(1-10*x)).
(history; published version)
#31 by G. C. Greubel at Thu Nov 14 03:21:15 EST 2024
STATUS

editing

proposed

#30 by G. C. Greubel at Thu Nov 14 03:19:15 EST 2024
NAME

Expansion of 1/((1-8x8*x)*(1-10x10*x)).

DATA

1, 18, 244, 2952, 33616, 368928, 3951424, 41611392, 432891136, 4463129088, 45705032704, 465640261632, 4725122093056, 47800976744448, 482407813955584, 4859262511644672, 48874100093157376, 490992800745259008, 4927942405962072064, 49423539247696576512, 495388313981572612096, 4963106511852580896768

LINKS

G. C. Greubel, <a href="/A016186/b016186_1.txt">Table of n, a(n) for n = 0..990</a>

FORMULA

a(n) = 5*10^n - 4*8^n = A081203(n+1). Binomial transform of A081035. - _From _R. J. Mathar_, Sep 18 2008: (Start)

a(n) = 5*10^n - 4*8^n = A081203(n+1).

Binomial transform of A081035. (End)

a(n) = 8*a(n-1) + 10^(n-1). - _From _Geoffrey Critzer_, Jan 24 2011: (Start)

a(n) = 8*a(n-1) + 10^(n-1).

E.g.f.: exp(9*x)*sinh(x) (with offset 1). - _Geoffrey Critzer_, Jan 24 2011(End)

a(n) = 10*a(n-1) + 8^n, a(0)=1. - _From _Vincenzo Librandi_, Feb 09 2011: (Start)

a(n) = 1810*a(n-1) - 80*a(+ 8^n-2), , a(0)=1, a(1)=18. - _Vincenzo Librandi_, Feb 09 2011

a(n) = 18*a(n-1) - 80*a(n-2), a(0)=1, a(1)=18. (End)

E.g.f.: exp(9*x)*( cosh(x) + 9*sinh(x) ). - G. C. Greubel, Nov 14 2024

MATHEMATICA

RangeRest@With[0, 20]! {m=30}, CoefficientList[Series[Exp[9 x] Sinh[x], {x, 0, 20m}], x]*Range[0, m]!]

Join[{a=1, b=18}, Table[c=182^n*b(5^(n+1)-80*a; a=b; b=c, 4^(n+1)), {n, 0, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)

PROG

(Magma) [2^n*(5^(n+1)-4^(n+1)): n in [0..40]]; // G. C. Greubel, Nov 14 2024

(SageMath)

A016186=BinaryRecurrenceSequence(18, -80, 1, 18)

print([A016186(n) for n in range(41)]) # G. C. Greubel, Nov 14 2024

CROSSREFS
EXTENSIONS

More terms added by G. C. Greubel, Nov 14 2024

STATUS

approved

editing

Discussion
Thu Nov 14
03:21
G. C. Greubel: The egf exp(9*x)*sinh(x) = 0 + x + 18*x^2/2 + ... has offset 1. This statement was added to the formula. An egf with offset 0 added. Minor change to first Mma program.
Expansion of 1/((1-8*x)*(1-11*x)).
(history; published version)
#26 by G. C. Greubel at Thu Nov 14 02:43:57 EST 2024
STATUS

editing

proposed

#25 by G. C. Greubel at Thu Nov 14 02:43:22 EST 2024
NAME

Expansion of 1/((1-8x8*x)*(1-11x11*x)).

DATA

1, 19, 273, 3515, 42761, 503139, 5796673, 65860555, 741243321, 8287894259, 92240578673, 1023236299995, 11324318776681, 125117262357379, 1380687932442273, 15222751628953835, 167731742895202841, 1847300971660916499, 20338325086779563473, 223865691142651054075, 2463675524073768441801, 27109654136848307635619

LINKS

G. C. Greubel, <a href="/A016187/b016187_1.txt">Table of n, a(n) for n = 0..950</a>

FORMULA

E.g.f.: (1/3)*(11*exp(11*x) - 8*exp(8*x)). - G. C. Greubel, Nov 14 2024

MATHEMATICA

Join[{a=1, b=19}, Table[c=19*b(11^(n+1)-88*a; a=b; b=c, 8^(n+1))/3, {n, 0, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)

LinearRecurrence[{19, -88}, {1, 19}, 40] (* G. C. Greubel, Nov 14 2024 *)

PROG

(Magma) [(11^(n+1)-8^(n+1))/3: n in [0..40]]; // G. C. Greubel, Nov 14 2024

(SageMath)

A016187=BinaryRecurrenceSequence(19, -88, 1, 19)

print([A016187(n) for n in range(41)]) # G. C. Greubel, Nov 14 2024

CROSSREFS

Cf. A016140.

