(Translated by https://www.hiragana.jp/)
A089258 -id:A089258 - OEIS
login
Search: a089258 -id:a089258
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of e.g.f. exp(-2*x)/(1-x).
(Formerly M0373 N0140)
+10
28
1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024, 491264, 5401856, 64826368, 842734592, 11798300672, 176974477312, 2831591702528, 48137058811904, 866467058876416, 16462874118127616, 329257482363600896, 6914407129633521664, 152116956851941670912
OFFSET
0,3
COMMENTS
A010843, A000023, A000166, A000142, A000522, A010842, A053486, A053487 are successive binomial transforms with the e.g.f. exp(k*x)/(1-x) and recurrence b(n) = n*b(n-1)+k^n and are related to incomplete gamma functions at k. In this case k=-2, a(n) = n*a(n-1)+(-2)^n = Gamma(n+1,k)*exp(k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*i^(n-i)*(i+k)^i. - Vladeta Jovovic, Aug 19 2002
a(n) is the permanent of the n X n matrix with -1's on the diagonal and 1's elsewhere. - Philippe Deléham, Dec 15 2003
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. R. Kräuter, Permanenten - Ein kurzer Überblick, Séminaire Lotharingien de Combinatoire, B09b (1983), 34 pp.
A. R. Kräuter, Über die Permanente gewisser zirkulärer Matrizen..., Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.
FORMULA
a(n) = Sum_{k=0..n} A008290(n,k)*(-1)^k. - Philippe Deléham, Dec 15 2003
a(n) = Sum_{k=0..n} (-2)^(n-k)*n!/(n-k)! = Sum_{k=0..n} binomial(n, k)*k!*(-2)^(n-k). - Paul Barry, Aug 26 2004
a(n) = exp(-2)*Gamma(n+1,-2) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = b such that (-1)^n*Integral_{x=0..2} x^n*exp(x) dx = c + b*exp(2). - Francesco Daddi, Aug 01 2011
G.f.: hypergeom([1,k],[],x/(1+2*x))/(1+2*x) with k=1,2,3 is the generating function for A000023, A087981, and A052124. - Mark van Hoeij, Nov 08 2011
D-finite with recurrence: - a(n) + (n-2)*a(n-1) + 2*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
E.g.f.: 1/E(0) where E(k) = 1 - x/(1-2/(2-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n, k)*!k, where !k is the subfactorial A000166. a(n) = (-2)^n*hypergeom([1, -n], [], 1/2). - Vladimir Reshetnikov, Oct 18 2015
For n >= 3, a(n) = r - (-1)^n mod((-1)^n r, 2^(n - floor((2/n) + log_2(n)))) where r = {n! * e^(-2) - (-2)^(n+1)/(n+1)}. - Stan Wagon, May 02 2016
0 = +a(n)*(+4*a(n+1) -2*a(n+3)) + a(n+1)*(+4*a(n+1) +3*a(n+2) -a(n+3)) +a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Nov 20 2018
a(n) = KummerU(-n, -n, -2). - Peter Luschny, May 10 2022
EXAMPLE
G.f. = 1 - x + 2*x^2 - 2*x^3 + 8*x^4 + 8*x^5 + 112*x^6 + 656*x^7 + ... - Michael Somos, Nov 20 2018
MAPLE
a := n -> n!*add(((-2)^k/k!), k=0..n): seq(a(n), n=0..27); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -2)), n = 0..22); # Peter Luschny, May 10 2022
MATHEMATICA
FoldList[#1*#2 + (-2)^#2 &, 1, Range[22]] (* Robert G. Wilson v, Jul 07 2012 *)
With[{r = Round[n!/E^2 - (-2)^(n + 1)/(n + 1)]}, r - (-1)^n Mod[(-1)^n r, 2^(n + Ceiling[-(2/n) - Log[2, n]])]] (* Stan Wagon May 02 2016 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 2, {n, 0, 22}](* Gerry Martens , May 05 2016 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff(exp(-2*x+x*O(x^n))/(1-x), n))
(Haskell)
a000023 n = foldl g 1 [1..n]
where g n m = n*m + (-2)^m
-- James Spahlinger, Oct 08 2012
(Sage)
@CachedFunction
def A000023(n):
if n == 0: return 1
return n * A000023(n-1) + (-2)**n
[A000023(i) for i in range(23)] # Peter Luschny, Oct 17 2012
(PARI) x='x+O('x^66); Vec( serlaplace( exp(-2*x)/(1-x)) ) \\ Joerg Arndt, Oct 06 2013
KEYWORD
sign,easy
STATUS
approved
Incomplete Gamma Function at -3.
