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How many RCM ensemble members provide confidence
in the impact of land-use land cover change?
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ABSTRACT: Regional climate models (RCMs) include both terrestrial and atmospheric compartments and thereby allow
studying land–atmosphere feedback, in particular, the impact of land-use land cover driven by biogeophysical processes on
regional climate. In this study, a method is developed to separate the signals from the noise in RCM simulations of the effects
of changes in land use, using perturbed initial boundary conditions (PICs). We want to know how many ensemble members are
required to identify robust and statistically significant land-use land cover change (LULCC) effects from RCM LULCC studies.
The method is applied to a case study of urbanization and deforestation, for which LULCC scenarios are implemented in the
RCM Weather Research and Forecasting (WRF). Based on WRF ensemble simulations with PICs for 2010, the signal-to-noise
ratio (SNR) is used to identify areas with pronounced effect of an LULCC or, rather, the parametrization of the land-use classes.
While in the urbanization scenarios clear and statistically significant signals are found for air temperature and for both latent-
and sensible heat (SNR values up to 24), the effects are less pronounced for precipitation, and for deforestation in general
(SNR values< 1). For the case study of urbanization and precipitation, the impact of the ensemble size is studied in order to
derive robust conclusions about the effects of LULCC on precipitation. We conclude that single RCM realizations of different
land-use representations are not sufficient to derive LULCC-induced signals, particularly not for precipitation. Small ensemble
sizes led to concluding there were significant LULCC-induced precipitation signals, but these disappeared when the ensemble
size was increased. Our regional analysis suggests the need for ensemble sizes well above 10 for precipitation.
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1. Introduction

Nowadays, humans to some degree have already perturbed
more than half of the global land surface. In the temper-
ate regions of the Northern Hemisphere, e.g. croplands
have been expanded mainly through clearing the natural
forests and grasslands (e.g. Ellis et al., 2010). Such con-
versions, hereinafter referred to as land-use land cover
changes (LULCC), are known to provide a strong cli-
mate forcing through altering the exchange of energy,
momentum, and water between the land surface and the
atmosphere (Dirmeyer et al., 2010; Pielke et al., 2011),
and the LULCC processes are more and more recog-
nized by the climate modelling community as important
factors. The Intergovernmental Panel of Climate Change
(IPCC) included changes in land surface as forcing data
in the CMIP5 climate simulations for the first time in
the fifth Assessment Report (AR5). Globally, the radiative
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net effect is estimated to be relatively small compared
to pre-industrial times, giving one possible reason why
LULCC has often been omitted from climate models in
previous IPCC assessments (Pielke et al. 2011).

There is a consensus in the literature about the processes
of LULCC that affect the climate system:

• Biogeophysical processes, comprising the changes in
the properties of the Earth’s surface, such as surface
roughness, albedo, the leaf area index (LAI), and veg-
etation stomata resistance, resulting in changes in the
fluxes of energy, momentum and moisture.

• Biogeochemical processes, which increase the radiative
forcing through changes of the composition of CO2and
other greenhouse gases, such as CH4 and N2O.

However, the quantification of these processes remains
uncertain, as it strongly depends on various factors, such
as the degree of the conversion and the geographical
location (e.g. Boisier et al., 2012). Studies based on
global circulation models (GCMs) generally agree that
historical LULCC has predominately increased the albedo
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(clearings) leading to a cooling of the near surface air tem-
perature in mid-latitudes, where most LULCC took place
(e.g. Feddema et al., 2005). Such a global negative radia-
tive forcing is present in many studies (e.g. Betts, 2001;
Betts et al., 2007; Davin and de Noblet-Ducoudré, 2010),
which may be enhanced or reduced by non-radiative
processes of the alteration of surface fluxes such as the
partitioning of net radiation fluxes between latent- and
sensible heat flux.

This, in turn, can vary remarkably in space and time and
can have large impacts on hydro-meteorological variables
such as air temperature and precipitation (e.g. Davin et al.,
2007). As an example, deforestation in temperate regions
may lead to evaporative cooling during spring and summer
because crops often have higher evaporation rates than
forests, assuming a sufficient water supply. At the same
time, strong decreases in latent heat fluxes, leading to
a net warming, are observed in lower latitudes. This is
because their cropping systems are often less efficient
than in temperate regions (Boisier et al., 2012). Besides
the effect of the partitioning between latent and sensible
heat, LULCC may also change turbulent energy fluxes by
altered roughness lengths. An overview of modelling and
observational studies at global scales can be found by Betts
et al. (2007) and Pitman et al. (2009).

To shed light on the impact of LULCC at coarse scales,
the research initiative Land-Use and Climate, Identifi-
cation of robust Impacts (LUCID) has been conducted
to assess the robust global biogeophysical impacts of
LULCC on climate from the pre-industrial era to the
present day, using seven GCMs. In this project, Pitman
et al. (2009) showed statistically significant impacts of
LULCC on the simulated near-surface temperature and
latent heat flux for the Northern Hemisphere. While most
of the models agree on an LULCC-induced cooling effect,
the magnitude varies considerably between the different
GCMs. LULCC-induced latent heat flux responses not
only differ in magnitude but also in sign. There is also
less agreement for precipitation, and signals are found to
be less significant over regions of LULCC (Seneviratne
et al., 2010). de Noblet-Ducoudré et al. (2012) explored
the reasons for the LULCC-induced changes in Eurasia
and North America; both are areas in which the land-use
has changed considerably during the industrial age. By
including also GHG concentrations and resulting changes
in SST in their analyses, they found that LULCC has
an impact on several variables of similar magnitude but
of opposite sign on regional scales, to increased GHG
and warmer oceans. It is found that the variability from
LULCC is larger than that from the changes in GHG
concentrations and SST within the GCM ensemble.

The impact of urbanization on climate has been anal-
ysed in numerous studies, such as e.g. the joint impact
of urban expansion and climate change on heat stress
(Argüeso et al., 2015). A comprehensive overview of
such studies is given by Arnfield (2003). Urban surfaces
are largely composed of artificial buildings and roads,
and are therefore clearly distinguished from natural sur-
faces in terms of their mechanical, radiative, thermal,

and hydraulic properties (Lee et al., 2011). This leads
finally to the so-called Urban Heat Island (UHI), through
increased sensible heat fluxes, which can be several orders
of magnitude higher than the latent energy flux. The mag-
nitude of the partitioning, however, can strongly vary with
the season and the geographic location (Mahmood and
Pielke, 2014).

The LULCC forcing is expected to be remarkably larger
at smaller scales than at global scales (e.g. Mahmood and
Pielke, 2014), and even to vary in sign (Pielke et al., 2011).
The essential resources of food, water, energy, human
health, and ecosystem function respond to the regional
and local climate rather than to the global average, which
requires detailed studies of regional LULCC–climate
interactions (Rounsevell et al., 2014).

