(Translated by https://www.hiragana.jp/)
A052382 -id:A052382 - OEIS
login
Search: a052382 -id:a052382
     Sort: relevance | references | number | modified | created      Format: long | short | data
Zeroless prime powers: Intersection of A000961 and A052382.
+20
23
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 256, 257, 263, 269, 271, 277, 281, 283, 289, 293, 311
OFFSET
1,2
COMMENTS
In contrast to A195942, we also allow for primes (p^n with n=1) in this sequence.
LINKS
C. Rivera, Puzzle 607. A zeroless Prime power, on primepuzzles.net, Sept. 24, 2011.
FORMULA
A010055(a(n)) * A168046(a(n)) = 1. - Reinhard Zumkeller, Sep 27 2011
PROG
(PARI) for( n=1, 9999, is_A000961(n) && is_A052382(n) && print1(n", "))
(Haskell)
a195943 n = a195943_list !! (n-1)
a195943_list = filter ((== 1) . a010055) a052382_list
-- Reinhard Zumkeller, Sep 27 2011
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Sep 25 2011
STATUS
approved
Zeroless prime powers (excluding primes): Intersection of A025475 and A052382.
+20
21
1, 4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 3125, 3481, 3721, 4489, 4913, 5329, 6241, 6561, 6859, 6889, 7921, 8192
OFFSET
1,2
LINKS
Reinhard Zumkeller and T. D. Noe, Table of n, a(n) for n = 1..4094 (terms < 10^10)
C. Rivera, Puzzle 607. A zeroless Prime power, on primepuzzles.net, Sept. 24, 2011.
FORMULA
A195942 = A025475 intersect A052382.
A010055(a(n)) * (1 - A010051(a(n))) * A168046(a(n)) = 1. - Reinhard Zumkeller, Sep 27 2011
MATHEMATICA
mx = 10^10; t = {1}; p = 2; While[pw = 2; While[n = p^pw; n <= mx, If[Union[IntegerDigits[n]][[1]] > 0, AppendTo[t, n]]; pw++]; pw > 2, p = NextPrime[p]]; t = Sort[t] (* T. D. Noe, Sep 27 2011 *)
PROG
(PARI) for( n=1, 9999, is_A025475(n) && is_A052382(n) && print1(n", "))
(Haskell)
a195942 n = a195942_list !! (n-1)
a195942_list = filter (\x -> a010051 x == 0 && a010055 x == 1) a052382_list
-- Reinhard Zumkeller, Sep 27 2011
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Sep 25 2011
STATUS
approved
Decimal encoding of the prime factorization of n: for n > 0 with prime factorization Product_{i=1..k} prime(i)^e_i, let E_n = (e_k, ..., e_1), replace each nonzero e_i with A052382(e_i) and each zero e_i with "" in E_n to obtain F_n, concatenate the elements of F_n with a "0" inserted after every element except for the last, and interpret in decimal base.
+20
4
0, 1, 10, 2, 100, 101, 1000, 3, 20, 1001, 10000, 102, 100000, 10001, 1010, 4, 1000000, 201, 10000000, 1002, 10010, 100001, 100000000, 103, 200, 1000001, 30, 10002, 1000000000, 10101, 10000000000, 5, 100010, 10000001, 10100, 202, 100000000000, 100000001
OFFSET
1,3
COMMENTS
This sequence is an analog of A156552 for the decimal base.
This sequence establishes a bijection between the positive numbers and the nonnegative numbers; see A290389 for the inverse sequence.
The number of runs of consecutive nonzero digits in the decimal representation of a(n) corresponds to the number of distinct prime factors of n.
a(A003961(n)) = 10 * a(n) for any n > 0.
a(n) = 0 mod 10 iff n is odd.
a(prime(n)^k) = A052382(k) * 10^(n-1) for any n > 0 and k > 0 (where prime(n) is the n-th prime).
a(prime(n)#) = Sum_{k=1..n} 100^(k-1) for any n > 0 (where prime#(n) = A002110(n)).
EXAMPLE
For n = 5120 = 5^1 * 3^0 * 2^10:
- E_5120 = (1, 0, 10),
- F_5120 = ("1", "", "11"),
- a(5120) = 10011.
For n = 5040 = 7^1 * 5^1 * 3^2 * 2^4:
- E_5040 = (1, 1, 2, 4),
- F_5040 = ("1", "1", "2", "4"),
- a(5040) = 1010204.
MATHEMATICA
f[n_] := Function[m, Sum[(1 + Mod[Floor[(8 n + 1 - 9^m)/(8*9^j)], 9]) 10^j, {j, 0, m - 1}]]@ Floor@ Log[9, 8 n + 1]; Table[If[n == 1, 0, With[{s = FactorInteger[n] /. {p_, e_} /; p > 0 :> If[p > 1, PrimePi@ p -> f@ e]}, Function[t, FromDigits@ Flatten@ Reverse@ Riffle[#, ConstantArray[0, Length@ #]] &[ReplacePart[t, s] /. 0 -> {}]]@ConstantArray[0, Max[s[[All, 1]] ]]]], {n, 38}] (* Michael De Vlieger, Jul 31 2017 *)
PROG
(PARI) a(n) = {
my (f = factor(n), v = 0, nz = 0);
for (i=1, #f~,
my (x = A052382(f[i, 2]));
v += x * 10^(nz + prime pi(f[i, 1]) - 1);
nz += #digits(x);
);
return (v)
}
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jul 27 2017
STATUS
approved
Let x run through the list of numbers with no zeros (A052382); replace each digit d of x by the digit (x mod d).
+20
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 4, 3, 2, 1, 10, 0, 12, 0, 10, 2, 16, 4, 12, 10, 20, 0, 12, 20, 0, 12, 26, 3, 10, 20, 31, 0, 10, 24, 35, 0, 14, 10, 20, 32, 42, 0, 12, 21, 32, 45, 10, 20, 30, 40, 50, 0, 14, 24, 36, 10, 20, 31, 42, 50, 64, 0, 16, 27, 10
OFFSET
1,13
COMMENTS
Graph of the sequence generates a fractal-like image.
LINKS
EXAMPLE
If x = 247 we get 132 as 247 mod 2 = 1, 247 mod 4 = 3, and 247 mod 7 = 2. As 247 is the 205th zeroless number, a(205) = 132.
MATHEMATICA
f[n_] := FromDigits @ Mod[n, IntegerDigits[n]]; f /@ Select[Range[100], !MemberQ[IntegerDigits[#], 0] &] (* Amiram Eldar, Jul 26 2021 *)
PROG
(C)
#include <stdio.h>
#define START 1
#define END 1000
int main(){
unsigned int R, N, M, power_cntr;
int mod1, mod2;
for(N=START; N<=END; N++){
R=N;
M=0;
power_cntr=1;
while(R!=0){
mod1=R%10;
if(mod1==0) break;
mod2=N%mod1;
M+=mod2*power_cntr;
power_cntr*=10;
R=R/10; }
if(mod1!=0) printf("%u %u\n", N, M); }
return 0; }
(PARI) a(m) = my(d=digits(m)); fromdigits(Vec(apply(x->(m % x), d)));
apply(x->a(x), select(x->vecmin(digits(x)), [1..100])) \\ Michel Marcus, Jul 24 2021
(Python)
def f(k, digits): return int("".join(map(str, map(lambda x: k%x, digits))))
def aupton(terms):
alst, k = [], 1
while len(alst) < terms:
s = str(k)
if '0' not in s: alst.append(f(k, list(map(int, s))))
k += 1
return alst
print(aupton(73)) # Michael S. Branicky, Aug 22 2021
CROSSREFS
See A347323 for another version.
KEYWORD
nonn,base,look
AUTHOR
Rakesh Khanna A, Jul 24 2021
STATUS
approved
Zeroless numbers k (numbers in A052382) such that k - DigitProduct(k) contains the same distinct digits as k.
+20
1
293, 362, 436, 545, 554, 631, 653, 749, 763, 891, 958, 965, 1293, 1362, 1436, 1545, 1554, 1631, 1653, 1749, 1763, 1891, 1958, 1965, 2193, 2331, 2491, 2536, 2556, 2565, 2693, 2917, 2954, 2963, 3162, 3231, 3325, 3382, 3529, 3534, 3635, 3651, 4291, 4515, 4533, 4551, 4634, 4935, 4952, 4971
OFFSET
1,1
COMMENTS
Numbers that contain zeros trivially have this property. - Tanya Khovanova, Jul 19 2021
EXAMPLE
631 - 6*3*1 = 613 contains the same digits as 631. So 631 is a term of this sequence.
MATHEMATICA
Select[Range@5000, (d=IntegerDigits@#; FreeQ[d, 0]&&Union@IntegerDigits[#-Times@@d]==Union@d)&] (* Giorgos Kalogeropoulos, Jul 20 2021 *)
PROG
(PARI)
for(n=1, 10^4, d=digits(n); p=prod(i=1, #d, d[i]); if(p && vecsort(digits(n), , 8)==vecsort(digits(n-p), , 8), print1(n, ", ")))
(Python)
from math import prod
def ok(n):
s = str(n)
return '0' not in s and set(str(n-prod(int(d) for d in s))) == set(s)
print(list(filter(ok, range(5000)))) # Michael S. Branicky, Jul 18 2021
CROSSREFS
Cf. A052382 (zeroless numbers), A007954 (digit product).
Cf. A247888 (similar, with n + digit product).
KEYWORD
nonn,easy,base
AUTHOR
Derek Orr, Oct 03 2014
STATUS
approved
T(n,k) is the k-th partition of n in graded reverse lexicographic ordering (A080577) encoded as concatenation of parts which are represented in (zeroless) bijective base-9 numeration (A052382) and separated by zeros; triangle T(n,k), n >= 0, 1 <= k <= A000041(n), read by rows.
+20
1
0, 1, 2, 101, 3, 201, 10101, 4, 301, 202, 20101, 1010101, 5, 401, 302, 30101, 20201, 2010101, 101010101, 6, 501, 402, 40101, 303, 30201, 3010101, 20202, 2020101, 201010101, 10101010101, 7, 601, 502, 50101, 403, 40201, 4010101, 30301, 30202, 3020101, 301010101
OFFSET
0,3
COMMENTS
The encoding used here allows a lossless and human-readable compression of all partitions. To decode a term replace the zeros with commas and read the parts in bijective base 9.
The empty partition is encoded as 0.
LINKS
EXAMPLE
T(6,6) = 30201 encodes the 6th partition of 6: [3,2,1].
T(10,1) = 11 encodes the 1st partition of 10: [10].
T(23,23) = 18040101 encodes the 23rd partition of 23: [17,4,1,1].
Triangle T(n,k) begins:
0;
1;
2, 101;
3, 201, 10101;
4, 301, 202, 20101, 1010101;
5, 401, 302, 30101, 20201, 2010101, 101010101;
6, 501, 402, 40101, 303, 30201, 3010101, 20202, 2020101, ...
7, 601, 502, 50101, 403, 40201, 4010101, 30301, 30202, ...
8, 701, 602, 60101, 503, 50201, 5010101, 404, 40301, 40202, ...
9, 801, 702, 70101, 603, 60201, 6010101, 504, 50301, 50202, ...
11, 901, 802, 80101, 703, 70201, 7010101, 604, 60301, 60202, ...
...
MAPLE
g:= proc(n) option remember; local d, m, l; m, l:= n, "";
while m>0 do d:= irem(m, 9, 'm');
if d=0 then d:=9; m:= m-1 fi; l:= d, l
od; parse(cat(l))
end:
b:= (n, i)-> `if`(n=0, [""], `if`(i<1, [], [map(x-> cat(
0, g(i), x), b(n-i, min(n-i, i)))[], b(n, i-1)[]])):
T:= n-> map(x-> parse(cat(0, x)), b(n$2))[]:
seq(T(n), n=0..10);
CROSSREFS
Column k=1 gives A052382 (for n>0).
Last row elements give A094028(n-1) (for n>0).
KEYWORD
nonn,tabf,look,base
AUTHOR
Alois P. Heinz, Feb 16 2020
STATUS
approved
Numbers in base 9.
(Formerly M0490)
+10
308
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84
OFFSET
0,3
COMMENTS
Also numbers without 9 as a digit.
Complement of A011539: A102683(a(n)) = 0; A068505(a(n)) != a(n)). - Reinhard Zumkeller, Dec 29 2011
REFERENCES
Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(0) = 0, a(n) = 10*a(n/9) if n==0 (mod 9), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
Sum_{n>1} 1/a(n) = A082838 = 22.92067... (Kempner series). - Bernard Schott, Dec 29 2018; edited by M. F. Hasler, Jan 13 2020
MAPLE
A007095 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n, base, 9): return op(convert(l, base, 10, 10^nops(l))): end: seq(A007095(n), n=0..67); # Nathaniel Johnston, May 06 2011
MATHEMATICA
Table[ FromDigits[ IntegerDigits[n, 9]], {n, 0, 75}]
PROG
(PARI) a(n)=if(n<1, 0, if(n%9, a(n-1)+1, 10*a(n/9)))
(PARI) A007095(n)=fromdigits(digits(n, 9)) \\ Michel Marcus, Dec 29 2018
(Magma) [ n: n in [0..74] | not 9 in Intseq(n) ]; // Bruno Berselli, May 28 2011
(sh) seq 0 1000 | grep -v 9; # Joerg Arndt, May 29 2011
(Haskell)
a007095 = f . subtract 1 where
f 0 = 0
f v = 10 * f w + r where (w, r) = divMod v 9
-- Reinhard Zumkeller, Oct 07 2014, Dec 29 2011
(Python) # and others: see OEIS Wiki page (cf. LINKS).
CROSSREFS
Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8); A057104, A037479.
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8).
Cf. A082838.
