(Translated by https://www.hiragana.jp/)
A025456 -id:A025456 - OEIS
login
Search: a025456 -id:a025456
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers that are the sum of 3 positive cubes.
+10
85
3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434
OFFSET
1,1
COMMENTS
A119977 is a subsequence; if m is a term then there exists at least one k>0 such that m-k^3 is a term of A003325. - Reinhard Zumkeller, Jun 03 2006
A025456(a(n)) > 0. - Reinhard Zumkeller, Apr 23 2009
Davenport proved that a(n) << n^(54/47 + e) for every e > 0. - Charles R Greathouse IV, Mar 26 2012
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..12955 (first 1000 terms from T. D. Noe)
H. Davenport, Sums of three positive cubes, J. London Math. Soc., 25 (1950), 339-343. Coll. Works III p. 999.
Eric Weisstein's World of Mathematics, Cubic Number
FORMULA
{n: A025456(n) >0}. - R. J. Mathar, Jun 15 2018
EXAMPLE
a(11) = 73 = 1^3 + 2^3 + 4^3, which is sum of three cubes.
a(15) = 99 = 2^3 + 3^3 + 4^3, which is sum of three cubes.
MAPLE
isA003072 := proc(n)
local x, y, z;
for x from 1 do
if 3*x^3 > n then
return false;
end if;
for y from x do
if x^3+2*y^3 > n then
break;
end if;
if isA000578(n-x^3-y^3) then
return true;
end if;
end do:
end do:
end proc:
for n from 1 to 1000 do
if isA003072(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jan 23 2016
MATHEMATICA
Select[Range[435], (p = PowersRepresentations[#, 3, 3]; (Select[p, #[[1]] > 0 && #[[2]] > 0 && #[[3]] > 0 &] != {})) &] (* Jean-François Alcover, Apr 29 2011 *)
With[{upto=500}, Select[Union[Total/@Tuples[Range[Floor[Surd[upto-2, 3]]]^3, 3]], #<=upto&]] (* Harvey P. Dale, Oct 25 2021 *)
PROG
(PARI) sum(n=1, 11, x^(n^3), O(x^1400))^3 /* Then [i|i<-[1..#%], polcoef(%, i)] gives the list of powers with nonzero coefficient. - M. F. Hasler, Aug 02 2020 */
(PARI) list(lim)=my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
(Haskell)
a003072 n = a003072_list !! (n-1)
a003072_list = filter c3 [1..] where
c3 x = any (== 1) $ map (a010057 . fromInteger) $
takeWhile (> 0) $ map (x -) $ a003325_list
-- Reinhard Zumkeller, Mar 24 2012
CROSSREFS
Subsequence of A004825.
Cf. A003325, A024981, A057904 (complement), A010057, A000578, A023042 (subsequence of cubes).
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers: A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
KEYWORD
nonn,easy,nice
EXTENSIONS
Incorrect program removed by David A. Corneth, Aug 01 2020
STATUS
approved
Numbers that are the sum of 3 positive cubes in more than one way.
+10
13
251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447
OFFSET
1,1
COMMENTS
Of course reordering the terms does not count.
A025456(a(n)) > 1. [Reinhard Zumkeller, Apr 23 2009]
LINKS
T. D. Noe and Christian N. K. Anderson, Table of n, a(n) for n = 1..10000 (first 1000 terms are from T. D. Noe)
Christian N. K. Anderson, Decomposition of first 10000 terms into multiple cube triples.
EXAMPLE
a(2) = 1009 = 1^3+2^3+10^3 = 4^3+6^3+9^3.
MATHEMATICA
Select[Range[4450], 1 < Length @ Cases[PowersRepresentations[#, 3, 3], {_?Positive, _?Positive, _?Positive}] &] (* Jean-François Alcover, Apr 04 2011 *)
PROG
(PARI) is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
n=3; while(n<5000, if(is(n)>1, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015
KEYWORD
nonn,easy,nice
STATUS
approved
Numbers that are the sum of 3 positive cubes in 3 or more ways.
