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Abstract

In this paper we present TruFor, a forensic framework
that can be applied to a large variety of image manipula-
tion methods, from classic cheapfakes to more recent ma-
nipulations based on deep learning. We rely on the ex-
traction of both high-level and low-level traces through
a transformer-based fusion architecture that combines the
RGB image and a learned noise-sensitive fingerprint. The
latter learns to embed the artifacts related to the cam-
era internal and external processing by training only on
real data in a self-supervised manner. Forgeries are de-
tected as deviations from the expected regular pattern that
characterizes each pristine image. Looking for anomalies
makes the approach able to robustly detect a variety of lo-
cal manipulations, ensuring generalization. In addition to
a pixel-level localization map and a whole-image integrity
score, our approach outputs a reliability map that high-
lights areas where localization predictions may be error-
prone. This is particularly important in forensic applica-
tions in order to reduce false alarms and allow for a large
scale analysis. Extensive experiments on several datasets
show that our method is able to reliably detect and local-
ize both cheapfakes and deepfakes manipulations outper-
forming state-of-the-art works. Code is publicly available
at https://grip-unina.github.io/TruFor/.

1. Introduction
Manipulating images has never been easier, with new

powerful editing tools appearing by the day. These new
opportunities stimulate the creativity of benign and mali-
cious users alike. Previously, crafting a multimedia disin-
formation campaign required sophisticated skills, and at-
tackers could do little more than copy, replicate or remove
objects in an image, classic forms of image manipulations
also known as “cheapfakes”. With the explosive growth of
deep learning, image manipulation tools have become both
easier to use and more powerful, allowing users to generate
on-the-fly images of persons that do not exist or to realize
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Figure 1. TruFor detects and localizes image forgeries (in yellow).
It is based on the extraction of a learned noise-sensitive fingerprint,
Noiseprint++, which is combined with the RGB image to output an
anomaly localization map. Noiseprint++ is also used jointly with
the image to compute the confidence map, which estimates the less
reliable regions of the anomaly heatmap (black areas), e.g. the
false positive region in lower right. The confidence and anomaly
maps are then used together to produce a global integrity score.

credible deepfakes. Diffusion models enable the creation of
realistic image edits using natural language prompts, photo-
realistically adapting the inserted manipulation to the style
and lighting of the context [1, 33].

The risks posed by such tools in the wrong hands are
obvious. Indeed, in recent years there has been a grow-
ing interest on the part of governments and funding agen-
cies in developing forensic tools capable of countering such
attacks. A major focus is on local image edits, particu-
larly partial modifications that change the image seman-
tics (for example the partially manipulated image in Fig. 1,
where the two real faces have been replaced with GAN-
generated ones [26]). Multimedia forensics and related sci-
entific fields have seen a rapid increase in activity in re-
sponse to such challenges, with a large number of methods
and tools proposed for image forgery detection and localiza-
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tion [38]. Despite considerable advances in the area, current
SOTA detectors are not yet performant enough for in-the-
wild deployment, due mainly to deficiencies in several ar-
eas subject to intense research: i) limited generalization; ii)
limited robustness; iii) insufficient detection performance.

Limited generalization is the inability of detectors to
cope with out-of-distribution manipulations. Some detec-
tors are built to exploit well-defined low-level features, e.g.,
traces of JPEG compression, demosaicking or interpola-
tion [2, 6, 34], while others are typically developed to work
well only on specific types of manipulations, like splicing
[25, 37]. In addition, in a realistic scenario images also un-
dergo numerous forms of non-malicious degradation, (e.g.
recompression, resizing, etc) - also called laundering. For
example, social networks compress and resize uploaded im-
ages, both of which can easily remove forensic traces. Fi-
nally, most SOTA methods perform image forgery localiza-
tion, leaving detection as an afterthought [11], which is typ-
ically derived as a global integrity score from the localiza-
tion heatmap itself [22, 36, 42]. Few methods address the
detection task directly [8, 31, 39, 46]. As a result, detection
accuracy is poor, with a high false alarm rate. In a realis-
tic setting where manipulated images are rare, such perfor-
mance could cause more problems than it solves, with false
positives drastically outnumbering true positives.

