(Translated by https://www.hiragana.jp/)
A285738 -id:A285738 - OEIS
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a285738 -id:a285738
Displaying 1-2 of 2 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A285388 a(n) = numerator of ((1/n) * Sum_{k=0..n^2-1} binomial(2k,k)/4^k). +10
14
1, 35, 36465, 300540195, 79006629023595, 331884405207627584403, 22292910726608249789889125025, 11975573020964041433067793888190275875, 411646257111422564507234009694940786177843149765, 56592821660064550728377610673427602421565368547133335525825 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Editorial comment: This sequence arose from Ralf Steiner's attempt to prove Legendre's conjecture that there is a prime between N^2 and (N+1)^2 for all N. - N. J. A. Sloane, May 01 2017
LINKS
FORMULA
a(n) is numerator of n*binomial(2 n^2, n^2)/2^(2*n^2 - 1). - Ralf Steiner, Apr 26 2017
a(n) = numerator(n*A201555(n) / (A060757(n)/2)) = n*A201555(n) / 2^(A285717(n)) = A000265(n*A201555(n)). [Using Ralf Steiner's formula and A285717(n) <= A056220(n), cf. A285406.] - Antti Karttunen, Apr 27 2017
Lim_{i->inf} a(i)*A285389(i+1)/(a(i+1)*A285389(i)) = 1. - Ralf Steiner, May 03 2017
MATHEMATICA
Table[Numerator[Sum[Binomial[2k, k]/4^k, {k, 0, n^2-1}]/n], {n, 1, 10}]
Numerator[Table[2^(1-2 n^2) n Binomial[2 n^2, n^2], {n, 1, 10}]] (* Ralf Steiner, Apr 22 2017 *)
PROG
(PARI) A285388(n) = numerator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)); \\ Antti Karttunen, Apr 27 2017
(PARI) a(n) = m=n*binomial(2*n^2, n^2); m>>valuation(m, 2) \\ David A. Corneth, Apr 27 2017
(Python)
from sympy import binomial, Integer
def a(n): return (Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).numerator() # Indranil Ghosh, Apr 27 2017
(Magma) [Numerator( n*(n^2+1)*Catalan(n^2)/2^(2*n^2-1) ): n in [1..21]]; // G. C. Greubel, Dec 11 2021
(Sage) [numerator( n*(n^2+1)*catalan_number(n^2)/2^(2*n^2-1) ) for n in (1..20)] # G. C. Greubel, Dec 11 2021
CROSSREFS
Cf. A000079, A000265, A056220, A060757, A201555, A285389 (denominators), A285406, A280655 (similar), A190732 (2/sqrt(Pi)), A285738 (greatest prime factor), A285717, A285730, A285786, A286264, A000290 (n^2), A056220 (2*n^2 -1), A286127 (sum a(n-1)/a(n)).
KEYWORD
nonn,frac
AUTHOR
Ralf Steiner, Apr 18 2017
EXTENSIONS
Edited (including the removal of the author's claim that this leads to a proof of the Legendre conjecture) by N. J. A. Sloane, May 01 2017
Formula section edited by M. F. Hasler, May 02 2017
Edited by N. J. A. Sloane, May 10 2017
STATUS
approved
A285786 Number of primes p with 2(n-1)^2 < p <= 2n^2. +10
5
1, 3, 3, 4, 4, 5, 5, 6, 6, 9, 7, 8, 7, 9, 10, 10, 9, 12, 10, 11, 13, 11, 14, 13, 14, 13, 14, 16, 16, 15, 15, 16, 17, 18, 19, 14, 22, 19, 18, 16, 22, 18, 24, 20, 22, 22, 20, 23, 24, 22, 23, 21, 25, 27, 24, 27, 26, 25, 27, 25, 23, 33, 28, 25, 29, 28, 31, 30, 33, 29 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The author of the sequence conjectures that a(n) >= 1 for all n. This conjecture is similar to the famous conjecture made by Adrien-Marie Legendre that there is always a prime between n^2 and (n+1)^2, see A014085. - Antti Karttunen, May 01 2017
LINKS
FORMULA
From Antti Karttunen, May 01 2017: (Start)
a(1) = 1, for n > 1, a(n) = A000720(A001105(n)) - A000720(A001105(n-1)).
For all n except n=2, a(n) <= n.
(End)
First differences of A278114: a(n) = A278114(n) - A278114(n-1) for n > 0, if we use A278114(0) = 0. A278114(n) = Sum_{k=1..n} a(n). - M. F. Hasler, May 02 2017
EXAMPLE
For n = 1, the primes from 2*((1-1)^2) to 2*(1^2) (in semiopen range ]0, 2]) are: 2, thus a(1) = 1.
For n = 2, the primes from 2*((2-1)^2) to 2*(2^2) (in semiopen range ]2, 8]) are: 3, 5 and 7, thus a(2) = 3.
For n = 3, the primes from 2*((3-1)^2) to 2*(3^2) (in semiopen range ]8, 18]) are: 11, 13 and 17, thus a(3) = 3.
For n = 4, the primes from 2*((4-1)^2) to 2*(4^2) (in semiopen range ]18, 32]) are: 19, 23, 29 and 31, thus a(4) = 4.
MAPLE
R:= [0, seq(numtheory:-pi(2*n^2), n=1..100)]:
R[2..-1] - R[1..-2]; # Robert Israel, May 01 2017
MATHEMATICA
Table[Length[Select[FactorInteger[Numerator[Table[2^(1 - 2 n^2) n Binomial[2 n^2, n^2], {n, 1, k}]]][[k]][[All, 1]], # > 2 (k - 1)^2 &]], {k, 1, 60}]
Flatten[{1, 2, Table[PrimePi[2 k^2] - PrimePi[2 (k - 1)^2], {k, 3, 60}]}]
(* Second program: *)
Array[PrimePi[2 #^2] - PrimePi[2 (# - 1)^2] &, 60] (* Michael De Vlieger, Apr 26 2017, at the suggestion of Robert G. Wilson v. *)
PROG
(PARI) a(n) = (primepi(2*n^2)-primepi(2*(n-1)^2)) \\ David A. Corneth, Apr 27 2017, edited by Antti Karttunen, May 01 2017
(PARI) a(n)=my(s); forprime(p=2*n^2 - 4*n + 3, 2*n^2, s++); s \\ Charles R Greathouse IV, May 10 2017
(Python)
from sympy import primepi
def a(n): return primepi(2*n**2) - primepi(2*(n - 1)**2) # Indranil Ghosh, May 01 2017
CROSSREFS
Cf. A001105, A000720 (number of primes), A014085 (between n^2 and (n+1)^2), A285738, A285388.
KEYWORD
nonn
AUTHOR
Ralf Steiner, Apr 26 2017
EXTENSIONS
Definition and value of a(2) changed by Antti Karttunen, May 01 2017
STATUS
approved
page 1

Search completed in 0.006 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 11:46 EDT 2024. Contains 374920 sequences. (Running on oeis4.)