KEYWORD
nonn,easy,base
STATUS
approved
Numbers that contain a digit 0.
+10
115
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302
OFFSET
1,2
COMMENTS
Complement of A052382.
A168046(a(n)) = 0; A054054(a(n)) = 0; A055640(a(n)) = 0 for n = 1 and A055640(a(n)) > 0 for n > 1; A055641(a(n)) > 0; subsequence of A188643. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011; corrected by Hieronymus Fischer, Jan 13 2013
A067898(a(n)) > 0. - Reinhard Zumkeller, May 04 2012; corrected by Hieronymus Fischer, Jan 13 2013
From Hieronymus Fischer, Jan 13 2013, May 28 2014; edited by M. F. Hasler; edited by Hieronymus Fischer, Dec 27 2018: (Start)
Zerofree floor: The greatest zerofree number < a(n) is A052382(a(n) + 1 - n).
The greatest zero-containing number (i.e., non-zerofree number, or term of this sequence) less than a given zerofree number A052382(n) is a(A052382(n) + 1 - n).
The ratio n/(a(n) + 1) indicates the relative proportion of zero-containing numbers less than or equal to a(n) compared to all numbers less than or equal to a(n). Since Lim_{n -> infinity} a(n)/n = 1, this can be expressed as "Almost all numbers contain a 0" (in a slightly informal manner).
As an example, for n = 10^100, n/(a(n) + 1) = 0.9999701184..., i.e., 99.997...% of all numbers between 0 and 10^100 contain a zero digit. Only the tiny proportion of 0.0000298816... (less than 0.003%) contain no zero digit. This is in contrast to the behavior for small indices, where the relative portion of numbers that contain no zero digit is significant: for n = 10^3 and even n = 10^7, the proportion of numbers less than or equal to n that contain no zero digit exceeds 81% and 53%, respectively.
Inversion: Given a number z that contains a zero digit, the index n for which a(n) = z is n = (z+1)*probability that a randomly chosen number k from the range 0..z contains a zero digit.
Example 1: z = 10; the probability that a randomly chosen number less than or equal to 10 contains no zero digit is 9/11. The probability that it contains a zero digit is p = 2/11. Thus, n = (z+1)*p = 2 and a(2) = 10.
Example 2: z = 10^6; the probability that a randomly chosen number with m > 1 digits contains no zero digit is (9/10)^(m-1). For m = 1 the probability is 9/10. The probability that a randomly chosen number with 1..m digits contains no zero digit is q = (9/10)*10/(10^m+1) + Sum_{i = 2..m} (9/10)^(i-1)*(10^i - 10^(i-1))/(10^m+1) = (72 + 81*(9^(m-1) - 1)/(8*(10^m+1)). Hence, the probability that the chosen number with 1..m digits contains a zero digit is p = 1 - q = (8*10^m - 9*9^m + 17)/(8*(10^m + 1)). Thus, p = 402131/1000001 (for z = 10^6) and so n = (z+1)*p = 402131, which implies a(402131) = 10^6.
The number of terms z such that k*10^m <= z < (k+1)*10^m is 10^m - 9^m, where 1 <= k < 10 and m >= 0.
The number of terms z such that 10^m <= z < 10^(m+1) is 9*(10^m - 9^m), where m >= 0.
The number of terms z <= 10^m is (8*10^m - 9*9^m + 17)/8 where m>=1 (cf. A217094).
Infinitely many terms are primes, and most primes are zero-containing numbers. Sketch of a proof: The number of zero-containing numbers less than or equal to a(n) is n. Hence there are a(n) + 1 - n zerofree numbers less than or equal to a(n). From the asymptotic behavior of a(n) (see formula section) it follows a(n) + 1 - n < (5/4)*n^log_10(9) for sufficiently large n. By the prime number theorem we have for each fixed d > 0 the relation pi(n) [number of primes less than or equal to n] > (1 - d/4)*(n/log(n)) for sufficiently large n. Thus, for the number of primes less than or equal to a(n) which contain a zero digit [hereafter denoted as P_0(a(n))] we have P_0(a(n)) > pi(a(n)) - (a(n) + 1 - n) > (1 - d/4)*a(n)/log(a(n)) - (5/4)*n^log_10(9) > (1-d/4)*n/log(n) - (5/4)*n^log_10(9) = (1-d/4)*n/log(n) * (1 - (5/4)*(1/(1-d/4))*(1/n) * n^(log_10(9))*log(n)) > (1-d/2)*n/log(n) for sufficiently large n. Because of a(n) = n + o(n) this also implies P_0(a(n)) > (1 - d)*a(n)/log(a(n)) for sufficiently large n. Thus, the proportion of primes less than or equal to a(n) which contain a zero digit compared to the total number of primes less than or equal to a(n) is arbitrarily near to 1 for sufficiently large n.