This work addresses such shortcomings, with a focus on
robust detection under varied manipulations. Our aim is to
first establish whether the image under analysis has been
manipulated or not, and subsequently consider forgery lo-
calization only for images where a forgery has been de-
tected. To perform in a real-world scenario where im-
ages undergo many post-processing steps that may atten-
uate forensic traces, our design was guided by the need to
leverage information at multiple scales (both low and high-
level features) even in complex scenarios. Our framework
estimates a confidence map that associates localization re-
sults with region-specific uncertainty, allowing many poten-
tial false alarms to be rejected. The block diagram of our
method is presented in Fig. 1. Overall, in this work we make
the following key contributions:

• we propose a new framework, TruFor, which outputs
a global integrity score, an anomaly-based localization
map and an associated confidence map;

• we propose a new noise-sensitive fingerprint,
Noiseprint++, with enhanced robustness to image
laundering;

• we combine low-level and high-level evidence to per-
form anomaly analysis, which together with the confi-
dence analysis provide more reliable decisions;

• we carry out extensive experiments on several bench-
marks, considering new and challenging scenarios, and
demonstrate that our method achieves state-of-the-art
performance in both detection and localization tasks.

2. Related Work

Forensic artifacts. Low-level artifacts are caused by the
in-camera acquisition process, such as the sensor, the lens,
the color filter array or the JPEG quantization tables. In all
cases, these are very weak traces, that can be highlighted by
suppressing the image content by means of high-pass filters
or denoising. The most common filters used for this task are
the spatial rich models (SRM) [16], often included as a pre-
processing step in some CNN models for forensic analysis.
In [35] a set of around 30 fixed high-pass filters are used,
instead in [3] the high-pass filters are learnt during training.
These fixed and trainable filters have been used in many
other subsequent works to perform a noise sensitive analysis
[8, 21, 42, 44, 47]. A different perspective is considered in
[12], where the extraction of low-level artifacts is carried
out by learning a sort of “camera model fingerprint”, the
noiseprint, that bears traces of in-camera processing steps.
When a manipulation is present, the noiseprint structure is
absent and this anomaly is interpreted as a forgery. In this
work we leverage noiseprint and further enhance it so as to
make it work in more challenging scenarios.

In general, low-level features are combined with high-
level ones to carry out a more effective detection. Pioneer-
ing work in the field is the two-branch approach proposed
in [47], where the features of the noise and RGB stream are
combined together through bilinear pooling. Other works
also propose late fusion [8], while others [21, 39, 42] per-
form early fusion or even middle fusion [24]. We belong to
this last category, but use an approach that fuses noise and
RGB channels using cross-modal feature calibration [28].

Forgery detection vs localization. The majority of the
state-of-the-art methods focus on image localization, with
architectures often inspired by semantic segmentation, and
detection is a byproduct of such analysis [11]. The in-
tegrity score is computed by a suitable post-processing of
the localization heatmap aimed at extracting a global deci-
sion statistic, such as the average or the maximum value
of the heatmap [5, 22, 42]. Only a few works explicitly
treat the detection problem. In particular, some recent ap-
proaches [8,29,39,46] jointly train the model both for local-
ization and detection through suitable losses at image-level.
In [39, 46] global average pooling is applied to the middle
features, while in [8] max average pooling is carried out
on the localization heatmap. A different perspective can be
found in [31], where it is proposed to analyze the whole
image avoiding resizing (so as not to lose precious foren-
sics traces) through a gradient checkpointing technique, that
helps for the joint optimization of patch-level feature extrac-
tion and image-level decision.

Different from current literature, in this paper we explic-
itly design a forgery detection module that takes as input
the anomaly-based map and the confidence map. This addi-
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Figure 2. TruFor framework. The Noiseprint++ extractor takes the RGB image to obtain a learned noise-sensitive fingerprint. The encoder
uses both the RGB input and Noiseprint++ for jointly computing the features that will be used by the anomaly decoder and the confidence
decoder for pixel-level forgery localization and confidence estimation, respectively. The forgery detector exploits the localization map and
the confidence map to make the image-level decision. The different colors identify the modules learned in each of the three training phases.

tional input is crucial to reduce the number of false alarms
on pristine data and provide a more trustworthy tool.

