(Translated by https://www.hiragana.jp/)
A139608 -id:A139608 - OEIS
login
Search: a139608 -id:a139608
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.
+10
16
0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
OFFSET
0,6
COMMENTS
A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008
LINKS
Peter Luschny, Figurate number — a very short introduction. With plots from Stefan Friedrich Birkner.
Omar E. Pol, Polygonal numbers, An alternative illustration of initial terms.
FORMULA
T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)
EXAMPLE
The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1, 3, 6, 10, 15, 21, 28,
Squares ...... A000290: 0, 1, 4, 9, 16, 25, 36, 49,
Pentagonals .. A000326: 0, 1, 5, 12, 22, 35, 51, 70,
Hexagonals ... A000384: 0, 1, 6, 15, 28, 45, 66, 91,
Heptagonals .. A000566: 0, 1, 7, 18, 34, 55, 81, 112,
Octagonals ... A000567: 0, 1, 8, 21, 40, 65, 96, 133,
9-gonals ..... A001106: 0, 1, 9, 24, 46, 75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52, 85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58, 95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
MATHEMATICA
T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
PROG
(Magma)
T:= func< n, k | k*((n+1)*(k-1) +2)/2 >;
A139601:= func< n, k | T(n-k, k) >;
[A139601(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
(SageMath)
def T(n, k): return k*((n+1)*(k-1)+2)/2
def A139601(n, k): return T(n-k, k)
flatten([[A139601(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024
CROSSREFS
Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).
KEYWORD
nonn,tabl,easy
AUTHOR
Omar E. Pol, Apr 27 2008
STATUS
approved
Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).
+10
0
0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
OFFSET
1,7
COMMENTS
\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.
LINKS
E. Deza and M. Deza, Figurate Numbers, World Scientific, 2012; see p. 45.
Eric Weisstein's World of Mathematics, Polygonal Number.
Wikipedia, Polygonal number.
FORMULA
P(r, c) = (r - 2)(c(c-1)/2) + c.
MATHEMATICA
Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten
CROSSREFS
Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.
KEYWORD
easy,sign,tabl
AUTHOR
Robert G. Wilson v, Apr 27 2020
STATUS
approved

Search completed in 0.007 seconds