+10
7
1, -2, 5, -12, 33, -78, 261, -360, 3681, 13446, 193509, 1951452, 23948865, 309740922, 4341155877, 65102989248, 1041690874689, 17708615729550, 318755470552389, 6056352778233924, 121127059051462881, 2543668229620367298
OFFSET
1,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
FORMULA
E.g.f.: exp(-3x)/(1-x). - Michael Somos, Mar 06 2004
a(0) = 1 and for n>0, a(n) is the permanent of the n X n matrix with -2's on the diagonal and 1's elsewhere. a(n) = Sum(k=0..n, A008290(n, k)*(-2)^k ). a(n) = Sum(k=0..n, A008279(n, k)*(-3)^(n-k) ). - Philippe Deléham, Dec 15 2003
G.f.: hypergeom([1,1],[],x/(1+3*x))/(1+3*x). - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0) where E(k)=1-x/(1-3/(3-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 13 2012
G.f.: 1/Q(0), where Q(k)= 1 + 3*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-2) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) ~ n! * exp(-3). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-3)^(n-1)*hypergeom([1, 1-n], [], 1/3). - Vladimir Reshetnikov, Oct 18 2015
a(n) = KummerU(-n, -n, -3). - Peter Luschny, May 10 2022
MAPLE
a := n -> n!*add(((-3)^(k)/k!), k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -3)), n = 0..21); # Peter Luschny, May 10 2022
MATHEMATICA
Table[ Gamma[ n, -3 ]*E^(-3), {n, 1, 24} ] (* corrected by Peter Luschny, Oct 17 2012 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 3, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff(exp(-3*x+x*O(x^n))/(1-x), n)) /* Michael Somos, Mar 06 2004 */
(PARI) a(n)=local(A, p); if(n<1, n==0, A=matrix(n, n, i, j, 1-3*(i==j)); sum(i=1, n!, if(p=numtoperm(n, i), prod(j=1, n, A[j, p[j]])))) /* Michael Somos, Mar 06 2004 */
(Sage)
@CachedFunction
def A010843(n):
if (n) == 1 : return 1
return (n-1)*A010843(n-1)+(-3)^(n-1)
[A010843(i) for i in (1..22)] # Peter Luschny, Oct 17 2012
KEYWORD
sign
AUTHOR
STATUS
approved
Square array of numbers related to the incomplete gamma function, read by antidiagonals.
+10
7
1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 10, 16, 24, 1, 5, 17, 38, 65, 120, 1, 6, 26, 78, 168, 326, 720, 1, 7, 37, 142, 393, 872, 1957, 5040, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1, 10, 82, 538, 2760, 10970, 34960, 100026
OFFSET
0,5
FORMULA
T(k,n) = n! * Sum{j=0..n} k^j/j!.
E.g.f. of k-th row: exp(k*x)/(1-x).
T(k,n) = A089258(n,k).
EXAMPLE
Array begins:
k=0: 1 1 2 6 24 ...
k=1: 1 2 5 16 65 ...
k=2: 1 3 10 38 168 ...
k=3: 1 4 17 78 393 ...
k=4: 1 5 26 142 824 ...
...
MATHEMATICA
T[0, k_] := k!; T[n_, k_] := k!*Sum[n^j/j!, {j, 0, k}];
Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 17 2018 *)
CROSSREFS
Transposed version: A089258.
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 26 2003
EXTENSIONS
Corrected by Philippe Deléham, Dec 12 2003
STATUS
approved
Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t+m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
+10
7
2, 2, 1, 2, 2, 0, 2, 3, 3, 3, 2, 4, 8, 10, 18, 2, 5, 15, 29, 47, 95, 2, 6, 24, 66, 130, 256, 592, 2, 7, 35, 127, 327, 697, 1610, 4277, 2, 8, 48, 218, 722, 1838, 4376, 11628, 35010, 2, 9, 63, 345, 1423, 4459, 11770, 31607, 95167, 320589, 2, 10, 80, 514, 2562, 9820, 30248, 85634, 258690
OFFSET
0,1
COMMENTS
a(m,n) is a polynomial in m of degree n.