Reliability in multimedia forensics Designing reliable de-
tectors is important in several computer vision applications,
however, it is even more critical for our task, since foren-
sic traces are often imperceptible to visual inspection. The
problem is even more relevant when deep learning based
methods are used, since image forensics tools are chal-
lenged by out-of-distribution data [38]. In the context of
JPEG artifacts and resampling analysis, initial efforts to de-
velop reliable forensics detectors are carried out in [4, 30],
where it is proposed to use Bayesian neural networks that
provide an uncertainty range with every prediction. In this
way, the user can quantify trust on the final prediction.

Inspired by [9], our work aims at making a further step in
this direction and proposes a method using external uncer-
tainty quantification [18] to design a confidence map from
the anomaly localization heatmap.

3. Method
In this Section we begin by presenting an overview of

TruFor, which is illustrated in Fig. 2. Subsequent subsec-
tions will provide the details of each component. First of all,
from the input RGB image, x, we extract its Noiseprint++,
r = R(x), a learned noise-sensitive fingerprint of the same
resolution as x. Then, both x and r feed two networks that
extract the anomaly map a and the confidence map c of the
image. These networks have the same encoder-decoder ar-
chitecture, with a shared encoder that extracts suitable dense
features, f = E(x, r), which are processed by the anomaly
decoder to extract the anomaly map, a = DA(f), and
by the confidence decoder to extract the confidence map,
c = DC(f). The information gathered in the anomaly map

is summarized in a compact descriptor, h = P(a, c), by
means of a weighted pooling block, with weights depend-
ing on the confidence information. Finally, this descriptor is
processed by a classifier which computes an integrity score,
y = C(h).

Integrity score, anomaly map and confidence map are all
provided to the final user for further analyses. At a first
level, only the integrity score is necessary to perform auto-
mated forgery detection. In case a fake is detected, the user
can dive deeper using the anomaly map to identify manip-
ulated suspected regions, along with the confidence map to
distinguish valid predictions of forged regions from random
anomalies. For pristine images, instead, the anomaly map
does not localize possible forgeries but only random statis-
tical anomalies, and should be discarded.

3.1. Noiseprint++

Motivation. Digital images are marked by a long trail
of subtle, invisible traces. These may have many distinct
origins, from the unavoidable imperfections of the camera
hardware, to the in-camera processing steps of image acqui-
sition, to all the out-camera processes encountered by the
image during its lifetime. When images are manipulated,
these telltale traces may be corrupted, an event that, if de-
tected, allows one to carry out powerful forensic analyses.

In [12] a deep learning-based method has been proposed
to extract from each image its noiseprint, an image-size pat-
tern where all traces related to in-camera processing steps
are collected and emphasized. This is trained in a self-
supervised manner using only pristine images. While this
ensures it can be trained on a large corpus, it shows limited
robustness to image impairments induced by out-camera
processes. This is a significant shortcoming, considering
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Figure 3. Noiseprint++ training procedure. Each image is sub-
jected to a different combination of processing operations, namely
editing history. Different crops are extracted from real images
taken from many different cameras. During training, the distance
between the outputs is minimized for patches coming from the
same camera model, same position and same editing history.

that many forms of impairments are possible during the life-
time of an image. To overcome this limitation, we propose
Noiseprint++, an improved image fingerprint which high-
lights traces related not only to in-camera but also to out-
camera processes. In other words, Noiseprint++ captures
information not only on the camera model but also on its
editing history, improving its reliability.

Self-supervised contrastive learning. The proposed
Noiseprint++ extractor learns patch-level self-similarities
by means of contrastive learning. Similar to [12], we adopt
the DnCNN architecture [45] with 15 trainable layers, 3 in-
put channels, 1 output channel. The extractor is trained on
patches of 64×64 pixels randomly extracted from images of
the dataset. Training is aimed at obtaining the same noise-
sensitive fingerprint for patches that share the same proper-
ties and different noise residuals for patches that are differ-
ent under some respect. Figure 3, in particular, highlights
that two patches are considered different, and hence char-
acterized by different noise residuals, when they (i) come
from different sources; (ii) are drawn from different spatial
positions; (iii) have different editing histories. These con-
straints, in turn, aim at telling apart patches (i) generated by
different cameras, (ii) moved from one spatial location to
another and (iii) coming from images that have been differ-
ently post-processed. This latter property, in particular, dis-
tinguishes Noiseprint++ from its ancestor and improves its
effectiveness. We adopt the InfoNCE contrastive loss [23]:

Lcontr = −
∑
i∈B

log

∑
j∈Ni

e−s(i,j)∑
j∈B−{i} e

−s(i,j)
(1)

where B is a batch of patches, s(i, j) is the squared Eu-
clidean distance between i-th and j-th residual patches, and
Ni is the subset of patches with the same origin, position
and editing history as the i-th patch. During contrastive
learning, we introduce a large variety of possible editing

Noiseprint++ SRM filteringNoiseprintImage

Figure 4. From left to right: manipulated image, Noiseprint++,
Noiseprint and residual obtained through SRM-based filtering. We
can notice that forensic artifacts are much more enhanced using
our learned noise-sensitive fingerprint. In particular, we can ob-
serve the typical 8×8 grid that characterizes JPEG compressed im-
ages and Noiseprint++ can highlight the grid inconsistencies over
the forged area better than Noiseprint.

Noiseprint++ Spliced area Pristine areaImage

Figure 5. Example of a manipulated image and its Noiseprint++,
which clearly shows a JPEG grid misalignment caused by the com-
position. This is visible in the spliced area (red), but not in the
pristine one (blue), as highlighted in the zoomed regions where +
indicates a JPEG grid boundary.

operations, such as resizing, compression and illumination
changes, for a total of 512 different history pipelines.

In Fig. 4 we show two examples of Noiseprint++ com-
pared to noiseprint and some standard spatial domain resid-
uals (SRM filters), while in Fig. 5 we show a manipulated
image where we can notice a JPEG grid misalignment in
correspondence to the forged area.

3.2. Anomaly localization map

We treat the forgery localization task as a supervised bi-
nary segmentation problem and combine the Noiseprint++
information with the high-level features from the RGB im-
age. To this end, we adopt the CMX architecture [28],
a cross-modal fusion framework originally designed for
multi-modal semantic segmentation, but easily general-
izable to other tasks. Features from input image and
Noiseprint++ are extracted on two parallel branches which
have a shared encoder architecture from a semantic segmen-
tation method. In particular, we rely on SegFormer [43], a
hierarchical network based on a Transformer encoder. In-
teraction is carried out between each stage using a Cross-
Modal Feature Rectification Module, which calibrates the
information coming from one modality using features ex-
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tracted from the other modality. The calibration helps to fil-
ter out noisy information of a modality using the knowledge
of the other modality. The rectified features of both modal-
ities are provided as input to the Feature Fusion Module,
which uses a cross-attention mechanism to merge them into
a single feature map. The fused feature maps of all stages
represent the input of the decoder, which is used to gener-
ate the final anomaly map. For the decoder, we keep the
lightweight multilayer perceptron used in SegFormer [43].
Details are provided in the Supplementary.

During phase 2 training, the loss function is a combina-
tion of the weighted cross-entropy and the dice loss [32]:

L2 = λceLce + (1− λce)Ldice (2)

with λce set experimentally to 0.3. The weighted cross-
entropy loss is defined as

Lce = − 1

N

∑
i

γ0(1−gi) log(1−ai) + γ1gi log ai (3)

with gi and ai the i-th pixel of the ground truth and es-
timated anomaly maps respectively, and N the number of
pixels in the image. The weights γ0 and γ1, are set to 0.5
and 2.5 to take into account the imbalance between pristine
and fake pixels in the training-set.

3.3. Confidence map and integrity score

Many SoTA methods perform localization first, and then
use some global statistics of the localization map to perform
detection. We also need global statistics about anomalies,
but the anomaly map cannot be blindly trusted, as it high-
lights both manipulated areas and pristine areas with un-
usual statistics. Hence we propose a method to compute
a per-pixel confidence estimate of the predicted anomaly
map, which is used to compute robust global statistics for
detection. In the pooling block we compute four weighted
statistics of the anomaly map, maximum, minimum, aver-
age, and mean square, where the weights are drawn from
the confidence map and help de-emphasize pristine anoma-
lous areas of the image. In formulas

aavg =
∑
i

ći ai; amax = log
∑

i ći e
ai (4)

amsq =
∑
i

ći a
2
i ; amin = − log

∑
i ći e

−ai (5)

where ai and ći are the values of the anomaly and confi-
dence maps at pixel i, respectively, the latter normalized to
unit sum, and we adopt a smooth approximation of the min-
imum and maximum functions. To these features we add
the four corresponding features extracted from the confi-
dence map cavg, cmsq, cmax, cmin obtaining eventually a 8-
component feature vector, h, which is used to predict the
integrity score y.