Sequence inversion:
Given a term m > 0, the index n such that a(n) = m can be calculated with the following procedure: Define k := floor(log_10(m)) and i := digit position of the leftmost '0' in m counted from the right (starting with 0), then:
A011540_inverse(m) = 2 + m mod 10^i + Sum_{j = 1..k} floor((m - 1 - m mod 10^i)/10^j)*9^(j-1) [see PROG section for an implementation in Smalltalk].
Example: m = 905, k = 2, i = 1, A011540_inverse(905) = 2 + 905 mod 10 + floor((905 - 1 - 905 mod 10)/10)*1 + floor((905 - 1 - 905 mod 10)/100)*9 = 2 + 5 + floor(899/10)*1 + floor(899/100)*9 = 2 + 5 + 89*1 + 8*9 = 168.
(End)
For the number of k-digit numbers containing the digit '0', see A229127. - Jon E. Schoenfield, Sep 14 2013
The above "sketch of proof" only compares the relative densities, and since the density of this sequence is 1, the result is "obvious". But the nontrivial part is that there is no correlation between the absence of a digit '0' and primality of the number (cf. A038618). Indeed, consider the set S defined to be the set of primes with all digits '0' replaced by the smallest possible nonzero digit while avoiding duplicates. Having exactly the same density as the set of primes, the argument of the proof applies in the same way and leads to the same conclusion for the number of zero-containing terms; however, there is none in the set S. - M. F. Hasler, Oct 11 2015, example added Feb 11 2019
FORMULA
From Hieronymus Fischer, Jan 13 2013: (Start)
Inequalities:
a(n) <= 10*(n - 1), equality holds for 1 <= n <= 11.
a(n) <= 9*n, for n <> 11.
a(n) < n + 10 * n^log_10(9).
a(n) < n + 2 * n^log_10(9), for n > 6*10^8.
a(n) > n + 9^log_10(9)/8 * n^log_10(9).
a(n) < A043489(n), for n > 10.
Iterative calculation:
a(n+1) = a(n) + 1 + 9*sign(A007954(a(n)+1)).
Recursive calculation (for n > 1):
Set m := floor(log_10(n)) + 1), j := floor(sign(n+1 - (8*10^m - 9*9^m + 17)/8) + 1)/2) + m - 1, d := 10^j - 9^j, b := (8*10^j - 9*9^j + 17)/8, and determine r(n) as follows:
Case 1: r(n) = a(b - d + (n - b) mod d), if (n - b) mod d > 10^(j-1) and n >= 19
Case 2: r(n) = (n - b) mod d, if (n - b) mod d <= 10^(j-1).
Then a(n) = (floor((n - b)/d) + 1)*10^j + r(n).
Direct calculation (for n>1):
Set m := floor(log_10(n)) + 1), j := floor((sign(n+1 - (8*10^m - 9*9^m + 17)/8) + 1)/2) + m - 1, and determine k and c(i) as follows:
c(1) = n - (8*10^j - 9*9^j + 17)/8, then define successively for i = 1, 2, ...,
c(i+1) = (c(i) mod (10^(j-i+1) - 9^(j-i+1))) - 10^(j-i) while this value is > 0, and set k := i for the last such index for which c(i) > 0 (in any case k is k<=j).
Then a(n) = c(k) mod (10^(j-k+1) - 9^(j-k+1)) + sum_{i=1..k}(floor(c(i)/(10^(j-i+1) - 9^(j-i+1))) + 1)*10^(j-i+1).
Asymptotic behavior:
a(n) = n + O(n^log_10(9)) = n*(1+ O(1/n^0.04575749056...)).
lim a(n)/n = 1 for n -> infinity.
lim inf (a(n) - n)/n^log_10(9) = 9^log_10(9)/8 = 1.017393081085670008926619124438...
lim sup (a(n) - n)/n^log_10(9) = 9/8 = 1.125.
Sums:
Sum_{n >= 2} (-1)^n/a(n) = 0.0693489578....
Sum_{n >= 2} 1/a(n)^2 = 0.0179656962...
Sum_{n >= 2} 1/a(n) diverges, because of a(n) < 10*n.
Sum_{n >= 1} a(n)/n^2 diverges too.
Sum_{n >= 2} 1/a(n)^2 + Sum_{n >= 1} 1/A052382(n)^2 = Pi^2/6.