EXTENSIONS

More terms added by G. C. Greubel, Nov 14 2024

STATUS

approved

editing

Expansion of 1/((1-8*x)*(1-12*x)).
(history; published version)
#27 by G. C. Greubel at Thu Nov 14 02:29:03 EST 2024
STATUS

editing

proposed

#26 by G. C. Greubel at Thu Nov 14 02:28:15 EST 2024
FORMULA

E.g.f.: 3*exp(12*x) - 2*exp(8*x). - G. C. Greubel, Nov 14 2024

PROG

(Magma) [4^n*(3^(n+1)-2^(n+1)): n in [0..40]]; // G. C. Greubel, Nov 14 2024

(SageMath)

A016188=BinaryRecurrenceSequence(20, -96, 1, 20)

print([A016188(n) for n in range(41)]) # G. C. Greubel, Nov 14 2024

CROSSREFS

Cf. A016140.

STATUS

approved

editing

Expansion of 1/((1-3*x)*(1-7*x)).
(history; published version)
#40 by G. C. Greubel at Thu Nov 14 02:18:28 EST 2024
STATUS

editing

proposed

#39 by G. C. Greubel at Thu Nov 14 02:16:04 EST 2024
NAME

Expansion of 1/((1-3x3*x)*(1-7x7*x)).

DATA

1, 10, 79, 580, 4141, 29230, 205339, 1439560, 10083481, 70604050, 494287399, 3460188940, 24221854021, 169554572470, 1186886790259, 8308221880720, 58157596211761, 407103302622490, 2849723505777919, 19948065702706900, 139636463405732701, 977455254300482110, 6842186811484434379, 47895307774534219480

FORMULA

a(n) = ((5+sqrt4)^n - (5-sqrt4)^n)/4 in Fibonacci form. Offset 1. a(3)=79. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008

MATHEMATICA

Join[{a=1, b=10}, Table[c=10*b(7^(n+1) -21*a; a=b; b=c, 3^(n+1))/4, {n, 600, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)

PROG

(Sage) [lucas_number1(n, 10, 21) for n in range(1, 2030)] # Zerinvary Lajos, Apr 26 2009

(Magma) [(7^(n+1)-3^(n+1))/4: n in [0..2030]]; // Vincenzo Librandi, Oct 09 2011

STATUS

approved

editing

Discussion
Thu Nov 14
02:18
G. C. Greubel: The Hakanson formula was removed because the Binet form presented serves no benefit in this case. Also if sqrt(4) is changed to 2 then it is identical to the first formula.
Expansion of 1/((1-3*x)*(1-8*x)).
(history; published version)
#48 by G. C. Greubel at Thu Nov 14 01:58:27 EST 2024
STATUS

editing

proposed

#47 by G. C. Greubel at Thu Nov 14 01:57:55 EST 2024
NAME

Expansion of 1/((1-3x3*x)*(1-8x8*x)).

DATA

1, 11, 97, 803, 6505, 52283, 418993, 3354131, 26839609, 214736555, 1717951489, 13743789059, 109950843913, 879608345627, 7036871547985, 56294986732787, 450359936909017, 3602879624412299, 28823037382718881, 230584300224012515, 1844674405278884521, 14757395252691429371, 118059162052912494577, 944473296517443135443

COMMENTS

In general, for expansion of 1/((1-bxb*x)*(1-cxc*x)): a(n) = (c^(n+1) - b^(n+1))/(c-b) = (b+c)*a(n-1) - bcb*c*a(n-2) = b*a(n-1) + c^n = c*a(n-1) + b^n = Sum_{i=0..n} b^i*c^(n-i). - Henry Bottomley, Jul 20 2000

FORMULA

a(n) = 11a11*a(n-1) - 24a24*a(n-2).

a(n) = 3a3*a(n-1) + 8^n.

a(n) = 8a8*a(n-1) + 3^n.

E.g.f.: (1/5)*(8*exp(8*x) - 3*exp(3*x)). - G. C. Greubel, Nov 14 2024

MATHEMATICA

Join[{a = 1, b = 11}, Table[c = 11b (8^(n+1)- 24a; a = b; b = c, 3^(n+1))/5, {n, 600, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)

CoefficientList[Series[1 / ((1 - 3 x) (1 - 8 x)), {x, 0, 2030}], x] (* Vincenzo Librandi, Jun 24 2013 *)

PROG

(Sage) [lucas_number1(n, 11, 24) for n in range(1, 2030)] # Zerinvary Lajos, Apr 27 2009

(Magma) m:=2030; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-8*x)))); // Vincenzo Librandi, Jun 24 2013

CROSSREFS

Sequences with g.f. 1/((1-n*x)*(1-8*x)): A001018 (n=0), A023001 (n=1), A016131 (n=2), this sequence (n=3), A016152 (n=4), A016162 (n=5), A016170 (n=6), A016177 (n=7), A053539 (n=8), A016185 (n=9), A016186 (n=10), A016187 (n=11), A016188 (n=12), A060195 (n=16).

STATUS

approved

editing