(Translated by https://www.hiragana.jp/)
# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001465 Showing 1-1 of 1 %I A001465 M2538 N1003 #55 Oct 24 2020 04:28:10 %S A001465 0,0,1,3,6,10,30,126,448,1296,4140,17380,76296,296088,1126216,4940040, %T A001465 23904000,110455936,489602448,2313783216,11960299360,61878663840, %U A001465 309644323296,1587272962528,8699800221696,48793502304000,268603261201600,1487663739072576 %N A001465 Number of degree-n odd permutations of order 2. %C A001465 Number of even partitions of an n-element set avoiding the pattern 123 (see Goyt paper). - _Ralf Stephan_, May 08 2007 %D A001465 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001465 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001465 Alois P. Heinz, Table of n, a(n) for n = 0..800 %H A001465 Lev Glebsky, Melany Licón, and Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019. %H A001465 A. M. Goyt, Avoidance of partitions of a 3-element set, arXiv:math/0603481 [math.CO], 2006-2007. %H A001465 L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168. %F A001465 a(n) = Sum_{i=0..floor((n-2)/4)} C(n,4i+2)*(4i+2)!/(4i+2)!!. - _Ralf Stephan_, May 08 2007 %F A001465 Conjecture: a(n) -3*a(n-1) +3*a(n-2) -a(n-3) -(n-1)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, May 30 2014 %F A001465 From _Jianing Song_, Oct 24 2020: (Start) %F A001465 E.g.f.: exp(x)*sinh(x^2/2). %F A001465 a(n) = A000085(n) - A000704(n). (End) %e A001465 For n=3, a(3)=3 and (1,2), (1, 3), (2, 3) are all the degree-2 odd permutations of order 2. - _Luis Manuel Rivera Martínez_, May 22 2018 %p A001465 a:= proc(n) option remember; `if`(n<4, (n-1)*n/2, %p A001465 ((2*n-3)*a(n-1)-(n-1)*a(n-2))/(n-2)+(n-1)*(n-3)*a(n-4)) %p A001465 end: %p A001465 seq(a(n), n=0..30); # _Alois P. Heinz_, May 24 2018 %t A001465 Table[Sum[Binomial[n , 4 i + 2] (4 i + 2)!/(2^(2 i + 1) (2 i + 1)!), {i, 0, Floor[(n - 2)/4]}], {n, 0, 22}] (* _Luis Manuel Rivera Martínez_, May 22 2018 *) %Y A001465 Cf. A000085, A000704. %K A001465 nonn %O A001465 0,4 %A A001465 _N. J. A. Sloane_ and _J. H. Conway_ %E A001465 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 11 2004 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE