(Translated by https://www.hiragana.jp/)
A005156 -id:A005156 - OEIS
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a005156 -id:a005156
Displaying 1-10 of 13 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A059493 A005156(n)*A059488(n)^2. +20
1
1, 36, 58800, 4350842496, 14616841474819584, 2232275367429083934397440, 15508029030753757178368051489382400, 4903022043055128535359103830176804216217600000, 70564996915837622037116996413540007182305594153356328960000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 04 2001
EXTENSIONS
Definition changed by N. J. A. Sloane following a comment by Paul Zinn-Justin (pzinn(AT)lptms.u-psud.fr), May 29 2007
STATUS
approved
A006013 a(n) = binomial(3*n+1,n)/(n+1).
(Formerly M1782)
+10
120
1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, 142498692, 859515920, 5225264024, 31983672534, 196947587823, 1219199353190, 7583142491925, 47365474641870, 296983176369495, 1868545312633440, 11793499763070480 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Enumerates pairs of ternary trees [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
G.f. (offset 1) is series reversion of x - 2x^2 + x^3.
Hankel transform is A005156(n+1). - Paul Barry, Jan 20 2007
a(n) = number of ways to connect 2*n - 2 points labeled 1, 2, ..., 2*n-2 in a line with 0 or more noncrossing arcs above the line such that each maximal contiguous sequence of isolated points has even length. For example, with arcs separated by dashes, a(3) = 7 counts {} (no arcs), 12, 14, 23, 34, 12-34, 14-23. It does not count 13 because 2 is an isolated point. - David Callan, Sep 18 2007
In my 2003 paper I introduced L-algebras. These are K-vector spaces equipped with two binary operations > and < satisfying (x > y) < z = x > (y < z). In my arXiv paper math-ph/0709.3453 I show that the free L-algebra on one generator is related to symmetric ternary trees with odd degrees, so the dimensions of the homogeneous components are 1, 2, 7, 30, 143, .... These L-algebras are closely related to the so-called triplicial-algebras, 3 associative operations and 3 relations whose free object is related to even trees. - Philippe Leroux (ph_ler_math(AT)yahoo.com), Oct 05 2007
a(n-1) is also the number of projective dependency trees with n nodes. - Marco Kuhlmann (marco.kuhlmann(AT)lingfil.uu.se), Apr 06 2010
Number of subpartitions of [1^2, 2^2, ..., n^2]. - Franklin T. Adams-Watters, Apr 13 2011
a(n) = sum of (n+1)-th row terms of triangle A143603. - Gary W. Adamson, Jul 07 2011
Also the number of Dyck n-paths with up steps colored in two ways (N or A) and avoiding NA. The 7 Dyck 2-paths are NDND, ADND, NDAD, ADAD, NNDD, ANDD, and AADD. - David Scambler, Jun 24 2013
a(n) is also the number of permutations avoiding 213 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
With offset 1, a(n) is the number of ordered trees (A000108) with n non-leaf vertices and n leaf vertices such that every non-leaf vertex has a leaf child (and hence exactly one leaf child). - David Callan, Aug 20 2014
a(n) is the number of paths in the plane with unit east and north steps, never going above the line x=2y, from (0,0) to (2n+1,n). - Ira M. Gessel, Jan 04 2018
a(n) is the number of words on the alphabet [n+1] that avoid the patterns 231 and 221 and contain exactly one 1 and exactly two occurrences of every other letter. - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n of each type of step, such that (1, 1) and (1, 0) alternate (ignoring (-1, 1) steps). All paths start with a (1, 1) step. - Helmut Prodinger, Apr 08 2019
Hankel transform omitting a(0) is A051255(n+1). - Michael Somos, May 15 2022
If f(x) is the generating function for (-1)^n*a(n), a real solution of the equation y^3 - y^2 - x = 0 is given by y = 1 + x*f(x). In particular 1 + f(1) is Narayana's cow constant, A092526, aka the "supergolden" ratio. - R. James Evans, Aug 09 2023
This is instance k = 2 of the family {c(k, n+1)}_{n>=0} described in A130564. Wolfdieter Lang, Feb 04 2024
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms n = 0..100 from T. D. Noe)
A. Aggarwal, Armstrong's Conjecture for (k, mk+1)-Core Partitions, arXiv:1407.5134 [math.CO], 2014.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, (2016), #16.3.5.
Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
W. G. Brown, Enumeration of non-separable planar maps. [Annotated scanned copy]
Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, 19 (2016), #16.6.1.
F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv:1307.0092 [math.CO], 2013.
F. Chapoton and S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv:1310.4521 [math.CO], 2013.
Jins de Jong, Alexander Hock, and Raimar Wulkenhaar, Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv:1904.11231 [math-ph], 2019.
C. Defant and N. Kravitz, Stack-sorting for words, arXiv:1809.09158 [math.CO], 2018.
Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Emeric Deutsch, S. Feretic and M. Noy, Diagonally convex directed polyominoes and even trees: a bijection and related issues, Discrete Math., 256 (2002), 645-654.
I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 432 [broken link].
Pakawut Jiradilok, Large-scale Rook Placements, arXiv:2204.00615 [math.CO], 2022.
S. Kitaev and A. de Mier, Enumeration of fixed points of an involution on beta(1, 0)-trees, arXiv:1210.2618 [math.CO], 2012. - From N. J. A. Sloane, Dec 31 2012
Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377-387. MR3090510. See Theorem 1. - N. J. A. Sloane, May 19 2014
Philippe Leroux, An algebraic framework of weighted directed graphs, Int. J. Math. Math. Sci. 58. (2003).
Ho-Hon Leung and Thotsaporn "Aek" Thanatipanonda, A Probabilistic Two-Pile Game, arXiv:1903.03274 [math.CO], 2019.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Hugo Mlodecki, Decompositions of packed words and self duality of Word Quasisymmetric Functions, arXiv:2205.13949 [math.CO], 2022. See Table 4 p. 20.
W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, arXiv:1304.6544 [math.PR], 2013.
Henri Muehle and Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles, arXiv:1803.00540 [math.CO], 2018.
Liviu I. Nicolaescu, Counting Morse functions on the 2-sphere, arXiv:math/0512496 [math.GT], 2005.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
Isaac Owino Okoth, Bijections of k-plane trees, Open J. Discret. Appl. Math. (2022) Vol. 5, No. 1, 29-35.
Helmut Prodinger, On some questions by Cameron about ternary paths --- a linear algebra approach, arXiv:1910.02320 [math.CO], 2019.
Helmut Prodinger, Sarah J. Selkirk, and Stephan Wagner, On two subclasses of Motzkin paths and their relation to ternary trees, arXiv:1902.01681 [math.CO], 2019.
Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864.
Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
Joe Sawada, Jackson Sears, Andrew Trautrim, and Aaron Williams, Demystifying our Grandparent's De Bruijn Sequences with Concatenation Trees, arXiv:2308.12405 [math.CO], 2023.
Zhujun Zhang, A Note on Counting Dependency Trees, arXiv:1708.08789 [math.GM], 2017. See p. 3.
S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages.
FORMULA
G.f. is square of g.f. for ternary trees, A001764 [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
Convolution of A001764 with itself: 2*C(3*n + 2, n)/(3*n + 2), or C(3*n + 2, n+1)/(3*n + 2).
G.f.: (4/(3*x)) * sin((1/3)*arcsin(sqrt(27*x/4)))^2.
G.f.: A(x)/x with A(x)=x/(1-A(x))^2. - Vladimir Kruchinin, Dec 26 2010
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) is the top left term in M^n, where M is the infinite square production matrix:
2, 1, 0, 0, 0, ...
3, 2, 1, 0, 0, ...
4, 3, 2, 1, 0, ...
5, 4, 3, 2, 1, ...
... (End)
From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is the sum of top row terms in Q^n, where Q is the infinite square production matrix as follows:
1, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
3, 3, 2, 1, 0, ...
4, 4, 3, 2, 1, ...
... (End)
D-finite with recurrence: 2*(n+1)*(2n+1)*a(n) = 3*(3n-1)*(3n+1)*a(n-1). - R. J. Mathar, Dec 17 2011
a(n) = 2*A236194(n)/n for n > 0. - Bruno Berselli, Jan 20 2014
a(n) = A258708(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015
From Ilya Gutkovskiy, Dec 29 2016: (Start)
E.g.f.: 2F2([2/3, 4/3]; [3/2,2]; 27*x/4).
a(n) ~ 3^(3*n+3/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). (End)
a(n) = A110616(n+1, 1). - Ira M. Gessel, Jan 04 2018
0 = v0*(+98415*v2 -122472*v3 +32340*v4) +v1*(+444*v3 -2968*v4) +v2*(-60*v2 +56*v3 +64*v4) where v0=a(n)^2, v1=a(n)*a(n+1), v2=a(n+1)^2, v3=a(n+1)*a(n+2), v4=a(n+2)^2 for all n in Z if a(-1)=-2/3 and a(n)=0 for n<-1. - Michael Somos, May 15 2022
a(n) = (1/4^n) * Product_{1 <= i <= j <= 2*n} (2*i + j + 2)/(2*i + j - 1). Cf. A000260. - Peter Bala, Feb 21 2023
From Karol A. Penson, Jun 02 2023: (Start)
a(n) = Integral_{x=0..27/4} x^n*W(x) dx, where
W(x) = (((9 + sqrt(81 - 12*x))^(2/3) - (9 - sqrt(81 - 12*x))^(2/3)) * 2^(1/3) * 3^(1/6)) / (12 * Pi * x^(1/3)), for x in (0, 27/4).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 27/4. At x = 27/4 the first derivative of W(x) is infinite. (End)
G.f.: hypergeometric([2/3,1,4/3], [3/2,2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
EXAMPLE
a(3) = 30 since the top row of Q^3 = (12, 12, 5, 1).
G.f. = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 + 21318*x^7 + ... - Michael Somos, May 15 2022
MATHEMATICA
Binomial[3#+1, #]/(#+1)&/@Range[0, 30] (* Harvey P. Dale, Mar 16 2011 *)
PROG
(PARI) A006013(n) = binomial(3*n+1, n)/(n+1) \\ M. F. Hasler, Jan 08 2024
(Sage)
def A006013_list(n) :
D = [0]*(n+1); D[1] = 1
R = []; b = false; h = 1
for i in range(2*n) :
for k in (1..h) : D[k] += D[k-1]
if b : R.append(D[h]); h += 1
b = not b
return R
A006013_list(23) # Peter Luschny, May 03 2012
(Magma) [Binomial(3*n+1, n)/(n+1): n in [0..30]]; // Vincenzo Librandi, Mar 29 2015
(Haskell)
a006013 n = a007318 (3 * n + 1) n `div` (n + 1)
a006013' n = a258708 (2 * n + 1) n
-- Reinhard Zumkeller, Jun 22 2015
(Python)
from math import comb
def A006013(n): return comb(3*n+1, n)//(n+1) # Chai Wah Wu, Jul 30 2022
CROSSREFS
These are the odd indices of A047749.
Cf. A305574 (the same with offset 1 and the initial 1 replaced with 5).
Cf. A130564 (comment on c(k, n+1)).
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Feb 21 2008
STATUS
approved
A005130 Robbins numbers: a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!; also the number of descending plane partitions whose parts do not exceed n; also the number of n X n alternating sign matrices (ASM's).
(Formerly M1808)
+10
55
1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700, 31095744852375, 12611311859677500, 8639383518297652500, 9995541355448167482000, 19529076234661277104897200, 64427185703425689356896743840, 358869201916137601447486156417296 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also known as the Andrews-Mills-Robbins-Rumsey numbers. - N. J. A. Sloane, May 24 2013
An alternating sign matrix is a matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
a(n) is odd iff n is a Jacobsthal number (A001045) [Frey and Sellers, 2000]. - Gary W. Adamson, May 27 2009
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 71, 557, 573.
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; A_n on page 4, D_r on page 197.
C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386.
C. A. Pickover, Wonders of Numbers, "Princeton Numbers", Chapter 83, Oxford Univ. Press NY 2001.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. Amdeberhan and V. H. Moll, Arithmetic properties of plane partitions, El. J. Comb. 18 (2) (2011) # P1.
G. E. Andrews, Plane partitions (III): the Weak Macdonald Conjecture, Invent. Math., 53 (1979), 193-225. (See Theorem 10.)
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
M. T. Batchelor, J. de Gier, and B. Nienhuis, The quantum symmetric XXZ chain at Delta=-1/2, alternating sign matrices and plane partitions, arXiv:cond-mat/0101385 [cond-mat.stat-mech], 2001.
Andrew Beveridge, Ian Calaway, and Kristin Heysse, de Finetti Lattices and Magog Triangles, arXiv:1912.12319 [math.CO], 2019.
E. Beyerstedt, V. H. Moll, and X. Sun, The p-adic Valuation of the ASM Numbers, J. Int. Seq. 14 (2011) # 11.8.7.
Sara C. Billey, Brendon Rhoades, and Vasu Tewari, Boolean product polynomials, Schur positivity, and Chern plethysm, arXiv:1902.11165 [math.CO], 2019.
D. M. Bressoud and J. Propp, How the alternating sign matrix conjecture was solved, Notices Amer. Math. Soc., 46 (No. 6, 1999), 637-646.
H. Cheballah, S. Giraudo, and R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013-2015.
F. Colomo and A. G. Pronko, On the refined 3-enumeration of alternating sign matrices, arXiv:math-ph/0404045, 2004; Advances in Applied Mathematics 34 (2005) 798.
F. Colomo and A. G. Pronko, Square ice, alternating sign matrices and classical orthogonal polynomials, arXiv:math-ph/0411076, 2004; JSTAT (2005) P01005.
G. Conant, Magmas and Magog Triangles, 2014.
J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
P. Di Francesco, A refined Razumov-Stroganov conjecture II, arXiv:cond-mat/0409576 [cond-mat.stat-mech], 2004.
P. Di Francesco, Twenty Vertex model and domino tilings of the Aztec triangle, arXiv:2102.02920 [math.CO], 2021. Mentions this sequence.
P. Di Francesco, P. Zinn-Justin, and J.-B. Zuber, Determinant formulas for some tiling problems..., arXiv:math-ph/0410002, 2004.
FindStat - Combinatorial Statistic Finder, Alternating sign matrices
I. Fischer, The number of monotone triangles with prescribed bottom row, arXiv:math/0501102 [math.CO], 2005.
Ilse Fischer and Manjil P. Saikia, Refined Enumeration of Symmetry Classes of Alternating Sign Matrices, arXiv:1906.07723 [math.CO], 2019.
Ilse Fischer and Matjaz Konvalinka, A bijective proof of the ASM theorem, Part I: the operator formula, arXiv:1910.04198 [math.CO], 2019.
D. D. Frey and J. A. Sellers, Jacobsthal Numbers and Alternating Sign Matrices, Journal of Integer Sequences Vol. 3 (2000) #00.2.3.
M. Gardner, Letter to N. J. A. Sloane, Jun 20 1991.
C. Heuberger and H. Prodinger, A precise description of the p-adic valuation of the number of alternating sign matrices, Intl. J. Numb. Th. 7 (1) (2011) 57-69.
Dylan Heuer, Chelsey Morrow, Ben Noteboom, Sara Solhjem, Jessica Striker, and Corey Vorland. "Chained permutations and alternating sign matrices - Inspired by three-person chess." Discrete Mathematics 340, no. 12 (2017): 2732-2752. Also arXiv:1611.03387.
Frederick Huang, The 20 Vertex Model and Related Domino Tilings, Ph. D. Dissertation, UC Berkeley, 2023. See p. 1.
Hassan Isanloo, The volume and Ehrhart polynomial of the alternating sign matrix polytope, Cardiff University (Wales, UK 2019).
Masato Kobayashi, Weighted counting of inversions on alternating sign matrices, arXiv:1904.02265 [math.CO], 2019.
G. Kuperberg, Another proof of the alternating-sign matrix conjecture, arXiv:math/9712207 [math.CO], 1997; Internat. Math. Res. Notices, No. 3, (1996), 139-150.
W. H. Mills, David P Robbins, and Howard Rumsey Jr., Alternating sign matrices and descending plane partitions J. Combin. Theory Ser. A 34 (1983), no. 3, 340--359. MR0700040 (85b:05013).
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386. [Annotated scanned copy]
J. Propp, The many faces of alternating-sign matrices, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 43-58.
A. V. Razumov and Yu. G. Stroganov, Spin chains and combinatorics, arXiv:cond-mat/0012141 [cond-mat.stat-mech], 2000.
D. P. Robbins, The story of 1, 2, 7, 42, 429, 7436, ..., Math. Intellig., 13 (No. 2, 1991), 12-19.
D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv:math/0008045 [math.CO], 2000.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
Yu. G. Stroganov, 3-enumerated alternating sign matrices, arXiv:math-ph/0304004, 2003.
X. Sun and V. H. Moll, The p-adic Valuations of Sequences Counting Alternating Sign Matrices, JIS 12 (2009) 09.3.8.
Eric Weisstein's World of Mathematics, Alternating Sign Matrix
Eric Weisstein's World of Mathematics, Descending Plane Partition
D. Zeilberger, Proof of the alternating-sign matrix conjecture, arXiv:math/9407211 [math.CO], 1994.
D. Zeilberger, Proof of the alternating-sign matrix conjecture, Elec. J. Combin., Vol. 3 (Number 2) (1996), #R13.
D. Zeilberger, Proof of the Refined Alternating Sign Matrix Conjecture, arXiv:math/9606224 [math.CO], 1996.
D. Zeilberger, A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-Robbins-Ramsey numbers 1,2,7,42,429,..., J. Combin. Theory, A 66 (1994), 17-27. The link is to a comment on Doron Zeilberger's home page. A backup copy is here [pdf file only, no active links]
D. Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954. The link is to a version on Doron Zeilberger's home page. A backup copy is here [pdf file only, no active links]
Paul Zinn-Justin, Integrability and combinatorics, arXiv:2404.13221 [math.CO], 2024. See p. 12.
FORMULA
a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.
The Hankel transform of A025748 is a(n) * 3^binomial(n, 2). - Michael Somos, Aug 30 2003
a(n) = sqrt(A049503).
From Bill Gosper, Mar 11 2014: (Start)
A "Stirling's formula" for this sequence is
a(n) ~ 3^(5/36+(3/2)*n^2)/(2^(1/4+2*n^2)*n^(5/36))*(exp(zeta'(-1))*gamma(2/3)^2/Pi)^(1/3).
which gives results which are very close to the true values:
1.0063254118710128, 2.003523267231662,
7.0056223910285915, 42.01915917750558,
429.12582410098327, 7437.518404899576,
218380.8077275304, 1.085146545456063*^7,
9.119184824937415*^8
(End)
a(n+1) = a(n) * n! * (3*n+1)! / ((2*n)! * (2*n+1)!). - Reinhard Zumkeller, Sep 30 2014; corrected by Eric W. Weisstein, Nov 08 2016
For n>0, a(n) = 3^(n - 1/3) * BarnesG(n+1) * BarnesG(3*n)^(1/3) * Gamma(n)^(1/3) * Gamma(n + 1/3)^(2/3) / (BarnesG(2*n+1) * Gamma(1/3)^(2/3)). - Vaclav Kotesovec, Mar 04 2021
EXAMPLE
G.f. = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 429*x^5 + 7436*x^6 + 218348*x^7 + ...
MAPLE
A005130 := proc(n) local k; mul((3*k+1)!/(n+k)!, k=0..n-1); end;
# Bill Gosper's approximation (for n>0):
a_prox := n -> (2^(5/12-2*n^2)*3^(-7/36+1/2*(3*n^2))*exp(1/3*Zeta(1, -1))*Pi^(1/3)) /(n^(5/36)*GAMMA(1/3)^(2/3)); # Peter Luschny, Aug 14 2014
MATHEMATICA
f[n_] := Product[(3k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Jul 15 2004 *)
a[ n_] := If[ n < 0, 0, Product[(3 k + 1)! / (n + k)!, {k, 0, n - 1}]]; (* Michael Somos, May 06 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, prod(k=0, n-1, (3*k + 1)! / (n + k)!))}; /* Michael Somos, Aug 30 2003 */
(PARI) {a(n) = my(A); if( n<0, 0, A = Vec( (1 - (1 - 9*x + O(x^(2*n)))^(1/3)) / (3*x)); matdet( matrix(n, n, i, j, A[i+j-1])) / 3^binomial(n, 2))}; /* Michael Somos, Aug 30 2003 */
(GAP) a:=List([0..18], n->Product([0..n-1], k->Factorial(3*k+1)/Factorial(n+k)));; Print(a); # Muniru A Asiru, Jan 02 2019
(Python)
from math import prod, factorial
def A005130(n): return prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)) # Chai Wah Wu, Feb 02 2022
CROSSREFS
KEYWORD
nonn,easy,nice,core
AUTHOR
STATUS
approved
A025174 a(n) = binomial(3n-1, n-1). +10
43
0, 1, 5, 28, 165, 1001, 6188, 38760, 245157, 1562275, 10015005, 64512240, 417225900, 2707475148, 17620076360, 114955808528, 751616304549, 4923689695575, 32308782859535, 212327989773900, 1397281501935165, 9206478467454345, 60727722660586800, 400978991944396320 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of standard tableaux of shape (2n-1,n). Example: a(2)=5 because in the top row we can have 123, 124, 125, 134, or 135. - Emeric Deutsch, May 23 2004
Number of peaks in all generalized {(1,2),(1,-1)}-Dyck paths of length 3n.
Positive terms in this sequence are the numbers k such that k and 2k are consecutive terms in a row of Pascal's triangle. 1001 is the only k such that k, 2k, and 3k are consecutive terms in a row of Pascal's triangle. - J. Lowell, Mar 11 2023
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part I, Springer-Verlag, see Entry 14, Corollary 1, p. 71.
LINKS
Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
D. Kruchinin and V. Kruchinin, A Generating Function for the Diagonal T2n,n in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.
W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.
Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
FORMULA
G.f.: z*g^2/(1-3*z*g^2), where g=g(z) is given by g=1+z*g^3, g(0)=1, that is, (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
a(n) = Sum_{k=0..n} ((3k+1)/(2n+k+1))C(3n, 2n+k)*A001045(k). - Paul Barry, Oct 07 2005
Hankel transform of a(n+1) is A005156(n+1). - Paul Barry, Apr 14 2008
G.f.: x*B'(x)/B(x) where B(x) is the g.f. of A001764. - Vladimir Kruchinin Feb 03 2013
D-finite with recurrence: 2*n*(2*n-1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Feb 05 2013
Logarithmic derivative of A001764; g.f. of A001764 satisfies G(x) = 1 + x*G(x)^3. - Paul D. Hanna, Jul 14 2013
G.f.: (2*cos((1/3)*arcsin((3/2)*sqrt(3*x)))-sqrt(4-27*x))/(3*sqrt(4-27*x)). - Emanuele Munarini, Oct 14 2014
a(n) = Sum_{k=1..n} binomial(n-1,n-k)*binomial(2*n,n-k). - Vladimir Kruchinin, Nov 12 2014
a(n) = [x^n] C(x)^n for n >= 1, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the generating function for A000108 (Ramanujan). - Peter Bala, Jun 24 2015
From Peter Bala, Nov 04 2015: (Start)
Without the initial term 0, the o.g.f. equals f(x)*g(x)^2, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. g(x)^2 is the o.g..f for A006013. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End)
G.f.: ( 2F1(1/3,2/3;1/2;27*x/4)-1)/3. - R. J. Mathar, Jan 27 2020
O.g.f. without the initial term 0, in the form g(x)=(2*cos(arcsin((3*sqrt(3)*sqrt(x))/2)/3)/sqrt(4-27*x)-1)/(3*x), satisfies the following algebraic equation: 1+(9*x-1)*g(x)+x*(27*x-4)*g(x)^2+x^2*(27*x-4)*g(x)^3=0. - Karol A. Penson, Oct 11 2021
O.g.f. equals f(x)/(1 - 2*f(x)), where f(x) = series reversion (x/(1 + x)^3) = x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... is the o.g.f. of A001764 with the initial term omitted. Cf. A224274. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/2)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+2)*n+k-1,k) = C(3*n-1,n-1) and (1/3)*Sum_{k = 0..n} (-1)^k* C(x*n,n-k)*C((x-3)*n+k-1,k) = C(3*n-1,n-1), both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
a(n) ~ 2^(-2*n)*3^(3*n)/(2*sqrt(3*n*Pi)). - Stefano Spezia, Apr 25 2024
a(n) = Sum_{k = 0..n-1} binomial(2*n+k-1, k) = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(3*n, k). - Peter Bala, Jul 21 2024
EXAMPLE
L.g.f.: L(x) = x + 5*x^2/2 + 28*x^3/3 + 165*x^4/4 + 1001*x^5/5 + 6188*x^6/6 + ...
where G(x) = exp(L(x)) satisfies G(x) = 1 + x*G(x)^3, and begins:
exp(L(x)) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... + A001764(n)*x^n + ...
MAPLE
with(combinat):seq(numbcomp(3*i, i), i=0..20); # Zerinvary Lajos, Jun 16 2007
MATHEMATICA
Table[ GegenbauerC[ n, n, 1 ]/2, {n, 0, 24} ]
Join[{0}, Table[Binomial[3n-1, n-1], {n, 20}]] (* Harvey P. Dale, Oct 19 2022 *)
PROG
(Magma) [Binomial(3*n-1, n-1): n in [0..30]]; // Vincenzo Librandi, Nov 12 2014
(PARI) vector(30, n, n--; binomial(3*n-1, n-1)) \\ Altug Alkan, Nov 04 2015
CROSSREFS
Cf. A001764 (binomial(3n,n)/(2n+1)), A117671 (C(3n+1,n+1)), A004319, A005809, A006013, A013698, A045721, A117671, A165817, A224274, A236194.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A006366 Number of cyclically symmetric plane partitions in the n-cube; also number of 2n X 2n half-turn symmetric alternating sign matrices divided by number of n X n alternating sign matrices.
(Formerly M1529)
+10
6
1, 2, 5, 20, 132, 1452, 26741, 826540, 42939620, 3752922788, 552176360205, 136830327773400, 57125602787130000, 40191587143536420000, 47663133295107416936400, 95288872904963020131203520, 321195665986577042490185260608 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In the 1995 Encyclopedia of Integer Sequences this sequence appears twice, as both M1529 and M1530.
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.7) on page 198, except the formula given is incorrect. It should be as shown here.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
LINKS
G. E. Andrews,Plane partitions (III): the Weak Macdonald Conjecture, Invent. Math., 53 (1979), 193-225.
P. Di Francesco, P. Zinn-Justin and J.-B. Zuber, Determinant Formulae for some Tiling Problems and Application to Fully Packed Loops, arXiv:math-ph/0410002, 2004.
Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001.
W. F. Lunnon, The Pascal matrix, Fib. Quart. vol. 15 (1977) pp. 201-204.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
P. J. Taylor, Counting distinct dimer hex tilings, Preprint, 2015.
FORMULA
a(n) = Product_{i=1..n} (((3*i-1)/(3*i-2))*Product_{j=i..n} (n+i+j-1)/(2*i+j-1)).
a(n) ~ exp(1/36) * GAMMA(1/3)^(4/3) * n^(7/36) * 3^(3*n^2/2 + 11/36) / (A^(1/3) * Pi^(2/3) * 2^(2*n^2 + 7/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
MAPLE
A006366 := proc(n) local i, j; mul((3*i - 1)*mul((n + i + j - 1)/(2*i + j - 1), j = i .. n)/(3*i - 2), i = 1 .. n) end;
MATHEMATICA
Table[Product[(3i-1)/(3i-2) Product[(n+i+j-1)/(2i+j-1), {j, i, n}], {i, n}], {n, 0, 20}] (* Harvey P. Dale, Apr 17 2013 *)
PROG
(PARI) a(n)=prod(i=0, n-1, (3*i+2)*(3*i)!/(n+i)!)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved
A005161 Number of alternating sign 2n+1 X 2n+1 matrices symmetric with respect to both horizontal and vertical axes (VHSASM's).