Generating function:
g(x) = Sum_{k >= 1} g_k(x), where the terms g_k(x) obey the following recurrence relation:
g_k(x) = 10^k*x^b(k) * (1 - 10x^(9d(k)) + 9x^(10d(k)))/((1-x^d(k))(1-x)) + (x*x^b(k) * (1 - 10^(k-1)*x^(10^(k-1)-1) + (10^(k-1)-1)*x^10^(k-1))/((1-x)^2) + g_(k-1)(x)*x^d(k)) * (1-x^(9d(k)))/(1-x^d(k)),
where b(k) := 2 + 10^k - 9^k - (9^k-1)/8,
d(k) := 10^k - 9^k, and g_0(x) = 0.
Explicit representation of g_k(x):
g_k(x) = (10^k*x^b(k)*(1 - 10x^(9d(k)) + 9x^(10d(k)))/(1-x^d(k)) + sum_{j=1..k-1} ((10^j*x^b(j) * (1 - 10x^(9d(j)) + 9x^(10d(j)))/(1-x^d(j)) + x^(b(j)-10^j+1) * (1 - 10^j*x^(10^j-1) + (10^j-1)*x^10^j)/(1-x)) * Product_{i=j+1..k} x^d(i)*(1-x^(9d(i)))/(1-x^d(i)))/(1-x).
A summation term g_k(x) of the g.f. represents all the sequence terms >= 10^k and < 10^(k+1).
Example 1: g_1(x) = 10*x^2*(1 - 10x^9 + 9x^10)/(1-x)^2 represents the g.f. fragment 10x^2 + 20x^3 + ... + 90x^10 and so generates the terms a(2)=10 ... a(10)=90.
Example 2: g_2(x) = 10^2*x^11*(1 - 10x^(9*19) + 9x^(10*19))/((1-x)(1-x^19)) + 10*x^21 * (1 - 10x^9 + 9x^10)/((1-x)^2) * (1-x^(9*19))/(1-x^19)) + x^11*x * (1 - 10x^9 + 9x^10)/((1-x)^2) * (1-x^(9*19))/(1-x^19) represents the g.f. fragment 100x^11 + 101x^12 + ... + 109x^20 + 110x^21 + 120x^22 + ... + 190x^29 + 200x^30 + 201x^31 + ... + 210x^40 + ... + 990x^181 and so generates the terms a(11) = 100 ... a(181) = 990.
(End)
From Hieronymus Fischer, Feb 12 2019: (Start)
The number C(n) of zero-containing numbers <= n (counting function) is given by C(n) = A011540_inverse(n), if n is a zero-containing number, and C(n) = A011540_inverse(A052382(a(n) + 1 - n)), if n is a zerofree number.
Upper bound:
C(n) <= n+1-((9*n+1)^d-1)/8.
Lower bound:
C(n) > n+1-((10*n+1)^d-1)/8
where d = log_10(9) = 0.95424250943932...
(see A324160).
(End)
EXAMPLE
a(10) = 90.
a(100) = 540.
a(10^3) = 4005.
a(10^4) = 30501.
a(10^5) = 253503.
a(10^6) = 2165031.
a(10^7) = 20163807
a(10^8) = 182915091.
a(10^9) = 1688534028.
a(10^10) = 15749319096.
a(10^20) = 114131439770460123393.
a(10^50) = 10057979971082351274741...89870962249 = 1.0057979971082...*10^50
a(10^100) = 10000298815737485...786424499 = 1.0000298815737...*10^100.
a(10^1000) = 1...(45 zeros)...196635515818798306...4244999 (1001 digits), using recursive calculation. - Hieronymus Fischer, Jan 13 2013
MATHEMATICA
Select[Range[0, 299], DigitCount[#, 10, 0] > 0 &] (* Alonso del Arte, Mar 10 2011 *)
Select[Range[0, 299], Times@@IntegerDigits[#] == 0 &] (* Alonso del Arte, Aug 29 2014 *)
PROG
(Haskell)
a011540 n = a011540_list !! (n-1)
a011540_list = filter ((== 0) . a168046) [0..]
-- Reinhard Zumkeller, Apr 07 2011
(PARI) is(n)=!n||!vecmin(digits(n)) \\ M. F. Hasler, Feb 28 2018, replacing an earlier version from Charles R Greathouse IV, Aug 09 2011
(PARI) A011540(n)=my(m=log(n+.5)\log(10)+1, f(m)=n-10^m+(9*9^m-17)/8, j=(sign(f(m)+1)+1)\2+m-1, c=[f(j)], k=1); while(c[k]>0, c=concat(c, c[k] % (10^(j-k+1) - 9^(j-k+1)) - 10^(j-k)); k++); k>1&&k--||n>1||return(0); c[k]%(10^(j-k+1) - 9^(j-k+1)) + sum(i=1, k, (c[i]\(10^(j-i+1) - 9^(j-i+1)) + 1)*10^(j-i+1)) \\ Uses the "Direct calculation" formula given by H. Fischer. - M. F. Hasler, Oct 11 2015
(Smalltalk)
"Calculates the n-th number with zero digits recursively - not optimized"
| n j m b d p r |
n := self.
n < 2 ifTrue: [^r := 0].
m := (n integerFloorLog: 10) + 1.
j := (n + 1 - ((10 raisedToInteger: m) - (((9 raisedToInteger: (m + 1)) - 17) // 8))) sign + 1 // 2 + m - 1.
d := (10 raisedToInteger: j) - (9 raisedToInteger: j).
b := ((10 raisedToInteger: j) - (((9 raisedToInteger: (j + 1)) - 17) // 8)).