The confidence and anomaly maps are generated in par-
allel, by decoding the same input features with two decoders
having the same architecture, as done in [9]. However,
while the anomaly values point out statistical outliers, con-
fidence values have to recognize which anomaly values can
be trusted. Hence, the confidence decoder must be trained
with suitable ad hoc reference data. To this end, we use
another map, t, the true class probability map [9]:

ti = (1− gi) (1− ai) + gi ai (6)

where gi and ai are the pixel values of the localization
ground truth and of the anomaly map. The ground truth val-
ues, gi, are 1 for manipulated pixels and 0 for pristine ones.
Therefore, the true class probability map is close to 1 when
large anomaly values occur for manipulated pixels or small
anomaly values occur for pristine pixels. Instead, it is close
to 0 when manipulated pixels are not seen as anomalous or
anomalies are detected in pristine data. This latter case is
especially important as it may easily lead to false alarms.
The confidence decoder must learn to identify and discard
these wrong pieces of information. Hence, the confidence
loss, Lconf , is defined as the mean squared error between
the predicted confidence map c and its reference t.

Finally, to maximize the system reliability, the confi-
dence decoder is trained jointly with the final binary clas-
sifier. Therefore we train this phase using a weighted sum
of confidence loss and detection loss

L3 = Lconf + λdetLdet (7)

where Ldet is the balanced cross-entropy on the predicted
image-level integrity score y and λdet is set to 0.5.

4. Results
4.1. Experimental Setup

Training. Our approach includes three separate training
steps. First, we train the Noiseprint++ extractor using a
large dataset of pristine images publicly available on two
popular photo-sharing websites: Flickr (www.flickr.com)
and DPReview (www.dpreview.com). The whole dataset
contains 24,757 images acquired from 1,475 different cam-
era models (8 to 92 images per model) of 43 brands. Then,
we train encoder and decoder of the anomaly localization
network using the same datasets as proposed in CAT-Net
v2 [24], comprising pristine and fake images with the cor-
responding ground truths. Finally, using this same dataset,
we train the confidence map decoder and the forgery de-
tector. More details on these datasets can be found in the
supplementary.

Testing. We benchmarked our model on seven publicly
available datasets and one more dataset of local manipu-
lations created by us using diffusion models. More specif-
ically, we use CASIA v1 [15], Coverage [40], Columbia
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Method CASIAv1+ Coverage Columbia NIST16 DSO-1 VIPP OpenFor. CocoGlide AVG
best fixed best fixed best fixed best fixed best fixed best fixed best fixed best fixed best fixed

ADQ [6] .494 .302 .167 .165 .401 .401 .238 .146 .483 .421 .549 .457 .644 .414 .302 .300 .410 .326
Splicebuster [10] .252 .143 .321 .192 .811 .565 .312 .174 .662 .372 .432 .260 .459 .340 .434 .332 .460 .297

EXIF-SC [22] .255 .106 .332 .164 .880 .798 .298 .227 .577 .442 .424 .215 .318 .175 .424 .293 .437 .303
CR-CNN [44] .538 .481 .487 .391 .779 .631 .363 .300 .377 .289 .355 .282 .143 .110 .577 .447 .452 .366
RRU-Net [5] .498 .408 .339 .279 .629 .575 .218 .154 .360 .312 .336 .272 .206 .157 .504 .416 .386 .322

ManTraNet [42] .320 .180 .486 .317 .650 .508 .225 .172 .537 .412 .373 .255 .661 .551 .673 .516 .491 .364
SPAN [21] .169 .112 .428 .235 .873 .759 .363 .228 .390 .233 .375 .223 .176 .089 .350 .298 .391 .272

AdaCFA [2] .158 .128 .215 .183 .587 .403 .124 .106 .262 .235 .210 .184 .115 .098 .357 .314 .254 .206
CAT-Net v2 [24] .852 .752 .582 .381 .923 .859 .417 .308 .673 .584 .672 .590 .947 .899 .603 .434 .709 .601

IF-OSN [41] .676 .553 .472 .304 .836 .753 .449 .330 .621 .470 .508 .403 .204 .123 .589 .428 .544 .421
MVSS-Net [8] .650 .528 .659 .514 .781 .729 .372 .320 .459 .358 .485 .389 .225 .117 .642 .486 .534 .430
PSCC-Net [29] .670 .520 .615 .473 .760 .604 .210 .113 .733 .458 .309 .183 .353 .105 .685 .515 .542 .371
Noiseprint [12] .205 .137 .342 .229 .835 .513 .345 .196 .811 .439 .546 .382 .675 .420 .405 .318 .521 .329