As described by Pielke et al. (2011), LULCC can result
in mesoscale and regional climate change if the areal
coverage of the landscape conversion is large enough. A
spatial heteorogeneity of approximately 10–20 km has
often been considered sufficient for creating mesoscale cir-
culations under convective circulations, and smaller scales
(2–5 km) are sufficient to trigger changes in the bound-
ary layer conditions. Regional climate models (RCMs)
coupled with land surface models (LSMs) representing
the processes of land and atmosphere interactions are
suitable tools to study the impact of LULCC on regional
climate at such scales. In such coupled modelling systems,
the accuracy of the land surface parameters can heavily
influence the modelled land surface processes and atmo-
spheric boundary layer characteristics, thereby affecting
the model’s performance (e.g. Hong et al., 2009; Trail
et al., 2013). There are numerous studies using RCMs
to study the impact of LULCC on a regional climate
system (e.g. Moore et al., 2010, 2012; Sertel et al., 2010;
Takahashi et al., 2010). By using the Weather Research
and Forecasting (WRF) model coupled to the Noah LSM,
Cao et al. (2009) identified major deficiencies of using
the prescribed land surface biophysical parameters to
study the impact of LULCC on regional climate. These
deficiencies centre around the limited spatial resolution
of vegetation parameters (vegetation fraction, albedo,
LAI), because they are derived from global scale remote
sensing products, and thus are not suitable to adequately
describe the landscape heterogeneity for high-resolution
climate simulations, and the omission of the inter-annual
changes of these vegetation characteristics. By comparing
the differences between two simulations of two different
years only, their results with updated and appropriate
land surface properties revealed significant improvements
compared to the default parameters used in the Noah
LSM. Another weakness is its crude representation of
urban areas. Recently, urban canopy models have been
developed using more explicit representations of the urban
morphology and parametrizations of the associated pro-
cesses (e.g. Lee et al., 2011), but if no detailed urban data
are available, the traditional bulk urban parametrization is
suggested (e.g. Loridan et al., 2010; Chen et al., 2011). An
intercomparison study of different urban canopy models
in a stand-alone mode is performed by Grimmond et al.
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(2010), but similar studies using different urban canopy
models coupled to RCMs are still missing.

In analogy to the uncertainties in the models in future
climate projections (e.g. Giorgi and Bi, 2000; Haughton
et al., 2014), consisting of the uncertainties in the physics
parameters of the model (e.g. the model setup and
land-surface parameters), external forcing (e.g. radiation
forcing) and internal model variability (e.g. initial and
lateral boundary conditions), there is also strong evidence
of high uncertainties involved in using climate models
to study the impact of LULCC on climate systems. This
has been demonstrated in the LUCID project, in which
the issue of uncertainties derived from multiple GCMs
and land surface schemes has been addressed (e.g. Boisier
et al., 2012). Besides the aforementioned uncertainties
in GCM models, similar uncertainties are expected for
RCMs, with the difference that RCMs apply fixed sea
surface temperatures and lateral boundary conditions from
the driving GCMs (e.g. Denis et al., 2003), thereby having
a reduced variability per se.

In our study we focus on the uncertainties deriving
from the RCM internal model variability (Giorgi and Bi,
2000; Christensen et al., 2001; Haughton et al., 2014),
which we try to quantify by using ensembles generated by
perturbed initial boundary conditions (PICs). In theory, the
uncertainty in the prediction of the model caused by PICs
would be degraded gradually by increasing the number
of lateral boundary condition updates (Wu et al., 2005).
In concert with limited computing resources, this is often
used as a justification for applying single realizations with
and without LULCC, just omitting a certain model spin-up
period for the analyses (e.g. Sertel et al., 2010; Takahashi
et al., 2010; Beltrán-Przekurat et al., 2012).

Through own unpublished RCM pilot studies of the
impact of LULCC on regional climates using PICs, we
have found that the effects of PICs can be large. In the
context of the research project Land-use and Climate
Change Interactions in Central Vietnam (LUCCi), we have
assessed the impact of PICs on the regional climate simu-
lation results for the Vu Gia Thu Bon (VGTB) river basin
in Central Vietnam while also examining the impact of
LULCC. We used one-day lagged initializations, a simple
perturbation technique commonly used in multi-year pre-
diction studies (e.g. Müller et al., 2012; Baehr and Piontek,
2014). To our knowledge, there is no framework in the
literature of how the effect of an LULCC can be distin-
guished from the RCM’s internal variability, as represented
by the ensemble variance, from now on also referred to as
noise. To put it another way, we want to know how many
ensemble members are required to identify robust and sta-
tistically significant LULCC effects from LULCC studies.

To fill this gap, there is employed a method based on
RCM ensemble simulations with PICs and suitable per-
formance measures and tests. The method to study the
effects of an LULCC in RCM simulations, irrespective
of the study region, might be of high interest to the cli-
mate community. The procedure is demonstrated for two
case studies in SE Asia, one on urbanization and the other
on deforestation, representing recent and ongoing land-use

changes in the region, with three scenarios considering dif-
ferent extents of areal conversions.

We hypothesize that depending on the spatial extent and
the two different LULCC conversion scenarios, the consid-
ered climate variables at surface will change significantly.
In analogy to climate change projections, we expect that
we need multiple ensemble members to prove evidence for
LULCC-induced changes.

This article is structured as follows: Section 2 outlines
the applied methodologies and the data. Section 3 includes
a description of the results and discussions. Concluding
remarks are given in Section 4.

2. Data and methods

2.1. Land-use/land-cover data for 2010

The land-use land cover (LULC) data used in this study
were obtained by preprocessing and classifying remote
sensing data from 2010, which was obtained in the LUCCi
project. The data include Spot 5 data in a 2.5-m spatial res-
olution, covering approximately 90% of the VGTB basin,
Landsat ETM+ data (30 m spatial resolution) covering the
entire basin, as well as road network vector data, FIPI for-
est map vector data, and river network vector data from
2010. After various preprocessing steps, such as geometric
corrections, cloud and shadow removal, radiometric cor-
rections, and gap-filling, an LU map was created based on a
supervised classification algorithm. The classification has
been checked using ground truthing activities in the VGTB
basin, and the resulting map has been refined based on aux-
iliary information from local stakeholders. After that, the
accuracy of the LULC data has been assessed, showing
an overall accuracy of about 82% of correctly classified
pixels according to the calculated confusion matrix. This
LULC map of 2010 has a spatial resolution of 30× 30 m
and consists of 6 classes following the IPCC nomenclature,
i.e. forest, cropland, grassland, water, settlements, and one
additional class representing all other LULC classes.

To integrate the LUCCi LULC map 2010 of the VGTB
basin with the WRF model, the LULC data are spatially
aggregated to a 1-km resolution, and the dominant classes
within the coarser 1-km grid are selected. This 1-km
aggregated LULC map of 2010 (hereinafter referred to as
LUCCi LULC map 2010) exhibits the following propor-
tions of the classes: the areas for forest, grass land, and
crop are 50, 18, and 26%, respectively, while urban land
accounts for about 1% of the total area (Figure 1).