For any integers m>=0, n>=0, 2 * Integral_{t=-m..m} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-m/2..m/2} T_n(z)*exp(-2*z)*dz = A300481(m,n)*exp(m) - a(m,n)*exp(-m).
FORMULA
a(m,n) = Sum_{i=0..n} A127672(n,i) * i! * Sum_{j=0..i} m^j/j!.
a(m,n) = Sum_{i=0..n} A127672(n,i) * A080955(m,i) = Sum_{i=0..n} A127672(n,i) * A089258(i,m).
EXAMPLE
Array starts with:
m=0: 2, 1, 0, 3, 18, 95, 592, ...
m=1: 2, 2, 3, 10, 47, 256, 1610, ...
m=2: 2, 3, 8, 29, 130, 697, 4376, ...
m=3: 2, 4, 15, 66, 327, 1838, 11770, ...
m=4: 2, 5, 24, 127, 722, 4459, 30248, ...
...
PROG
(PARI) { A300480(m, n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+m)/2)), x, 1); }
CROSSREFS
Values for m<=0 are given in A300481.
Rows: A300482 (m=0), A300483 (m=1), A300484 (m=2), A300485 (m=-1), A102761 (m=-2).
Columns: A007395 (n=0), A000027 (n=1), A005563 (n=2), A084380 (n=3).
Cf. A000179 (almost row m=-2), A127672, A156995.
KEYWORD
nonn,tabl
AUTHOR
Max Alekseyev, Mar 06 2018
STATUS
approved
Permanent of the n X n matrix with all diagonal entries n and all off diagonal entries 1.
+10
5
1, 1, 5, 38, 393, 5144, 81445, 1512720, 32237681, 775193984, 20759213061, 612623724800, 19751688891385, 690721009155072, 26039042401938917, 1052645311044368384, 45424010394042998625, 2083972769418997760000, 101288683106200561501189, 5199006109868903819575296
OFFSET
0,3
COMMENTS
a(n) is the number of terms that appear before cancellations occur in the evaluation of the determinant of an n X n matrix by the usual sum over permutations of [n], for a matrix whose off diagonal entries are specified, and each of whose diagonal entries is minus the sum of the negatives of the off diagonal entries and one additional term, as in the usual presentation of the matrix in the Matrix Tree Theorem.
The number a(n-1) - n^(n-2) (A000272) is the number of terms which cancel in Zeilberger's proof of the Matrix Tree Theorem. This number is even, as the terms which cancel are equal in magnitude with opposite sign, and as is also apparent from the formula in terms of A087981(n) which is a corollary of Zeilberger's proof.
Formula involves the derangement numbers A000166 which count permutations with no fixed points, also the number A087981 of colored permutations with no fixed points of n elements where each cycle is one of two colors.
Number of permutations of [n] where the fixed points are n-colored and all other points are unicolored. - Alois P. Heinz, Apr 23 2020
LINKS
Doron Zeilberger, A combinatorial approach to matrix algebra, Discrete Mathematics, 56 (1985), 61-72.
FORMULA
a(n) = Sum_{k=0..n} C(n,k)*D_{n-k}*n^k, where D_n = A000166(n).
a(n) = Sum_{j=0..n} C(n,k)*D_{n-k,2} (n+1)^(j-1) (n-j+1) where D_{n,2} = A087981(n).
a(n) = n! * [x^n] exp((k-1)*x)/(1-x). - Alois P. Heinz, Apr 23 2020
a(n) = exp(n-1)*Gamma(n+1, n-1). - Peter Luschny, Dec 24 2021
MAPLE
a:= n-> n!*coeff(series(exp((n-1)*x)/(1-x), x, n+1), x, n):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020
# second Maple program:
b:= proc(n, k) option remember; `if`(n<1, 1-n,
(n+k-1)*b(n-1, k)+(k-1)*(1-n)*b(n-2, k))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020
# third Maple program:
b:= proc(n, k) option remember;
`if`(min(n, k)<0, 0, n*b(n-1, k)+(k-1)^n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020
MATHEMATICA
derange[0, z_]:=1; derange[n_, z_]:= Pochhammer[z, n] - Sum[ Binomial[n, k] z^(n-k) derange[k, z], {k, 0, n-1}]; a[n_]:= Sum[ Binomial[n, k] derange[n-k, 1] n^k, {k, 0, n}] ; a/@ Range[0, 10]
derange[0, z_]:=1; derange[n_, z_]:= Pochhammer[z, n] - Sum[ Binomial[n, k] z^(n-k) derange[k, z], {k, 0, n-1}]; a[n_]:= Sum[ Binomial[n, j] derange[n-j, 2] (n+1)^(j-1) (n-j+1), {j, 0, n}]; a/@ Range[0, 10]
(* Alternative: *)
a[n_] := Exp[n - 1] Gamma[n + 1, n - 1];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Dec 24 2021 *)
CROSSREFS
Also closely related to A058127.