+10
13
5104, 9729, 12104, 12221, 12384, 13896, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40041, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687
OFFSET
1,1
LINKS
FORMULA
A008917(n) < a(n) <= A025397(n). - Jonathan Sondow, Oct 24 2013
{n: A025456(n) >= 3}. - R. J. Mathar, Jun 15 2018
EXAMPLE
a(1) = A230477(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3. - Jonathan Sondow, Oct 24 2013
MATHEMATICA
Select[ Range[ 50000], 2 < Length @ Cases[ PowersRepresentations[#, 3, 3], {_?Positive, _?Positive, _?Positive}] &] (* adapted from Alcover's program for A008917 by Jonathan Sondow, Oct 24 2013 *)
PROG
(PARI) is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
n=3; while(n<50000, if(is(n)>=3, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015
KEYWORD
nonn
STATUS
approved
Numbers that are the sum of 3 positive cubes in exactly 2 ways.
+10
10
251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
OFFSET
1,1
COMMENTS
Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Christian N. K. Anderson, Decomposition of the first 10000 terms into the sets of three cubes
EXAMPLE
a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - Christian N. K. Anderson, Apr 11 2013
MATHEMATICA
Select[Range[5000], Length[DeleteCases[PowersRepresentations[#, 3, 3], _?(MemberQ[#, 0]&)]] == 2&] (* Harvey P. Dale, Jan 18 2012 *)
PROG
(PARI) is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
n=3; while(n<5000, if(is(n)==2, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015
KEYWORD
nonn
STATUS
approved
Number of partitions of n into 4 positive cubes.
+10
10
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,220
COMMENTS
The first term > 1 is a(219) = 2. - Michel Marcus, Apr 23 2019
FORMULA
a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
MAPLE
N:= 100;
A:= Array(0..N);
for a from 1 to floor(N^(1/3)) do
for b from a to floor((N-a^3)^(1/3)) do
for c from b to floor((N-a^3-b^3)^(1/3)) do
for d from c to floor((N-a^3-b^3-c^3)^(1/3)) do
n:= a^3 + b^3 + c^3 + d^3;
A[n]:= A[n]+1;
od od od od:
seq(A[n], n=0..N); # Robert Israel, Aug 18 2014
A025457 := proc(n)
local a, x, y, z, ucu ;
a := 0 ;
for x from 1 do
if 4*x^3 > n then
return a;
end if;
for y from x do
if x^3+3*y^3 > n then
break;
end if;
for z from y do
if x^3+y^3+2*z^3 > n then
break;
end if;
ucu := n-x^3-y^3-z^3 ;
if isA000578(ucu) then
a := a+1 ;
end if;
end do:
end do:
end do:
end proc: # R. J. Mathar, Sep 15 2015
MATHEMATICA
r[n_] := Reduce[0 < a <= b <= c <= d && n == a^3+b^3+c^3+d^3, {a, b, c, d}, Integers];
a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Feb 26 2019 *)
CROSSREFS
Cf. A003108, A025455, A025456, A025403-A025407, A003327, A025420 (greedy inverse).
KEYWORD
nonn
EXTENSIONS
Second offset from Michel Marcus, Apr 23 2019
STATUS
approved
Numbers that are the sum of 3 positive cubes in exactly 3 ways.
+10
9
5104, 9729, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 40060, 40097, 40832, 40851, 41033, 41040, 41364, 41966, 42056, 42687, 43408, 45144
OFFSET
1,1
LINKS
FORMULA
n such that A025456(n) = 3. - Robert Israel, Aug 28 2015
MAPLE
N:= 10^5: # to get all terms <= N
Reps:= Matrix(N, 3, (i, j) -> {}):
for i from 1 to floor(N^(1/3)) do
Reps[i^3, 1]:= {[i]}
od:
for j from 2 to 3 do
for i from 1 to floor(N^(1/3)) do
for x from i^3+1 to N do
Reps[x, j]:= Reps[x, j] union
map(t -> if t[-1] <= i then [op(t), i] fi, Reps[x-i^3, j-1]);
od
od
od:
select(t -> nops(Reps[t, 3])=3, [$1..N]); # Robert Israel, Aug 28 2015
MATHEMATICA
Reap[ For[ n = 1, n <= 50000, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 3, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
PROG
(PARI) is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1, k, for(b=a, k, for(c=b, k, if(a^3+b^3+c^3==n, d++)))); d
n=3; while(n<50000, if(is(n)==3, print1(n, ", ")); n++) \\ Derek Orr, Aug 27 2015
KEYWORD
nonn
STATUS
approved
a(n) is the number of partitions of n into 2 positive cubes.