2.2. Land-use/land-cover change scenarios

To assess the sensitivity of LULCC over this region,
LULCC scenarios were produced to examine the impacts
of LULCC on the regional climate. In the LUCCi LULC
map 2010, the cropland in a 20-, 14-, and 9-km radius
around Da Nang station is replaced by urban land
(referred to from now on as LULC-urbanization) and
used for regional climate simulations. The area of the
LULC converted from cropland to urban can be seen in
Figure 2(a)–(c). The forest in a 20-, 14-, and 9-km radius

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
on behalf of the Royal Meteorological Society.



RCM ENSEMBLE SIMULATIONS TO ESTIMATE THE IMPACT OF LULCC 2083

Nong Son
station 

Da Nang
station 

107.4°E 107.8°E 108.2°E 108.6°E

15°N

15.4°N

15.8°N

16.2°N

Forest
50%

Grass
18%

Crop
26%

Urban

OthersWater

9 km

14 km

2%

20 km

3%
1%

Figure 1. Land-use information of the Vu Gia Thu Bon (VGTB) river basin in Central Vietnam and the two selected locations for artificial land-use
conversion experiments.

(a) (b) (c)

(d) (e) (f)

107.4°E 107.8°E 108.2°E 108.6°E

15°N

15.4°E

15.8°E

16.2°E

107.4°E 107.8°E 108.2°E 108.6°E

15°N

15.4°E

15.8°E

16.2°E

107.4°E 107.8°E 108.2°E 108.6°E

15°N

15.4°E

15.8°E

16.2°E

107.4°E 107.8°E 108.2°E 108.6°E

15°N

15.4°E

15.8°E

16.2°E

107.4°E 107.8°E 108.2°E 108.6°E

15°N

15.4°E

15.8°E

16.2°E

107.4°E 107.8°E 108.2°E 108.6°E

15°N

15.4°E

15.8°E

16.2°E

Figure 2. Artificially converted land-use land cover in VGTB basin. (a–c) LULC-urbanization, (d–f) LULC-deforestation. From the left to the right
are the LULC maps with different degrees of conversion from high to low, i.e. conversion in a radius of 20, 14, and 9 km around Da Nang station

(a–c) and Nong Son (d–f).

around Nong Son station is replaced by cropland, shown
in Figure 2(d)–(f).

2.3. Regional climate information

2.3.1. Observation data

The availability of hydro-meteorological data in the VGTB
basin is limited. Overall, the measurement network is rela-
tively sparse: the mountainous slopes in the western area of
the basin are ungauged, and the recorded time series are not

complete (Souvignet et al., 2014). The observational data
used in this study include monthly surface temperature and
precipitation for 2010 for Da Nang, and precipitation only
for Nong Son station. The data were complete for 2010,
and used to analyse the accuracy of the WRF simulations.

2.3.2. High-resolution regional climate simulations

WRF simulations (version WRFv3.6.1) were performed
to derive high-resolution climate information for the year
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Figure 3. Domain setup used for the WRF climate simulations: Domain 1
(D01) has 90× 80 grid points with a resolution of 45 km, domain 2 (D02)
includes 136× 124 grid points with a resolution of 15 km, and domain 3

(D03) has 87× 81 grid points with a resolution of 5 km.

2010. The ERA-interim reanalysis data were used for the
boundary conditions (updated every 6 h) to drive the WRF
model. A nested approach was used to downscale the
climate information to horizontal grid resolutions of 45,
15, and 5 km. The main domain covers Southern Asia
from 5∘S to 27∘N latitude and 90∘E to 130∘E longitude
(Figure 3). The first nested domain covers South-Eastern
Asia and parts of the South China Sea. The second nested
domain focuses on the study area, the VGTB basin (Laux
et al., 2013).

As it has already been demonstrated to be a suitable
parametrization for this region in a previous study (Laux
et al., 2013, 2014), we used the cumulus parametrization
scheme from Betts–Miller–Janjic, the microphysics from
the WSM 3-class simple ice scheme, the boundary layer
from the YSU scheme, and the land surface scheme from
the Noah land-surface model (LSM).

The Noah LSM (Chen and Dudhia, 2001) provides
the bottom boundary conditions for the WRF model.
Therefore, it calculates the turbulence exchanges of
momentum, mass, and energy between the surface and
the overlying atmosphere. The land surface at each grid
cell is represented by LULC and soil, consisting of 24
LULC categories (following the USGS classification) and
16 types of soil texture. Each LULC category is charac-
terized by physical and aerodynamic parameters, such as
surface roughness length and displacement height, albedo,
emissivity, green vegetation fraction, and LAI. Each soil
texture type is characterized by parameters such as the
soil heat conductivity and diffusivity, the maximum soil
moisture content, and the wilting point soil moisture (Lee
et al., 2011). WRF updates the albedo on a monthly basis
based on the vegetation fraction. A detailed description of
the Noah LSM is given in Chen and Dudhia (2001).

In this study, we used the bulk urban parametriza-
tion, which is based on the concept that the physical
parametrization for an urban patch is identical to that for

vegetation types (big leaf concept, see Liu et al., 2006).
In recent versions of WRF, more advanced urban canopy
model options are available, e.g. the Single-Layer Urban
Canopy Model (SLUCM) (e.g. Kusaka et al., 2001; Chen
et al., 2011) and the Multi-layer, Building Environment
Model (BEM). To achieve an improved urban atmospheric
numerical modelling, more detailed data, such as, e.g.
urban vegetation and urban surface morphology, as well as
explicit parametrizations of the urban physical processes
are required (e.g. Chen et al., 2011; Lee et al., 2011; Deng
et al., 2013), which was not possible in the context of this
study.

2.4. Experimental design

We performed a series of regional climate simulations by
implementing the different LULCC scenarios described
above in WRF. To investigate the impact of LULCC on the
regional climate, we first had to separate the signal from
the noise which inherently exists in climate simulations.
For this reason, we carried out ensemble WRF simula-
tions consisting of 15 ensemble members for each LULCC
experiment, i.e. the LULC-2010, LULC-urbanization and
LULC-deforestation, by perturbing the initial boundary
conditions of the WRF simulations. This was done using
different initialization dates, shifted by 1 day (Figure 4).
So as not to affect the statistics of the climate simulations
by the slightly varying initialization dates of the WRF, a
spin-up time of 3 months was used. The perturbed simu-
lations were initialized from October 2009 and run to the
end of December 2010. Only the results for 2010 are used
in the analyses. Based on the variance of these ensemble
simulations, the amount of noise can be estimated and used
to identify the signals within each LULCC scenario. The
results of the WRF model derived from the LULC-2010
(based on the LUCCi LULC map 2010) experiment is
referred to as control. The LULC-urbanization scenarios
with conversion radii of 20, 14, and 9 km are referred
to as Urban-20, Urban-14, and Urban-09, respectively.
The LULC-deforestation scenarios with radii of 20, 14,
and 9 km are referred to as Deforest-20, Deforest-14, and
Deforest-09, respectively.