(((n - b) \\ d > (10 raisedToInteger: (j - 1))) and: [n >= 19])
ifTrue:
[p := (((n - b) \\ d + b - d) A011540)].
(n - b) \\ d > (10 raisedToInteger: (j - 1))
ifFalse: [p := (n - b) \\ d].
r := (((n - b) // d + 1) * (10 raisedToInteger: j)) + p.
^r "Hieronymus Fischer, Jan 13 2013"
(Smalltalk)
A011540_inverse
"Version 1: Answers the index n such that A011540(n) = m, where m is the receiver.
Usage: m A011540_inverse
Answer: n"
| m p q s r d |
m := self.
m < 10 ifTrue: [^1].
p := q := 1.
[p < m] whileTrue:
[d := m // p \\ 10.
d = 0 ifTrue: [q := p].
p := 10 * p].
r := m \\ q.
s := r + 2.
p := 10.
q := 1.
m := m - r - 1.
[p < m] whileTrue:
[s := m // p * q + s.
p := 10 * p.
q := 9 * q].
^s
"Hieronymus Fischer, May 28 2014"
(Smalltalk)
A011540_inverse
"Version 2: Answers the index n such that A011540(n) = m, where m is the receiver.
Uses A052382_inverse from A052382.
Usage: m A011540_inverse
Answer: n"
| m p q d |
m := self.
m < 10 ifTrue: [^1].
p := q := 1.
[p < m] whileTrue:
[d := m // p \\ 10.
d = 0 ifTrue: [q := p].
p := 10 * p].
^m + 1 - (m - 1 - (m \\ q)) A052382_inverse
"Hieronymus Fischer, May 28 2014"
(Magma) [0] cat [ n: n in [0..350] | 0 in Intseq(n) ]; // Vincenzo Librandi, Oct 12 2015
(Python)
A011540_list = [n for n in range(10**3) if '0' in str(n)] # Chai Wah Wu, Mar 26 2021
CROSSREFS
KEYWORD
nonn,base,easy,look
EXTENSIONS
Edited by M. F. Hasler, Oct 11 2015
STATUS
approved
Powers of 9: a(n) = 9^n.
(Formerly M4653 N1992)
+10
109
1, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 3486784401, 31381059609, 282429536481, 2541865828329, 22876792454961, 205891132094649, 1853020188851841, 16677181699666569, 150094635296999121, 1350851717672992089, 12157665459056928801
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 9), L(1, 9), P(1, 9), T(1, 9). Essentially same as Pisot sequences E(9, 81), L(9, 81), P(9, 81), T(9, 81). See A008776 for definitions of Pisot sequences.
Except for 1, the largest n-th power with n digits. - Amarnath Murthy, Feb 09 2002
The 2002 comment by Amarnath Murthy should say more precisely "n-th power with *at most* n digits": a(22) has only 21 digits etc., a(44) has only 42 digits etc. - Hagen von Eitzen, May 17 2009
1/1 + 1/9 + 1/81 + ... = 9/8. - Gary W. Adamson, Aug 29 2008
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 9-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
To be still more precise than Murthy and von Eitzen: the subsequence of the largest n-th power with n digits is a finite sequence, bounded by 9 and 109418989131512359209. It is guaranteed that 10^n has n + 1 digits in base 10, and clearly 9^n < 10^n. With a(22), the number n - log_10 a(n) crosses the 1.0 threshold, and obviously the gulf widens further after that, meaning that for n > 21, m^n can have fewer than n digits or more than n digits but not exactly n digits. - Alonso del Arte, Dec 12 2012
For n > 0, a(n) is also the number of n-digit zeroless numbers (A052382). - Stefano Spezia, Jul 07 2022
Erasing the last digit of the sum a(n) + a(n+1) brings back a(n). - Eric Angelini, Feb 05 2024
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Integers. London: Penguin Books (1997): p. 196, entry for 109,418,989,131,512,359,209.
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences
R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 4.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
a(n) = 9^n.
a(0) = 1, a(n) = 9*a(n - 1) for n > 0.
G.f.: 1/(1 - 9*x).