Main diagonal of A089258.
Cf. A176043.
KEYWORD
nonn
AUTHOR
Jim Pitman, Mar 19 2013
EXTENSIONS
a(0),a(16)-a(19) from Alois P. Heinz, Apr 23 2020
STATUS
approved
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x).
+10
3
1, 1, 1, 1, 0, 2, 1, -1, 1, 6, 1, -2, 2, 2, 24, 1, -3, 5, -2, 9, 120, 1, -4, 10, -12, 8, 44, 720, 1, -5, 17, -34, 33, 8, 265, 5040, 1, -6, 26, -74, 120, -78, 112, 1854, 40320, 1, -7, 37, -138, 329, -424, 261, 656, 14833, 362880, 1, -8, 50, -232, 744, -1480, 1552, -360, 5504, 133496, 3628800
OFFSET
0,6
COMMENTS
A(n,k) is the k-th inverse binomial transform of A000142 evaluated at n.
Can be considered as extension of the array A089258 to columns with negative indices via A089258(n,k) = A(n,-k) or, vice versa, A(n,k) = A089258(n,-k). - Max Alekseyev, Mar 06 2018
LINKS
FORMULA
T(n, k) = n! * Sum_{j=0..n} (-k)^j/j!. - Max Alekseyev, Mar 06 2018
E.g.f. of column k: exp(-k*x)/(1 - x).
EXAMPLE
Square array begins:
n=0: 1, 1, 1, 1, 1, 1, ...
n=1: 1, 0, -1, -2, -3, -4, ...
n=2: 2, 1, 2, 5, 10, 17, ...
n=3: 6, 2, -2, -12, -34, -74, ...
n=4: 24, 9, 8, 33, 120, 329, ...
n=5: 120, 44, 8, -78, -424, -1480, ...
...
E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! + (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ...
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten
CROSSREFS
Columns: A000142 (k=0), A000166 (k=1), A000023 (k=2), A010843 (k=3, with offset 0).
Main diagonal: A134095 (absolute values).
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Sep 27 2017
STATUS
approved
Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...
+10
0
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Incomplete Gamma Function.
FORMULA
a(n,k) = gamma(n+1,k)*e^k = Sum_{m=0..n} m!*binomial(n,m)*k^(n-m).
a(n,k) = n*a(n-1,k) + k^n for n,k > 0.
E.g.f. (by columns) is e^(kx)/(1-x).
a(n,k) = the binomial transform by columns of a(n,k-1).
Conjecture: a(n,k) is the permanent of the n X n matrix with k+1 on the main diagonal and 1 elsewhere.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 10, 17, 26, 37, 50, ...
6, 16, 38, 78, 142, 236, 366, ...
24, 65, 168, 393, 824, 1569, 2760, ...
120, 326, 872, 2208, 5144, 10970, 21576, ...
720, 1957, 5296, 13977, 34960, 81445, 176112, ...
MATHEMATICA
T[n_, k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)
CROSSREFS
Cf. a(n, 0) = A000142(n); a(n, 1) = A000522(n); a(n, 2) = A010842(n); a(n, 3) = A053486(n); a(n, 4) = A053487(n); a(n, 5) = A080954(n); a(n, 6) = A108869(n); a(1, k) = A000027(k+1); a(2, k) = A002522(k+1); a(n, n) = A063170(n); a(n, n+1) = A001865(n+1); a(n, n+2) = A001863(n+2).
Another version: A089258.
A transposed version: A080955.
Cf. A001113.
KEYWORD
nonn,tabl
AUTHOR
Ross La Haye, Jan 22 2008
EXTENSIONS
More terms from Amiram Eldar, Jun 27 2020
STATUS
approved

Search completed in 0.009 seconds