+10
9
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1730
COMMENTS
In other words, number of solutions to the equation x^3 + y^3 = n with x >= y > 0. - Antti Karttunen, Aug 28 2017
The first term > 1 is a(1729) = 2. - Michel Marcus, Apr 23 2019
FORMULA
If a(n) > 0 then A025456(n + k^3) > 0 for k>0; a(A113958(n)) > 0; a(A003325(n)) > 0. - Reinhard Zumkeller, Jun 03 2006
a(n) >= A025468(n). - Antti Karttunen, Aug 28 2017
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
MATHEMATICA
Table[Count[IntegerPartitions[n, {2}], _?(AllTrue[Surd[#, 3], IntegerQ]&)], {n, 0, 110}] (* Harvey P. Dale, Nov 23 2022 *)
PROG
(Scheme) (define (A025455 n) (let loop ((x (A048766 n)) (s 0)) (let* ((x3 (A000578 x)) (y3 (- n x3))) (if (< x3 y3) s (loop (- x 1) (+ s (if (and (> y3 0) (= (A000578 (A048766 y3)) y3)) 1 0))))))) ;; Antti Karttunen, Aug 28 2017
CROSSREFS
Cf. A025456, A025468, A003108, A003325, A000578, A048766, A001235 (two or more ways, positions where a(n) > 1).
Cf. also A025426, A216284.
KEYWORD
nonn
EXTENSIONS
Secondary offset added by Antti Karttunen, Aug 28 2017
Secondary offset corrected by Michel Marcus, Apr 23 2019
STATUS
approved
Numbers that are the sum of 3 positive cubes in exactly 1 way.
+10
7
3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434, 440
OFFSET
1,1
COMMENTS
A025456(a(n)) = 1. - Reinhard Zumkeller, Apr 23 2009
MATHEMATICA
Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
KEYWORD
nonn,easy,nice
STATUS
approved
Number T(n,k) of partitions of n into k positive cubes; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
+10
7
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
OFFSET
0
FORMULA
T(n,k) = [x^n y^k] 1/Product_{j>=1} (1 - y*x^(j^3)).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 1;
0, 1, 0, 0, 0, 0, 0, 0, 1;
0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
...
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(i^3>n, 0, b(n-i^3, i, t-1))))
end:
T:= (n, k)-> b(n, iroot(n, 3), k):
seq(seq(T(n, k), k=0..n), n=0..16); # Alois P. Heinz, Dec 21 2018
MATHEMATICA
T[n_, k_] := Count[PowersRepresentations[n, k, 3], r_ /; FreeQ[r, 0]]; T[0, 0] = 1; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^3 > n, 0, b[n - i^3, i, t - 1]]]];
T[n_, k_] := b[n, n^(1/3) // Floor, k];
Table[T[n, k], {n, 0, 16}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
CROSSREFS
Columns k=0..10 give A000007, A010057 (for n > 0), A025455, A025456, A025457, A025458, A025459, A025460, A025461, A025462, A025463.
Row sums give A003108.
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Dec 09 2018
STATUS
approved
Numbers that are the sum of 3 nonnegative cubes in more than 1 way.
+10
4
216, 251, 344, 729, 855, 1009, 1072, 1366, 1457, 1459, 1520, 1674, 1728, 1729, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 2752, 3060, 3391, 3402, 3457, 3500, 3592, 3599, 3655, 3744, 3745
OFFSET
1,1
REFERENCES
G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 165.
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Christian N. K. Anderson, Decomposition of first 10000 terms into cube triples
MATHEMATICA
Select[Range[4000], Length[PowersRepresentations[#, 3, 3]] > 1 &] (* Harvey P. Dale, Feb 03 2011 *)
PROG
(PARI) is(n)=my(t); for(a=0, sqrtnint(n, 3), my(a3=a^3, c); for(b=0, min(a, sqrtnint(n-a3, 3)), if(ispower(n-a3-b^3, 3, &c) && c <= b && t++>1, return(1)))); 0 \\ Charles R Greathouse IV, Jul 02 2017
KEYWORD
nonn
STATUS
approved

Search completed in 0.014 seconds