E.g.f.: exp(9*x).
A000005(a(n)) = A005408(n + 1). - Reinhard Zumkeller, Mar 04 2007
a(n) = 4*A211866(n)+5. - Reinhard Zumkeller, Feb 12 2013
a(n) = det(|v(i+2,j)|, 1 <= i,j <= n), where v(n,k) are central factorial numbers of the first kind with odd indices. - Mircea Merca, Apr 04 2013
MAPLE
A001019:=n->9^n: seq(A001019(n), n=0..25); # Wesley Ivan Hurt, Sep 27 2016
MATHEMATICA
Table[9^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
NestList[9#&, 1, 20] (* Harvey P. Dale, Jul 04 2014 *)
PROG
(Maxima) A001019(n):=9^n$
makelist(A001019(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Haskell)
a001019 = (9 ^)
a001019_list = iterate (* 9) 1
-- Reinhard Zumkeller, Feb 12 2013
(PARI) a(n)=9^n \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [9^n : n in [0..25]]; // Wesley Ivan Hurt, Sep 27 2016
CROSSREFS
Cf. A052382.
KEYWORD
easy,nonn
STATUS
approved
Numbers whose digits are primes.
+10
103
2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532
OFFSET
1,1
COMMENTS
If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=2,3,5,7 for k=1..4. - Hieronymus Fischer, May 30 2012
According to A153025, it seems that 5, 235 and 72335 are the only terms whose square is also a term, i.e., which are also in the sequence A275971 of square roots of the terms which are squares, listed in A191486. - M. F. Hasler, Sep 16 2016
LINKS
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
Eric Weisstein's World of Mathematics, Smarandache Sequences.
FORMULA
A055642(a(n)) = A193238(a(n)). - Reinhard Zumkeller, Jul 19 2011
From Hieronymus Fischer, Apr 20, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} ((2*b(j)+1) mod 8 + floor(b(j)/4) - floor((b(j)-1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
a(n) = Sum_{j=0..m-1} (A010877(A005408(b(j)) + A002265(b(j)) - A002265(b(j)-1))*10^j.
Special values:
a(1*(4^n-1)/3) = 2*(10^n-1)/9.
a(2*(4^n-1)/3) = 1*(10^n-1)/3.
a(3*(4^n-1)/3) = 5*(10^n-1)/9.
a(4*(4^n-1)/3) = 7*(10^n-1)/9.
Inequalities:
a(n) <= 2*(10^log_4(3*n+1)-1)/9, equality holds for n = (4^k-1)/3, k>0.
a(n) <= 2*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = (7/90)*10^log_4(3) = 0.48232167706987..., for n -> oo.
lim sup a(n)/10^log_4(n) = (2/9)*10^log_4(3) = 1.378061934485343..., for n -> oo.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(2 + z(j) + 2*z(j)^2 + 2*z(j)^3 - 7*z(j)^4)/(1-z(j)^4), where z(j) = x^4^j.
Also g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(2 + 3*z(j) + 5*z(j)^2 + 7*z(j)^3)/(1-z(j)^4), where z(j)=x^4^j.
Also: g(x) = (1/(1-x))*(2*h_(4,0)(x) + h_(4,1)(x) + 2*h_(4,2)(x) + 2*h_(4,3)(x) - 7*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.857333779940977502574887651449435985318556794733869779170825138954093657197... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
a(100) = 2277,
a(10^3) = 55327,
a(9881) = 3233232,
a(10^4) = 3235757,
a(10922) = 3333333,
a(10^5) = 227233257.
MATHEMATICA
Table[FromDigits /@ Tuples[{2, 3, 5, 7}, n], {n, 3}] // Flatten (* Michael De Vlieger, Sep 19 2016 *)
PROG
(PARI) is_A046034(n)=Set(isprime(digits(n)))==[1] \\ M. F. Hasler, Oct 12 2013
(Haskell)
a046034 n = a046034_list !! (n-1)
a046034_list = filter (all (`elem` "2357") . show ) [0..]
-- Reinhard Zumkeller, Jul 19 2011
(Magma) [n: n in [2..532] | Set(Intseq(n)) subset [2, 3, 5, 7]]; // Bruno Berselli, Jul 19 2011
(Python)
def A046034(n):
m = (3*n+1).bit_length()-1>>1
return int(''.join(('2357'[(3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3] for j in range(m)))) # Chai Wah Wu, Feb 08 2023
KEYWORD
nonn,base,easy
EXTENSIONS
More terms from Cino Hilliard, Aug 06 2006
Typo in second formula corrected by Hieronymus Fischer, May 12 2012
Two typos in example section corrected by Hieronymus Fischer, May 30 2012
STATUS
approved

Search completed in 0.105 seconds