The signal-to-noise ratio (SNR) is calculated to estimate
the effect that can be attached to the WRF LULCC sim-
ulation results, by estimating the amount of noise in the
ensemble. Note that apart from the usual meaning in statis-
tics or time series analysis, here the ‘signal’ is defined as
the mean value of an ensembles, and the ‘noise’ is defined
as the sum of the corresponding standard deviations. The
effect of an LULCC scenario can thus be quantified as
follows:

SNR =
|
|𝜇A − 𝜇B

|
|

𝜎A + 𝜎B
(1)

where A denotes the WRF control simulations (based on
the LUCCi LULC-2010 map) and B denotes the simu-
lations with the LULCC scenarios. 𝜇A and 𝜇B are the
mean, and 𝜎A and 𝜎B are the standard deviation of the
15 perturbed runs of the two experiments, respectively.
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Figure 4. Ensemble approach of WRF simulations consisting of 15-member ensembles for each LULCC experiment. WRF simulations are driven
by perturbed initial boundary conditions (PICs), which has been achieved by using different initialization dates.

Values of the SNR that are greater than 1 indicate com-
paratively higher signals (compared to the noise) within
the ensemble simulations.

2.5. Tests of statistical significance

High SNR values suggest an impact of an LULCC on the
climate. To strengthen the evidence, the results for each
scenario are tested for statistical significance. The standard
t-test is not applicable in this case due to the fact that the
data are serially correlated and non-Gaussian. To take these
issues into account, the following two tests haven been
used: by applying two different tests:

1. A t-test, to check whether H0 (the mean values
obtained by the control and the LULCC-induced
simulations are from the same distribution) can be
rejected, or whether H1 (the mean values come from
different distributions) has to be accepted. As the
variance is reduced in serially dependent data, the test
is modified using a variance inflating factor (Wilks,
2006). Serial dependence is found for all variables
under consideration, but a first-order autoregressive
model was found to be suitable to remove the serial
dependence (Figure S1, Supporting Information).

2. A bootstrap test if the data are not symmetrically dis-
tributed around the mean (Gaussian assumption) and
the t-test is not applicable. The Gaussian assumption
is found to be violated for monthly precipitation, e.g.
the November precipitation analysed in this study. One
reason for that is the small sample size of the monthly
precipitation values.

3. Results and discussion

In this paragraph, two different case studies, i.e. urbaniza-
tion scenarios of Da Nang (case study I) and deforesta-
tion scenarios of Nong Son (case study II) are described.

Table 1. Mean and standard deviation of annual air surface tem-
perature (T2) [∘C], latent heat flux (LHF) [W m−2], sensible
heat flux (SHF) [W m−2], and precipitation (P) [mm] for the
control simulations, and the scenarios Urban-20, Urban-14, and

Urban-09.

Variable Mean (standard deviation)

Control Urban-20 Urban-14 Urban-09

T2 25.8 (0.05) 27.4 (0.05) 26.9 (0.12) 26.9 (0.04)
LHF 74.7 (1.9) 4.3 (0.2) 13.9 (2.6) 14.6 (0.3)
SHF 52.4 (1.7) 107 (1.5) 100.9 (2.4) 100.3 (1.3)
P 3701 (455) 4086 (263) 3985 (290) 4028 (375)

Both case studies analyse the signals in the different
meteorological surface variables induced by the different
extents of the LULCC, in the sense of the different radii
around the station in which the land-cover is changed,
based on the values of SNRs of the WRF ensemble
simulations.

3.1. The control simulations: ensemble WRF
simulations using the LUCCi LU 2010 map

First, the spread of the ensembles of the control simula-
tions is analysed for all meteorological variables at both
locations (Da Nang and Nong Son). In order to obtain
more robust statistics, the variables of the WRF simula-
tions are averaged over 9 grid-points next to the station.
For the surface air temperature and the latent and sensible
heat flux, it is found that the spread of the ensembles is
low. The mean and standard deviations of the 15-member
ensembles can be found in Tables 1 and 2 (left column).
For precipitation, however, the spread is much higher,
which may be the result of the influence of particular
members.

We use the ensemble of the control simulations to
(1) identify ensemble members which may drastically
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Table 2. Mean and standard deviation of annual surface tempera-
ture (T2) [∘C], latent heat flux (LHF) [W m−2], sensible heat flux
(SHF) [W m−2], and precipitation (P) [mm] for the WRF control,
Deforest-20, Deforest-14, and Deforest-09 scenario simulations.

Variable Mean (standard deviation)

Control Deforest-20 Deforest-14 Deforest-09

T2 25 (0.04) 25 (0.04) 25 (0.03) 25 (0.05)
LHF 98.8 (2.1) 101.3 (1.2) 100.7 (1.2) 100.5 (2.3)
SHF 27.3 (1.5) 25.3 (1.0) 25.4 (1.1) 25.2 (1.3)
P 4780 (458) 4732 (489) 4849 (443) 4908 (472)

increase the ensemble variability, and (2) quantify the min-
imum number of ensemble simulations needed to derive
robust signals. The impact of adding certain members to
the ensemble is expressed in terms of the mean absolute
error (MAE) compared to the observations, as shown in
Table 3 for Da Nang and Table 4 for Nong Son. The table
for Da Nang, e.g. reads as follows: the three-member case
leads to an MAE of 96 mm, consisting of the members
14, 8, and 3. It is found that the MAE increases until five
members are included, after which it remains stable until
it sharply increases for the 14- and the 15-member solu-
tions. Thus, for the control simulations, 5 members are
found to be necessary to yield robust statistics, 13 mem-
bers are needed to obtain acceptable results, and 15 mem-
bers will lead to a high variability within the ensemble.
Something similar can be said for Nong Son. Here, three
members could be identified (ensemble members: 4, 10,
and 2).

Figure 5 demonstrates the impact of the ensemble
size on both the ensemble mean values as well as the
ensemble variances of the precipitation at the Da Nang
station. Figure 6 shows the results for Nong Son sta-
tion. Tables 5 and 6 indicate the mean values and the
standard deviations for the different ensemble sizes,
respectively.

Note that as omitting selected members can increase the
variance, the use of a single realization or of an RCM
ensemble consisting of only a few members may lead to
different conclusions than those resulting from the use of
the full ensemble.

3.2. Case study I: ensemble WRF simulations using the
urbanization scenarios of Da Nang

3.2.1. Expected impact on the annual cycle of the
meteorological variables

After analysing the control simulations based on the
LUCCi land-use map 2010, the impact of the urbaniza-
tion scenario will now be analysed. Table 1 shows the
mean values and the standard deviations for the Urban-20,
Urban-14, and Urban-09 artificial land-use conversion
experiments. The mean and standard deviation of 15 per-
turbed runs in each experiment are calculated for the
annual surface temperature and the latent and sensible heat
flux. In general, the standard deviations of the meteoro-
logical variables are lower than their mean values, thus
indicating signals which are much greater than the noise
in the WRF simulations.

As expected, there are remarkable differences in the
statistics of the different meteorological variables between
the control simulations and the urbanization experiments,
whereas the differences within the urbanization experi-
ments are relatively high between the Urban-20 and the
other two scenarios. The mean values of Urban-14 and
Urban-09 are in the same range, whereas the standard
deviation is markedly increased in the Urban-14 exper-
iments. The mean of the surface temperature for the
Urban-20 is increased by 2.4 ∘C, and increased by 1.1 ∘C
in the Urban-14 and Urban-09 experiments (compared to
the control). The mean of the latent heat flux is remarkably
decreased, ranging from 74.7 for the control to 4.3, 13.9,
and 14.6 W m−2 for Urban-20, Urban-14, and Urban-09,
respectively. In the opposite direction to the results of the
latent heat flux, the mean values of the sensible heat flux
are nearly doubled in the experiments of the urbanization
scenario. The results of the surface meteorological vari-
ables might be biased in terms of the magnitudes of the
signals due to inaccurate representation of the UHI, as,
e.g. shown in the study of Lee et al. (2011), resulting from
the applied bulk urban parametrization in the Noah-LSM.
In contrast to Lee et al. (2011), Giannaros et al. (2013)
concluded that, overall, the WRF/Noah modelling system
(using the bulk urban parametrization) was suitable for
representing the major features of the UHI for Athens

Table 3. MAE values [mm] of the ensemble, including all ensemble members from the left to the horizontal position of the MAE
value (Da Nang station).

MAE [mm] 77 88 96 112 121 121 126 128 137 143 144 160 168 185 218

Ensemble member 14 8 3 5 12 15 11 4 7 2 9 1 13 6 10

The ensemble members are labelled according to the starting day of the simulation in October 2009.

Table 4. MAE values [mm] of the ensemble, including all ensemble members from the left to the horizontal position of the MAE
value (Nong Son station).

MAE [mm] 105 112 118 119 137 137 151 155 158 165 168 175 190 214 241

Ensemble member 5 14 15 13 3 7 12 6 8 1 11 9 4 10 2

The ensemble members are labelled according to the starting day of the simulation in October 2009.

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
on behalf of the Royal Meteorological Society.
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Figure 5. Range of simulated monthly precipitation (control ensemble simulations) using a 15-member solution (top), a 13-member solution (middle),
and a 5-member solution (bottom), and the respective differences (control minus observation) at the Da Nang station (right) for the period October

2009–December 2010.

(Greece). However, a thorough validation was not possi-
ble, due to missing observations in their study (Giannaros
et al., 2013).

The temporal variations between the urbanization
scenarios and the control simulations are depicted in
Figure 7. Compared to the observations, the seasonal
cycle of surface air temperature of the control simulations
are in good agreement with the available observation
data, giving evidence that the LUCCi land-use map 2010
as well as the applied WRF physical parametrization
schemes are appropriate. The surface temperatures of
all urbanization experiments are consistently higher than
those of the control simulations throughout the entire
year 2010. The alterations of the surface temperature
could possibly be explained by two effects: the effect

of the radiative process of the decreased albedo and the
non-radiative process of the increased roughness length
when converting from cropland to urban. A decrease in
the albedo usually leads to a warming of the surface by
the increased solar radiation. Besides this radiative effect,
an increase of the roughness length may increase the
magnitude of the turbulent energy fluxes, thus decreasing
the surface temperature (Boisier et al., 2012).

The conversion to urban area may lead to significant
alterations of the partitioning of the turbulent energy
fluxes. This reduces the latent heat flux, which will
increase the sensible heat flux due to conservation of
energy (Figure 8). This leads to a net warming in our
simulations and is evident in all urbanization experiments.
The largest decrease of latent heat flux is found in the

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
on behalf of the Royal Meteorological Society.
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Figure 6. Range of simulated monthly precipitation (control ensemble simulations) using a 15-member solution (top), a 12-member solution (middle),
and a 5-member solution (bottom), and the respective differences (control minus observation) at the Nong Son station (right) for the period October

2009–December 2010.

Table 5. Mean and standard deviation of precipitation [mm] for
the control simulations, and the scenarios Urban-20, Urban-14,

and Urban-09.

Mean (standard deviation)

Control Urban-20 Urban-14 Urban-09

5 perturbed
runs

3280 (327) 4147 (305) 4113 (324) 4110 (320)

13 perturbed
runs

3491 (291) 4036 (294) 4023 (306) 4021 (302)

15 perturbed
runs

3701(455) 4086 (263) 3985 (290) 4028 (375)

Table 6. Mean and standard deviation of precipitation [mm]
for the control simulations, and the scenarios Deforest-20,

Deforest-14, and Deforest-09.

Mean (standard deviation)

Control Deforest-20 Deforest-14 Deforest-09

5 perturbed
runs

4323 (344) 4560 (548) 4548 (369) 4970 (553)

12 perturbed
runs

4579 (380) 4765 (547) 4804 (454) 4845 (531)

15 perturbed
runs

4780 (458) 4732 (489) 4849 (443) 4908 (472)

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
on behalf of the Royal Meteorological Society.
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Figure 7. Monthly surface air temperature (T2), latent heat flux (LHF), and sensible heat flux (SHF) (from top to bottom) for the three different
urbanization scenarios averaged over the next 9 grid cells around Da Nang station. The envelopes for the control (blue) are based on the observed
LUCCi LU map 2010, the three different urbanization experiments [(a) Urban-20, (b) Urban-14, and (c) Urban-09] are derived from ensemble WRF
simulations using 15-member ensembles with different initialization conditions (red). The subfigures illustrate the range of differences between the

LUC scenarios and the control simulations. The WRF simulations were run from October 2009–December 2010.

Urban-20 experiment. The latent heat flux in the control
experiments demonstrates the effects of cropland in the
VGTB, which peaks both in March and September and
plunges in May, the driest month of the year 2010. In
the urbanization experiments, however, the peaks and the
plunge are reduced. In turn, there is no clear annual cycle
of latent heat fluxes visible in the urbanization experi-
ments. The figure illustrates the great variation among the

Urban-20 and both the Urban-14 and Urban-09 experi-
ments. The net turbulent heat fluxes are lower than the
control run. From previous studies, however, it is expected
that increased roughness lengths lead to increased turbu-
lent energy fluxes, and thus contribute to reducing the
aforementioned effects of the net warming at the surface
(e.g. Davin and de Noblet-Ducoudré, 2010; Boisier et al.,
2012).

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
on behalf of the Royal Meteorological Society.
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Figure 8. Partition between LHF and SHF for urbanization scenarios at Da Nang station (left column) and deforestation scenarios at Nong Son station
(right column) based on the ensemble mean of the 15 PICs.
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Figure 9. Monthly total precipitation [mm] for the Urban-20 scenario and the control simulations at Da Nang station in 2010 using 15-, 13-, and
5-member ensembles. The surrounding 9 grid cells of Da Nang are used (left). Differences between the scenario and the control simulations (Urban-20

minus control) for the period October 2009–December 2010.

Although the standard deviations are greater during the
months from May to September, the envelopes of the
ensembles for the urbanization and the control do not
overlap at any time in 2010 for the surface air temperature
or the latent and sensible heat fluxes, i.e. their median
values are much greater than their standard deviations,
indicating again the clear signal induced by the artificial
LULCC throughout the entire year.

It is well known that urbanization and other
LULCCs alter the surface energy balance and may
also affect the thermodynamic processes in the boundary
layer of the atmosphere (Mahmood and Pielke, 2014),
potentially altering directly or indirectly the precipita-
tion signal. Relatively high standard deviations in the
precipitation series (resulting in lower SNR values com-
pared to those of, e.g. the temperature) may hinder clear

inferences about the impact of an LULCC on precipi-
tation. Therefore, the impact of the ensemble member
size is demonstrated in the following. At least five mem-
bers are needed to obtain robust estimates (converging
standard deviation), but if the ensemble members 6 and
10 are included, the standard deviation of the ensemble
increases from about 280 mm to about 440 mm (Figure
S2). The precipitation time series for the urbanization
scenario Urban-20, depending on the number of ensemble
members, are shown in Figure 9. Note that the ensemble
size of the control simulations is changed accordingly,
i.e. the same members are omitted from the ensemble. It
is expected from Figure 9 that the 15-member solution
would not disclose any signal during the rainy season
(October to December) induced by urbanization, due to
the high variability within both ensembles (control and

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
on behalf of the Royal Meteorological Society.
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Figure 10. SNR values [.] of the different urbanization scenarios (Urban-20, Urban-14, and Urban-09, from left to the right) for (a) surface
temperature, (b) latent heat flux, and (c) sensible heat flux based on the full RCM ensemble. The stippled grid cells show the statistically significant
grid cells in which the t-test rejects the null hypothesis of having the same mean values for the scenarios and the control simulations at 𝛼 = 0.05

(empty circles) and 𝛼 = 0.01 (filled circles).

Urban-20). Reducing the ensemble size to 13, however,
already provides the potential to identify a signal in the
time series, whereas the five-member solution indicates
high discriminative power because the envelopes do not
overlap during the rainy season. The case of the intention-
ally pre-selected five members demonstrates the need to
be cautious with LULCC-induced inferences, particularly
for precipitation.

Apart from the intentionally selected ensemble, in the
following we show how to estimate the critical number
of ensemble members to be used to avoid such misin-
terpretations without having any a priori knowledge of
the ensemble variance induced by each single ensemble
member. For demonstration purposes, we focus our anal-
ysis on November precipitation because the intentionally

reduced 5-member solution suggests a high potential for
erroneous conclusions for this month.

We applied a bootstrap test of 1000 samples to check
how many arbitrarily chosen ensemble members are
required to come to robust conclusions, i.e. conclusions
resembling the statistics of the 15-members ensemble, the
population of our sample.

The bootstrap sampling distribution of SNR values for
November precipitation using 3 and 15 members is shown
for Da Nang, demonstrating that for higher ensemble sizes
the mean of the sampled distribution moves closer to the
empirical value obtained from the control. This means
that the null hypothesis (SNR values come from the same
distribution) cannot be rejected even for very conservative
assumptions about the level of significance 𝛼, whereas for

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
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small ensemble sizes, the probability is very high that H0
is rejected, even if a very high 𝛼 is assumed (Figure S3).

Another simulation has been performed using the
SLUCM parametrization for the urban class. The results
for temperature and precipitation at Da Nang station can
be found in Figure S4. It can be seen that SLUCM reduces
the signal for temperature compared to the bulk urban
parametrization, but there is still a significant increase
compared to the control. For precipitation, it can be
observed that SLUCM reduces the effect for November
precipitation, i.e. the simulation is also closer to the
control. However, there is no possibility of validating the
performance of both parametrizations in this case.

3.2.2. Expected impact on the spatial extent of the
meteorological variables

After analysing the impact of urbanization on the annual
cycle in the region where the LULC is changed, the spatial
impacts are analysed in the following, i.e. the question is
addressed of whether the urbanization around Da Nang
only has an impact in the direct vicinity of Da Nang
or whether consequences in remote regions have to be
expected.

For this reason, the SNR values are calculated for every
grid cell in domain 3 of the WRF simulations. Figure 10
shows the SNR values for the different urbanization
experiments for the surface temperature and the latent
and sensible heat fluxes using a 15-member solution,
which is appropriate because clear signals can be expected
from a visual inspection of the time series in the previous
section (Section 3.2). The values can range between 0
and approximately 24 for the urbanization scenarios.
The SNR gradually changes, depending on the degree of
urbanization (i.e. the radii of land-use conversion around
Da Nang station). Only little difference is found between
the Urban-14 and Urban-9 experiments, whereas the
Urban-20 experiments shows more pronounced signals.
For surface air temperature and sensible heat flux, the
magnitude of the SNR is smaller (on average between 1
and 2), but more statistically significant grid points are
found beyond the radius of LULCC compared to the latent
head flux. This is particularly true for the Urban-14 and the
Urban-09 scenarios. In general, H0 can only be rejected
within the region of the LULC conversion and grid cells
in the vicinity only: no remote effects can be observed.
The identified signals can be explained by changes of the
surface energy balance, which is mainly triggered by the
increased albedo through urbanization.

For precipitation, and based on the full ensemble, rel-
atively higher November precipitation SNR values, up to
0.6, are found for remote regions, e.g. for the southwestern
part of the VGTB basin (Figure 11). There, precipitation
is expected to be decreased by about 400 mm compared to
the November precipitation of the control, whereas rainfall
increases of up to 250 mm can be expected in the Northeast
(the region of Da Nang) and East coastal region, and also
outside the basin. However, no coherent spatial patterns
can be identified for which the null hypothesis is rejected
at 𝛼 = 99 and 95.

Figure 11. SNR values [.] of November precipitation for the urbanization
scenario Urban-20 (top) and the simulated impacts for precipitation
(Urban-20 minus control) (bottom), both based on the full ensemble. The
stippled grid cells show the statistically significant grid cells in which the
bootstrap test rejects the null hypothesis of having the same mean values
for the scenario and the control simulations at 𝛼 = 0.05 (empty circles)

and 𝛼 = 0.01 (filled circles).

It is found that the spatial results strongly depend on the
number of ensemble members, not only for the magnitude
of the SNR values but also for the statistically significant
patterns (Figure 12). Based on only two (arbitrarily sam-
pled) ensemble members, one would reject H0 for large
parts of the domain, although H0 would still hold true for
large parts of the northern VGTB basin using 5 and 11
members. Using 12 or more members displays only few
statistically significant grid cells in regions outside of the
radius of urbanization, thus suggesting only weak spatial
impacts.

From the analysis above, we have learned about the influ-
ence of the ensemble size on our results for the SNR, not
only in terms of their magnitude, but their statistical signif-
icance as well. Although it is not good scientific practice
to anticipate the decision of a statistical test, we would
conjecture that the level of significance 𝛼 to be prescribed
to reject H0 should depend on the ensemble size. In this
case, this procedure might be well justified since we know

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
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Figure 12. SNR values [.] of November precipitation as obtained for selected ensemble sizes of 2, 5, 11, and 12 members. Bootstrap tests are
performed to test the statistical significance of rejecting H0, at 𝛼 = 0.05 (empty circles) and 𝛼 = 0.01 (filled circles).

the test decision from the ensemble population (15 mem-
bers), i.e. the rejection of the null hypothesis. The objective
of this procedure is to identify the number of ensemble
members needed to come to a robust decision about the
impact of an LULCC. For the grid cell corresponding to
Da Nang, a 6- and 7-member solution suggests already a
rejection of H0. However, this number is not found to be
robust. Finally, at least 12 members are required to robustly
reject H0 (Figure S5). Note that this does not necessarily
mean that H1 can be accepted without any doubts. High 𝛼

values only cast doubt on the validity of H0.
This approach is applied to the whole domain (see

Figure 13). It can be seen that the ensemble size needed
to reject H0 may differ remarkably across the domain.
For large parts of the VGTB basin, an ensemble size of
12–14 members is required. Exceptions are the eastern
and western regions of the VGTB basin, where H0 can be
robustly rejected for ensemble sizes of 2–6.

Figure S6 shows the potential impact of urbanization on
the VGTB basin using two different parametrizations for

urban. Heterogeneous and partly very strong differences
in the annual precipitation can be observed, mainly in the
southern part of the basin, whereas the differences are rel-
atively small and homogeneous for air temperature within
the converted area and remote areas. It must be noted that
only one simulation was performed to estimate the impact
of the different urbanization schemes, thus it does not take
into account the internal model variability in this case.

3.3. Case study II: ensemble WRF simulations using
deforestation scenarios of Nong Son

3.3.1. Expected impact on the annual cycle of the
meteorological variables

In contrast to the pronounced signals identified in the
urbanization experiments, the comparison between the
deforestation scenarios and the control simulations shows
no clear differences in surface air temperature or latent and
sensible heat fluxes (Table 2). Figure 14 shows the time

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
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Figure 13. Minimum number of ensemble members required to robustly
reject the H0 hypothesis (SNR values of November precipitation from
equal distribution). More information and the example for the grid cell

corresponding to Da Nang is given in Figure S5.

series of the monthly surface air temperature, latent heat
flux, and sensible heat flux for the three different deforesta-
tion scenarios, averaged over the next 9 grid cells around
Nong Son station. For the surface air temperature, there
is nearly no visible difference between the deforestation
scenarios and the control simulations, no matter which
degree of deforestation is considered. The mean differ-
ences range between +0.1 and −0.1 ∘C. For the latent heat
flux, differences between the control simulations and the
deforestation ensembles can be found for June and July,
2010. In the deforestation simulations, the mean values are
increased and the variability is decreased. For Deforest-09,
however, the variability of the ensemble is slightly higher
compared to the control ensemble. For the sensible heat
flux, the deforestation ensembles show decreased mean
values for the period June to August 2010. There are no
significant changes in the partition of surface heat fluxes
for the deforestation scenarios (see Figure 8, right column).
From previous studies, one would expect a remarkable
change, either a reduction of the latent heat flux, lead-
ing to a net warming, as frequently observed in tropical
regions (e.g. Lawrence and Chase, 2010), or an evapora-
tive cooling during the season when the crops have higher
evaporation rates, as observed in temperate regions (e.g.
Baldocchi et al., 1997).

In general, the temporal illustrations suggest that the
deforestation ensembles do not offer significant changes
(signal) in the simulated meteorological variables.

Similar to the urbanization scenarios, the impact of the
ensemble size on the variance is investigated for precipi-
tation (Figure 15). Intentionally selected 5 members up to
12 members reveal robust variances before they increase
markedly (Figure S7).

3.3.2. Expected impact on the spatial extent of the
meteorological variables

Figure 16 illustrates the impact of deforestation
(Deforest-20 scenario) in a spatial context. Apart from

the urbanization scenarios, deforestation does not clearly
affect the surface air temperature or the latent and sensible
heat fluxes of many grid cells: neither in nor outside the
domain where forest is converted to crop land. The small-
est SNR values are identified for air temperature (up to
0.5), and range from 0 to 1 for all variables. The signal is
restricted to the converted area exclusively, and fewer grid
cells are found to reveal a statistically significant signal
compared to the urbanization scenarios. No pronounced
signals for precipitation are found in the deforestation
scenarios.

4. Summary and conclusions

The sensitivity of the effects of LULCCs on different mete-
orological variables at regional scales has been analysed by
implementing different LULCC scenarios in the regional
climate model WRF. For this purpose, urbanization and
deforestation scenarios of different degrees (in circles with
varying radii of 20, 14, and 9 km) have been used, and
RCM simulations conducted for the year 2010. An ensem-
ble approach using PICs was followed to estimate the noise
in RCM simulation. The signal induced by an LULCC is
then quantified by calculating the SNR and tested for sta-
tistical significance.

For our study region in Central Vietnam, the urban-
ization experiments (conversion from cropland to urban)
revealed stronger impacts compared to deforestation (con-
version from forest to cropland). The surface temperatures
of the urbanization experiments are constantly higher than
those of the control simulations throughout the entire year
2010. The mean of the latent heat flux decreases remark-
ably with the urbanization parametrization applied, rang-
ing from 74.7 for the control to 4.3, 13.9, and 14.6 W m−2

for Urban-20, Urban-14 and Urban-09, respectively, i.e.
the partitioning of the surface heat fluxes changed tremen-
dously. In the opposite direction to the results of the latent
heat flux, the mean values of the sensible heat fluxes
are nearly doubled in the experiments of the urbanization
scenario.

In contrast to the pronounced signals identified in the
urbanization experiments, the deforestation scenarios
show no clear differences in surface air temperature or the
latent and sensible heat fluxes from those of the control
simulations. Only marginal differences in the partitioning
of the surface heat fluxes into sensible and latent heat
fluxes are observed, which is possibly related to the very
broad representation of the different land-use classes and
the improper parametrization of the vegetation parameters
in the Noah LSM. In addition, the effect induced by
deforestation is found to be less spread in space compared
to the urbanization scenario.

