(Translated by https://www.hiragana.jp/)
A112333 -id:A112333 - OEIS
login
Search: a112333 -id:a112333
     Sort: relevance | references | number | modified | created      Format: long | short | data
Inverse of number triangle A112333.
+20
2
1, -2, 1, 0, -5, 1, 0, 0, -8, 1, 0, 0, 0, -11, 1, 0, 0, 0, 0, -14, 1, 0, 0, 0, 0, 0, -17, 1, 0, 0, 0, 0, 0, 0, -20, 1, 0, 0, 0, 0, 0, 0, 0, -23, 1, 0, 0, 0, 0, 0, 0, 0, 0, -26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -29, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -32, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -38, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Row sums are A112335.
EXAMPLE
Triangle begins
1;
-2,1;
0,-5,1;
0,0,-8,1;
0,0,0,-11,1;
0,0,0,0,-14,1;
0,0,0,0,0,-17,1;
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Sep 04 2005
STATUS
approved
Triangle U, read by rows, where U(n,k) = Product_{j=k..n-1} (3*j+1) for n > k with U(n,n) = 1.
+10
7
1, 1, 1, 4, 4, 1, 28, 28, 7, 1, 280, 280, 70, 10, 1, 3640, 3640, 910, 130, 13, 1, 58240, 58240, 14560, 2080, 208, 16, 1, 1106560, 1106560, 276640, 39520, 3952, 304, 19, 1, 24344320, 24344320, 6086080, 869440, 86944, 6688, 418, 22, 1
OFFSET
0,4
COMMENTS
Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n, k, p) = G(n-1, n-k, p) then T(n, k, 1) = A094587(n, k), T(n, k, 2) = A112292(n, k) and T(n, k, 3) is this sequence. - Peter Luschny, Jun 01 2009, revised Jun 18 2019
FORMULA
Matrix powers: column 0 of U^(k+1) = column k of A136216 for k >= 0; simultaneously, column k = column 0 of A136216^(3k+1) for k >= 0. Element in column 0, row n, of matrix power U^(k+1) = A007559(n)*C(n+k,k), where A007559 are triple factorials found in column 0 of this triangle.
EXAMPLE
Triangle begins:
1;
1, 1;
4, 4, 1;
28, 28, 7, 1;
280, 280, 70, 10, 1;
3640, 3640, 910, 130, 13, 1;
58240, 58240, 14560, 2080, 208, 16, 1;
1106560, 1106560, 276640, 39520, 3952, 304, 19, 1; ...
Matrix inverse begins:
1;
-1, 1;
0, -4, 1;
0, 0, -7, 1;
0, 0, 0, -10, 1;
0, 0, 0, 0, -13, 1; ...
MAPLE
nmax:=8; for n from 0 to nmax do U(n, n):=1 od: for n from 0 to nmax do for k from 0 to n do if n > k then U(n, k) := mul((3*j+1), j = k..n-1) fi: od: od: for n from 0 to nmax do seq(U(n, k), k=0..n) od: seq(seq(U(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012
MATHEMATICA
Table[Product[3*j+1, {j, k, n-1}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 14 2019 *)
PROG
(PARI) T(n, k)=if(n==k, 1, prod(j=k, n-1, 3*j+1))
(Magma) [[n eq 0 select 1 else k eq n select 1 else (&*[3*j+1: j in [k..n-1]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 14 2019
(Sage)
def T(n, k):
if (k==n): return 1
else: return product(3*j+1 for j in (k..n-1))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 14 2019
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 07 2008
STATUS
approved
Triangle T, read by rows, where T(n,k) = A007559(n-k)*C(n,k) where A007559 equals the triple factorials in column 0.
+10
4
1, 1, 1, 4, 2, 1, 28, 12, 3, 1, 280, 112, 24, 4, 1, 3640, 1400, 280, 40, 5, 1, 58240, 21840, 4200, 560, 60, 6, 1, 1106560, 407680, 76440, 9800, 980, 84, 7, 1, 24344320, 8852480, 1630720, 203840, 19600, 1568, 112, 8, 1, 608608000, 219098880, 39836160
OFFSET
0,4
COMMENTS
Comments from Peter Bala, Jul 10 2008: (Start) This array is the particular case P(1,3) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below
n\k|0....................1...............2.........3.....4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
See A094587 for some general properties of these arrays.