TruFor (ours) .822 .737 .735 .600 .914 .859 .470 .399 .973 .930 .746 .693 .901 .827 .720 .523 .785 .696

Table 1. Pixel-level F1 performance of image forgery localization. Results are shown for the metric computed using the best threshold per
image and using a fixed threshold (0.5). First and second rankings are shown in bold and underlined respectively. For the fixed threshold,
Splicebuster and Noiseprint have been evaluated after a Normalization between 0 and 1, since they provide maps in arbitrary ranges.

[20], NIST16 [19], DSO-1 [13], and VIPP [7], which are ex-
tensively used in the literature and include cheapfakes ma-
nipulations, like splicing, copy-move and inpainting. Over-
all these datasets comprise a total of 1530 fake images and
1412 real ones. Then, we added OpenForensics [26] a large
dataset of face manipulations generated using GAN mod-
els, from which we sampled 2000 images, and CocoGlide,
including 512 images we generated from the COCO 2017
validation set [27] using the GLIDE diffusion model [33].

Metrics. As in most of the previous works, we measure
pixel-level performance in terms of F1, and report results
using both the best threshold and the default 0.5 threshold.
Instead, for image-level analysis we use AUC, which does
not require setting a decision threshold, and balanced accu-
racy, which takes into account both false alarms and missed
detection, in which case the threshold is set again to 0.5.

4.2. State-of-the-art comparison

To ensure a fair comparison we considered only meth-
ods with code and/or pre-trained models publicly avail-
able on-line and run them on the selected testing datasets.
Moreover, to avoid biases, we included only the approaches
trained on datasets disjoint from the test datasets. Even-
tually, we included two model-based methods: ADQ [6]
that relies on JPEG artifacts, Splicebuster [10] that exploits
noise artifacts; and 11 deep learning-based methods: EXIF
SelfConsistency [22], Constrained R-CNN [44], RRU-Net
[5], ManTraNet [42], SPAN [21], AdaCFA [2], E2E [31],
CAT-Net v2 [24], IF-OSN [41], MVSS [8], PSCC-Net [29],
Noiseprint [12]. A brief summary of these methods is pro-
vided in Tab. 3.

Localization results. In Tab. 1 we show the pixel-level lo-

calization performance. Our method provides the best F1
performance, on average, and is the best or second best on
all datasets, which testifies of a remarkable generalization
ability across manipulations. In fact, it performs well also
on OpenForensics (GAN-based local manipulations), where
most other methods fail catastrophically, except CAT-Net
v2, as well as CocoGlide (diffusion-based local manipula-
tions). Thanks to the use of Noiseprint++, with its digital
history-based training, our method keeps working well on
all the datasets.

Detection results. Detection results are shown in Tab. 2.
Note that we also consider methods that were not explicitly
designed for this task, in which case we use the maximum
of the localization map as the detection statistic, as it works
better than the mean value. TruFor is the best performer on
most datasets, and has the best average performance both
in terms of AUC and Accuracy. On the contrary, many
methods exhibit a very poor performance, close to random
guessing (0.5). This phenomenon is especially acute for ac-
curacy, which is highly sensitive to the choice of threshold
(see supplementary). Indeed, lacking a suitable calibration
dataset, setting the right threshold is a difficult problem, as
also shown in [14]. Unlike most competitors, our approach
guarantees an accuracy of almost 80% even in this challeng-
ing case.