(Formerly M1700)
+10
3
1, 1, 1, 2, 6, 33, 286, 4420, 109820, 4799134, 340879665, 42235307100, 8564558139000, 3012862604463000, 1742901718473961200, 1742218029490675762080, 2873822682985675809192288, 8167157387273280570395662320, 38402596062535617548517706584760, 310388509293255836481583597538626504 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
LINKS
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
Soichi Okada, Enumeration of symmetry classes of alternating sign matrices and characters of classical groups, Journal of Algebraic Combinatorics volume 23, pages 43-69 (2006).
D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv:math/0008045 [math.CO], 2000.
R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
FORMULA
Robbins gives a simple (conjectured) formula, which was proven by Okada.
a(2*n) = A005156(n)*A051255(n); a(2*n+1) = A005156(n)*A051255(n+1). - Paul Zinn-Justin, May 05 2023
a(n) = A005156(floor(n/2)) * A051255(ceiling(n/2)). - Andrew Howroyd, May 09 2023
PROG
(PARI) \\ here b(n) and c(n) are A005156 and A051255.
b(n) = prod(k=0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
c(n) = prod(k=0, n-1, (3*k+1)*(6*k)!*(2*k)!/((4*k)!*(4*k+1)!));
a(n) = b(n\2) * c((n+1)\2) \\ Andrew Howroyd, May 09 2023
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms (from the P. Pyatov paper) from Vladeta Jovovic, Aug 15 2008
Terms a(13) and beyond from Andrew Howroyd, May 09 2023
STATUS
approved
A059492 Expansion of generating function A_{UO}^(1)(8n). +10
2
1, 1, 9, 676, 417316, 2105433225, 86576511622500, 28972583638980195600, 78831929114313969179740176, 1742936131827576565608759271801924, 312998895971128640129284150531179425539849, 456409483679643917229799018559460369930900420149904 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001 [Th. 5].
FORMULA
a(n) = A005156(n)^2.
MATHEMATICA
Table[(1/4^n)*(Product[((6 k - 2)! (2 k - 1)!)/((4 k - 1)! (4 k - 2)!), {k, n}])^2, {n, 0, 20}] (* G. C. Greubel, Sep 10 2017 *)
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 04 2001
STATUS
approved
A109074 Numerator of binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)). +10
2
1, 1, 3, 26, 323, 2415, 26970, 66526, 717541, 278992987, 30741431, 753069156, 21291561634, 1258540885373, 11255629805034, 833378477982, 181778972767041, 101220208716435, 644821697046585, 4759584409762049637, 7692170694126370209, 19898042621084590853 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
It is conjectured that binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)) = A005156(n+1)/A005156(n).
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; see conjecture (6.18).
LINKS
EXAMPLE
1/2, 1, 3, 26/3, 323/13, 2415/34, 26970/133, 66526/115, 717541/435, 278992987/59334, 30741431/2294, ...
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, May 04 2008
STATUS
approved
A134357 Denominator of binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)). +10
2
2, 1, 1, 3, 13, 34, 133, 115, 435, 59334, 2294, 19721, 195693, 4060189, 12746447, 331303, 25369351, 4959422, 11092118, 28745223797, 16310849170, 14814154260, 348379527681, 263145320733, 1493627665569, 100023828627, 531705615333, 156537259557, 1047443521637 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
It is conjectured that binomial(6*n-2,2*n)/(2*binomial(4*n-1,2*n)) = A005156(n+1)/A005156(n).
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; see conjecture (6.18).
LINKS
EXAMPLE
1/2, 1, 3, 26/3, 323/13, 2415/34, 26970/133, 66526/115, 717541/435, 278992987/59334, 30741431/2294, ...
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, May 04 2008
EXTENSIONS
Changed numerator to denominator in title, Arvind Ayyer, Jan 29 2012
STATUS
approved
A107445 Number of 4n X 4n alternating-sign matrices of type UU. +10
1
1, 5, 198, 63206, 163170556, 3410501048325, 577465332522075000, 792313244775191409073200, 8810729389390415079342840510816 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001. [A_{UU}(4n)]
FORMULA
a(n) = A005156(n)*A059489(n).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Zinn-Justin, May 16 2007, Jun 04 2007
STATUS
approved
page 1 2

Search completed in 0.017 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 3 04:27 EDT 2024. Contains 375649 sequences. (Running on oeis4.)