(Translated by https://www.hiragana.jp/)
A179010 -id:A179010 - OEIS
login
Search: a179010 -id:a179010
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of isomorphism classes of quandles of order n.
+10
8
1, 1, 1, 3, 7, 22, 73, 298, 1581, 11079, 102771, 1275419, 21101335, 469250886
OFFSET
0,4
COMMENTS
Quandles up to order 8 were determined first by Sam Nelson and co-authors (see references). Nelson's results were confirmed independently by the submitter, and extended to order 9.
LINKS
M. Elhamdadi, Distributivity in Quandles and Quasigroups, arXiv preprint arXiv:1209.6518 [math.RA], 2012. - From N. J. A. Sloane, Dec 29 2012
Richard Henderson, Todd Macedo and Sam Nelson, Symbolic Computation with Finite Quandles, J. Symb. Comp. 41 (2006), 811-817.
Benita Ho and Sam Nelson, Matrices and Finite Quandles, Homology, Homotopy and Applications, 7 (2005), No. 1, 197-208.
P. Jedlicka, A. Pilitowska, D. Stanovsky et al., The structure of medial quandles, arXiv preprint 1409.8396 [math.GR], 2014-2015.
J. McCarron, Connected Quandles with Order Equal to Twice an Odd Prime, arXiv preprint arXiv:1210.2150 [math.GR], 2012. - From N. J. A. Sloane, Dec 31 2012
Sam Nelson, Quandles and Racks
Petr Vojtěchovský and Seung Yeop Yang, Enumeration of racks and quandles up to isomorphism, Math. Comp. 88 (2019), 2523-2540; arXiv:1911.04991 [math.QA], 2019.
Wikipedia, Quandles
KEYWORD
nonn,hard,more
EXTENSIONS
a(10)-a(13) from Petr Vojtěchovský and Seung Yeop Yang added by Andrey Zabolotskiy, Jun 15 2022
STATUS
approved
Number of isomorphism classes of abelian / medial quandles.
+10
4
1, 1, 1, 3, 6, 18, 58, 251, 1410, 10311, 98577, 1246488, 20837439, 466087635
OFFSET
0,4
COMMENTS
A quandle is abelian / medial (both names are being used) if it satisfies the identity (XY)(UV) = (XU)(YV). Not to be confused with a commutative quandle (A179010).
LINKS
P. Jedlička, A. Pilitowska, D. Stanovský, A. Zamojska-Dzienio, The structure of medial quandles, arXiv preprint 1409.8396 [math.GR], 2014.
David Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982) 37-65.
Sam Nelson, Quandles and Racks
David Stanovský, Calculating with quandles, GAP code to calculate the numbers.
Wikipedia, Quandles
Wikipedia, Medial magma
CROSSREFS
Cf. A179010 (commutative quandles), A242044, A242275.
KEYWORD
nonn,hard,more
AUTHOR
James McCarron, Jan 12 2011
EXTENSIONS
More terms from David Stanovsky, Sep 30 2014
Description edited by W. Edwin Clark, May 30 2013, and David Stanovsky, Sep 30 2014
STATUS
approved

Search completed in 0.009 seconds