Robustness analysis. In this section we carry out a ro-
bustness analysis on images impaired by compression and
resizing. To this end, we use three datasets uploaded on
Facebook and Whatsapp - two provided in [41] and our
CocoGlide. For compactness, in Tab. 4 we compare results
only with the top three competitors according to the F1 per-
formance (fixed threshold) of Tab. 1: IF-OSN, CAT-Net v2
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Method CASIAv1+ Coverage Columbia NIST16 DSO-1 VIPP CocoGlide AVG
AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc

ADQ [6] .816 .523 .495 .495 .500 .500 .484 .503 .569 .560 .736 .551 .496 .496 .585 .518
Splicebuster [10] .406 - .541 - .597 - .610 - .751 - .539 - .529 - .568 -

EXIF-SC [22] .490 .500 .498 .500 .976 .506 .504 .500 .764 .500 .617 .500 .526 .500 .625 .501
CR-CNN [44] .670 .535 .553 .510 .755 .628 .737 .641 .576 .535 .504 .558 .589 .533 .626 .563
RRU-Net [5] .574 .488 .482 .500 .583 .500 .666 .500 .444 .500 .534 .500 .533 .503 .545 .499

ManTraNet [42] .644 .500 .760 .500 .810 .500 .624 .500 .874 .500 .530 .500 .778 .500 .717 .500
SPAN [21] .480 .487 .670 .605 .999 .951 .632 .597 .669 .510 .580 .572 .475 .491 .644 .602

AdaCFA [2] .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500
CAT-Net v2 [24] .942 .838 .680 .635 .977 .803 .750 .597 .747 .525 .813 .565 .667 .580 .797 .649

IF-OSN [41] .735 .635 .557 .510 .882 .522 .658 .553 .853 .505 .696 .522 .611 .567 .713 .545
MVSS-Net [8] .932 .808 .733 .545 .984 .667 .579 .538 .552 .485 .629 .522 .654 .536 .723 .586
PSCC-Net [29] .869 .683 .657 .550 .300 .508 .485 .456 .650 .543 .574 .507 .777 .661 .616 .558

E2E [31] .377 .433 .494 .505 .894 .639 .718 .603 .803 .565 .617 .543 .530 .525 .633 .545
Noiseprint [12] .494 - .525 - .872 - .618 - .821 - .580 - .520 - .633 -

TruFor (ours) .916 .813 .770 .680 .996 .984 .760 .662 .984 .930 .820 .761 .752 .639 .857 .781

Table 2. Image-level AUC and balanced Accuracy performance of image forgery detection. Splicebuster and Noiseprint cannot be evaluated
using a fixed threshold because they provide maps in arbitrary ranges.

and MVSS-Net. TruFor performs consistently better than
all competitors, even though IF-OSN was specifically pro-
posed to deal with images transmitted via social networks,
while the gap with respect to CAT-Net v2 and MVSS-Net
widens significantly.

Qualitative comparisons. In Fig. 6 we also show some
visual results in order to gain a better insight into the qual-
ity of the image localization maps and corresponding confi-
dence maps. Together with some fakes, we show some real

Input Type Task

Acronym [ref] Artifact RGB Other L D

ADQ [6] JPEG ✓ DCT analysis ✓

Splicebuster [10] camera-based fixed HP filter ✓

EXIF-SC [22] camera-based ✓ - ✓ ✓

AdaCFA [2] demosaicing ✓ - ✓

Noiseprint [12] camera-based ✓ - ✓

ManTraNet [42] editing ✓ HP filters ✓ ✓

RRU-Net [5] splicing ✓ - ✓ ✓

SPAN [21] editing ✓ HP filters ✓

CR-CNN [44] editing trainable HP filter ✓

CAT-Net v2 [24] JPEG ✓ DCT filter ✓

MVSS-Net [8] editing trainable HP filter ✓ ✓

IF-OSN [41] editing ✓ - ✓

PSCC-Net [29] editing ✓ - ✓ ✓

E2E [31] editing ✓ noiseprint ✓

Table 3. Methods used for comparison. We indicate the artifacts
they rely on and the input type, if they work only on RGB and/or
on noise features extracted through high-pass (HP) filtering. In ad-
dition, we also indicate if they have been designed for localization
(L), detection (D) or both.

Method CASIAv1 DSO-1 CocoGlide
Fb Wa Fb Wa Fb Wa

IF-OSN [41] .513 .524 .484 .395 .406 .404
CAT-Net v2 [24] .681 .508 .310 .247 .447 .443

MVSS-Net [8] .469 .444 .356 .308 .347 .351
TruFor (ours) .716 .713 .685 .465 .460 .461

Table 4. Pixel-level F1 performance (using fixed threshold) on
datasets uploaded on Facebook (Fb) and WhatsApp (Wa).