Other cases recorded in the database include: P(1,0) = Pascal's triangle A007318, P(1,1) = A094587, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159 and P(2,3) = A136216. (End)
The generalized Pascal matrix that Bala refers to is itself a special case of application of the formalism of A133314 to fundamental matrices derived from infinitesimal generators described in A133314, of which the fundamental Pascal (A007318), unsigned Lah (A105278) and associated Laguerre (A135278) matrices are special examples. The formalism gives, among other relations, the inverse of T as TI(n,k) = b(n-k)*C(n,k) where the sequence b is given by the list partition transform (A133314) of A007559; i.e., b = LPT(A007559) = (1,-A008544)= (1,-1,-2,-10,-80,...). The formalism of A132382 may also be applied with the double factorial A001147 replaced by the triple factorial A007559 (see also A133480). - Tom Copeland, Aug 18 2008
From Peter Bala, Aug 29 2013: (Start)
Exponential Riordan array [1/(1 - 3*y)^(1/3), y]. The row polynomials R(n,x) thus form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = sum {k = 0..n} binomial(n,k)*y^(n-k)*R(k,x).
Define a polynomial sequence P(n,x) of binomial type by setting P(n,x) = product {k = 0..n-1} (x + 3*k) with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x).
For example, row 3 is (28, 12, 3, 1) so P(3,x + 1) = (x + 1)*(x + 4)*(x + 7) = 28 + 12*x + 3*x*(x + 3) + x*(x + 3)*(x + 6). (End)
LINKS
M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
Wikipedia, Sheffer sequence
FORMULA
Column k of T = column 0 of U^(k+1) (matrix power) for k>=0 where U = A136214. Matrix square equals A136216, where A136216(n,k) = A008544(n-k)*C(n,k) where A008544 are also triple factorials.
From Peter Bala, Jul 10 2008: (Start)
T(n,k) = (3*n-3*k-2)*T(n-1,k) + T(n-1,k-1).
E.g.f. exp(x*y)/(1-3*y)^(1/3) = 1 + (1+x)*y + (4+2*x+x^2)*y^2/2! + ... . (End)
EXAMPLE
Column k of T = column 0 of U^(k+1), while
column k of U = column 0 of T^(3k+1) where U = A136214 and
column k of V = column 0 of T^(3k+2) where V = A112333.
This triangle T begins:
1;
1, 1;
4, 2, 1;
28, 12, 3, 1;
280, 112, 24, 4, 1;
3640, 1400, 280, 40, 5, 1;
58240, 21840, 4200, 560, 60, 6, 1;
1106560, 407680, 76440, 9800, 980, 84, 7, 1; ...
Triangle U = A136214 begins:
1;
1, 1;
4, 4, 1;
28, 28, 7, 1;
280, 280, 70, 10, 1;
3640, 3640, 910, 130, 13, 1; ...
with triple factorials A007559 in column 0.
Triangle V = A112333 begins:
1;
2, 1;
10, 5, 1;
80, 40, 8, 1;
880, 440, 88, 11, 1;
12320, 6160, 1232, 154, 14, 1; ...
with triple factorials A008544 in column 0.
MATHEMATICA
T[n_, k_]:= Binomial[n, k]*If[n - k == 0, 1, Product[3*j + 1, {j, 0, n - k - 1}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 10 2018 *)
PROG
(PARI) T(n, k)=binomial(n, k)*if(n-k==0, 1, prod(j=0, n-k-1, 3*j+1))
CROSSREFS
Cf. A136216 (matrix square); A007559, A008544; A136212, A136213.
Cf. A094587.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 07 2008
STATUS
approved
Triangle T, read by rows, where T(n,k) = A008544(n-k)*C(n,k) where A008544 equals the triple factorials in column 0.
+10
4
1, 2, 1, 10, 4, 1, 80, 30, 6, 1, 880, 320, 60, 8, 1, 12320, 4400, 800, 100, 10, 1, 209440, 73920, 13200, 1600, 150, 12, 1, 4188800, 1466080, 258720, 30800, 2800, 210, 14, 1, 96342400, 33510400, 5864320, 689920, 61600, 4480, 280, 16, 1
OFFSET
0,2
COMMENTS
This array is the particular case P(2,3) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown in the comments to A094587. - Peter Bala, Jul 10 2008
The row polynomials form an Appell sequence. - Tom Copeland, Dec 03 2013
FORMULA
Column k of T = column 0 of V^(k+1) for k>=0 where V = A112333.
Equals the matrix square of triangle A136215.
T(n,k) = (3*n-3*k-1)*T(n-1,k) + T(n-1,k-1). - Peter Bala, Jul 10 2008
Using the formalism of A132382 modified for the triple rather than the double factorial (replace 2 by 3 in basic formulas), the e.g.f. for the row polynomials is exp(x*t)*(1-3x)^(-2/3). - Tom Copeland, Aug 18 2008
From Peter Bala, Aug 28 2013: (Start)
Exponential Riordan array [1/(1 - 3*y)^(2/3), y].
The row polynomials R(n,x) thus form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = sum {k = 0..n} binomial(n,k)*y^(n-k)*R(k,x).
Define a polynomial sequence P(n,x) of binomial type by setting P(n,x) = product {k = 0..n-1} (2*x + 3*k) with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (80, 30, 6, 1) so P(3,x + 1) = (2*x + 2)*(2*x + 5)*(2*x + 8) = 80 + 20*(2*x) + 6*(2*x*(2*x + 3)) + (2*x)*(2*x + 3)*(2*x + 6). (End)
EXAMPLE
Triangle begins:
1;
2, 1;
10, 4, 1;
80, 30, 6, 1;
880, 320, 60, 8, 1;
12320, 4400, 800, 100, 10, 1;
209440, 73920, 13200, 1600, 150, 12, 1;
4188800, 1466080, 258720, 30800, 2800, 210, 14, 1; ...
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/(1 - 3 #)^(2/3)&, #&, 9, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
PROG
(PARI) {T(n, k) = binomial(n, k)*if(n-k==0, 1, prod(j=0, n-k-1, 3*j+2))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A136215 (square-root), A112333, A008544, A136212, A136213.
Cf. A094587.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 07 2008
STATUS
approved
a(n) = Product_{k in M_n} k, M_n = {k | 1 <= k <= 3n and k mod 3 = n mod 3}.
+10
1
1, 1, 10, 162, 280, 12320, 524880, 1106560, 96342400, 7142567040, 17041024000, 2324549427200, 254561089305600, 664565853952000, 126757680265216000, 18763697892715776000, 52580450364682240000, 13106744139423334400000, 2480410751833883860992000
OFFSET
0,3
COMMENTS
For n > 0:
a(3*n) = A032031(3*n) = 3^(3*n) * Gamma(3*n + 1).
a(3*n-1) = A008544(3*n-1) = 3^(3*n-1) * Gamma(3*n - 1/3) / Gamma(2/3).
a(3*n+1) = A007559(3*n+1) = 3^(3*n+3/2) * Gamma(3*n + 4/3) * Gamma(2/3) / (2*Pi).
FORMULA
From Johannes W. Meijer, Jul 04 2011: (Start)
a(3*n+3)/(a(3*n)*a(3)) = A006566(n+1); Dodecahedral numbers
a(3*n+4)/a(3*n+1) = A136214(3*n+4, 3*n+1)
a(3*n+5)/a(3*n+2) = A112333(3*n+5, 3*n+2) (End)
MAPLE
A190903 := proc(n) local k; mul(k, k = select(k-> k mod 3 = n mod 3, [$1 .. 3*n])) end: seq(A190903(n), n=0..17);
MATHEMATICA
a[n_] := Switch[Mod[n, 3], 0, 3^n Gamma[n+1], 2, 3^n Gamma[n+2/3]/ Gamma[2/3], 1, 3^(n-1) Gamma[n+1/3]/Gamma[4/3]] // Round;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 25 2019 *)
PROG
(PARI) a(n) = prod(k=1, 3*n, if (k % 3 == n % 3, k, 1)); \\ Michel Marcus, Jun 25 2019 and May 14 2020
CROSSREFS
Cf. A190901.
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 03 2011
STATUS
approved
a(n) = A008544(n) * Sum_{k=0..n} 1/A008544(k).
+10
1
1, 3, 16, 129, 1420, 19881, 337978, 6759561, 155469904, 4042217505, 117224307646, 3751177844673, 131291224563556, 4989066533415129, 204551727870020290, 9000276026280892761, 423012973235201959768, 21150648661760097988401, 1120984379073285193385254
OFFSET
0,2
FORMULA
a(n) = (3*n-1) * a(n-1) + 1.
PROG
(PARI) a008544(n) = prod(k=1, n, 3*k-1);
a(n) = a008544(n)*sum(k=0, n, 1/a008544(k));
CROSSREFS
Row sums of A112333.
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 05 2024
STATUS
approved

Search completed in 0.011 seconds