Original Res Res&Cmp

Version F1 AUC F1 AUC F1 AUC

Noiseprint .706 .547 .375 .483 .342 .468
Noiseprint++ .877 .913 .666 .745 .435 .566
SegFormer (NP++) .974 .967 .925 .966 .649 .703
SegFormer (RGB) .917 .903 .780 .792 .756 .786
TruFor (NP++, RGB) .982 .974 .937 .944 .765 .730

Table 5. Ablation results. Pixel-level F1 performance (using best
threshold) and image-level AUC on original images, resized (Res)
and resized and recompressed (Res&Cmp).

images, for which the localization map can be erroneous. In
these cases we show the anomaly map, which often presents
some hot spots that could lead to false positives. Such errors
are avoided in detection thanks to the additional confidence
map. The user may inspect all these pieces of information
to carry out further analyses. More qualitative results are
shown in Supplementary.

4.3. Ablation study

In order to assess the individual impact of all design
choices of our approach, we consider a simple baseline, the
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noiseprint-based method proposed in [12], and add the new
key components one at a time. Experiments are carried out
on a dataset of 1000 manipulated images built by download-
ing pristine images from the web and editing them locally,
so as to simulate a realistic scenario. Tab. 5 shows the re-
sults (F1 and AUC) for the noiseprint baseline, the version
with Noiseprint++, the method which includes transformer-
based segmentation (using as inputs only RGB and only
NP++), and the proposed method with joint analysis of
Noiseprint++ and RGB image. We also perform this anal-
ysis after resizing all images and after resizing and com-
pressing them. The case with strongly impaired images is
more challenging, but the proposed method keeps providing
a good performance. In general, the inclusion of high-level
segmentation information seems to provide the largest im-
provement, justifying our focus on all-round clues.

With Tab. 6 we study the effect of using the cross-entropy
loss alone or jointly with the dice loss, with and without
online augmentation with compressed and resized images.
On the original data, results (F1 with best threshold) remain
pretty stable in all cases. With resized and compressed data,
instead, the joint use of cross-entropy and dice loss proves
important, especially together with augmentation.

Finally, in Tab. 7 we consider image-level detection and
compare our method with two simplified versions that rely
on a single global feature, the mean or the maximum of the
anomaly map. First of all, it is clear that the mean is a poor
decision statistic, and much better AUC results can be ob-
tained by just switching to the maximum. However, even
the maximum turns out to be almost useless without a cali-
bration process that helps select a good decision threshold.
So, in terms of accuracy, the feature vector used in the pro-
posed method provides a large competitive advantage.

Image Ground Truth Localizaion Map Conidence Map

0.
99
6

0.
99
8

0.
09
4

0.
26
4

Figure 6. Fake images (top) and pristine images (bottom). In the
last row, we show the confidence map that is able to correct the
error in the localization map, hence improving the global integrity
score (shown on the right).

Original Res Res&Cmp
Loss Aug best fixed best fixed best fixed

CE .980 .926 .912 .824 .583 .397
CE ✓ .981 .929 .885 .781 .575 .575
CE+DL .973 .949 .865 .767 .655 .655
CE+DL ✓ .982 .970 .937 .902 .765 .627

Table 6. Localization ablation results: Pixel-level F1 performance
(using best and fixed threshold).

Original Res Res&Cmp

score AUC Acc AUC Acc AUC Acc

mean .544 .510 .604 .525 .592 .515
max .974 .505 .944 .515 .730 .500
Ours .996 .905 .949 .910 .740 .675

Table 7. Detection ablation results: Image-level AUC and Accu-
racy (best threshold).

5. Conclusions
In this paper we introduce TruFor, a novel framework

for reliable image forgery detection and localization. It is
built upon the extraction of a learned noise-sensitive finger-
print, that enhances the in-camera and out-camera artifacts
even in challenging scenarios, such as circulation on social
networks. The model also provides a confidence map that
represents an indication of possible false alarms on pris-
tine areas. Our extensive experimental results demonstrate
that our approach has a good generalizability and is able
to localize even unknown manipulations, such as the recent
DNN-based ones. Furthermore, it can provide reliable and
robust detection results at image level thanks to the intro-
duction of the confidence map. Our approach has certain
limitations. First, it cannot detect fully generated images.
Then, we train the anomaly map and detection score in sep-
arate phases, requiring full pixel-level supervision. In future
work, we would like to explore end-to-end training, allow-
ing partial supervision from only image-level labels. We
would also like to evaluate generalization on more recent
generative models for local edits [1, 17].
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