The degree of conversion, assessed as the radius of
change (in km) around a location, does affect the results.
A change through a radius of 20 km leads to the most
pronounced changes (in both case studies), while radii
of 14 and 9 lead to similar results as each other. This
might be affected by the horizontal resolution of the
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Figure 14. Monthly surface air temperature, latent heat flux, and sensible heat flux (from top to bottom) for the three different deforestation scenarios
averaged over the next 9 grid cells around Nong Son station. The envelopes for the control (blue) are based on the observed LUCCi LU map 2010,
the three different deforestation scenarios [(a) Deforest-20, (b) Deforest-14, and (c) Deforest-09] are derived from ensemble WRF simulations using
15 ensemble members with different initialization conditions (red). The subfigures illustrate the range of differences between the LUC scenarios and

the control simulations. The WRF simulations were run from October 2009–December 2010.

WRF in the inner domain (5 km), and might be addi-
tionally related to the critical areal conversion to affect
the mesoscale circulation (Pielke et al., 2011). More
research on this is, however, necessary to confirm these
speculations.

For precipitation, although some spatial patterns are
visible in the ensemble, SNR values smaller than unity

suggest no or only little evidence of changes due to
urbanization. Based on the conducted statistical bootstrap
tests, the hypothesis that the control simulation and the
LULCC simulations are from the same population cannot
be rejected at 𝛼 = 0.95, if the whole ensemble (variance)
is considered. Moreover, precipitation is found to be very
sensitive to the urbanization scheme applied.

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
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Figure 15. Monthly total precipitation [mm] for the Deforest-20 scenario and the control simulations at Nong Son station in 2010 using 15-, 12-,
and 5-member ensembles. The surrounding 9 grid cells of Nong Son are used (left). Differences between the scenario and the control simulations

(Deforest-20 minus control).

Based on the results obtained in this study, we draw the
following conclusions:

• Ensemble simulations based on perturbed initial
conditions in combination with the statistical per-
formance measures and tests presented in this study
provide a strategy to attribute and quantify RCM-based
LULCC-induced impacts on the regional climate.

• For the urbanization scenarios in Central Vietnam, the
impact on the simulated air temperature and the latent
and sensible heat fluxes at surface are large, and can
be clearly attributed to the LULCC parametrization.
Only a few ensemble members are required to derive
robust effects of LULCC. This is not the case for the
deforestation scenarios.

• For precipitation, no clear effects can be distinguished
from the internal model variability. This is indicated

by the small magnitudes of the SNR and confirmed by
the applied statistical tests. If small ensembles are con-
sidered, the chances for erroneous conclusions about
the effects of LULCC on precipitation patterns are
increased. Although the results may depend on spe-
cific factors, such as the region of interest and specific
RCM settings (e.g. land-use class parametrizations), we
recommend conducting RCM ensemble simulations to
study the internal model variability so as to extract
robust effects. This is crucial for climate impact studies,
in particular if precipitation is considered.

5. Limitations and future research needs

Several aspects of our analysis can be improved in future
work, summarized as follows:

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 2080–2100 (2017)
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Figure 16. SNR values [.] of the different urbanization scenarios (Deforest-20, Deforest-14 and Deforest-09, from left to the right) for (a) surface
air temperature, (b) latent heat flux, and (c) sensible heat flux. More information about the deforestation scenarios can be found in Section 2.4. The
stippled grid cells show the statistically significant grid cells in which the t-test rejects the null hypothesis of having the same mean values for the

LULCC scenarios and the control simulations at 𝛼 = 0.05 (empty circles) and 𝛼 = 0.01 (filled circles).

Only one RCM model driven with the boundary con-
ditions of one GCM has been used. It is suspected that
various RCM results need to be analysed to obtain
more robust conclusions about LULCC-induced impacts.
The same holds true for the applied LSM. Therefore,
the implementation of various LSMs, including a prior
offline validation, is suggested. High-resolution remote
sensing products can be used to better parametrize
the LSM schemes. Within-ensemble variability is sup-
pressed because SSTs and boundary conditions are
prescribed by the GCM. Other perturbation meth-
ods should therefore be implemented in the ensemble
generation.
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Figure S1. Lag-1 (top) and lag-2 autocorrelation (bot-
tom), exemplary shown for the monthly mean tempera-
tures of the Control simulation for the year 2000. It can be
seen that a first first-order autoregressive model is found
to be suitable to remove the serial dependence across the
VGTB basin appropriately. The lag-1 autocorrelation coef-
ficients are used to correct for the variances estimated in
the t-test for each variable and grid cell, respectively. Sim-
ilar autocorrelation coefficients and patterns are found for
the LULCC-induced WRF simulations. Autocorrelation
coefficients were found to be generally weaker for other
variables.
Figure S2. Standard deviation of annual precipitation
[mm] at the Da Nang station for the urbanization scenario
Urban-20 depending on different ensemble sizes for the
year 2010. The three-member solution, e.g. comprises the
members 14, 8, and 3 (see Table 3 for more information).
Figure S3. Probability density functions (PDF) obtained
by 1000 bootstrap realizations from the LULCC-induced
simulations (Urbanization-20) of November precipitation
at Da Nang for 15 ensemble members (black line) and 3
ensemble members (blue line). The red vertical line illus-
trates the empirical SNR value from the 15 members of
the Control simulations, i.e. no LULCC, and serves as ref-
erence value for statistical significance tests. This value
is close to the mean value of the bootstrap PDF of the
15-member simulations, leading to an acceptance of H0
(similar distributions), whereas it is not covered by the
sampled distribution of the three members. In this case,
H0 is rejected, suggestion different distributions and a
LULCC-induced SNR value. Please note that the esti-
mated PDFs are based on the applied smoothing algorithm
(Bowman AW, Azzalini A. 1997. Applied Smoothing Tech-
niques for Data Analysis. Oxford University Press Inc.:
New York), leading to the artefact of negative values as
e.g. visible for the lower tail of the PDF distribution of the
15-member bootstrap realizations.
Figure S4. Monthly total precipitation amount (top) and
monthly mean surface air temperature (bottom) from Octo-
ber 2009 to December 2010 for the Urban-20 scenario at
Da Nang station, using a single non-perturbed WRF sim-
ulation based on the bulk urban parameterization and the
Single-Layer Urban Canopy Model (SLUCM). The sur-
rounding 9 grid cells of Da Nang are used. It is shown that
precipitation is reduced in November 2010 for SLUCM.
Figure S5. Level of significance 𝛼 (in %) at which the
H0 hypothesis (SNR values of November precipitation
from equal distribution) is rejected as a function of the
number of ensemble members, shown for Da Nang station.
It shows that the probability to reject H0 is low for six and
seven ensemble members, increases again to probabilities
𝛼 > 80%, and finally decreases again to low 𝛼 values.
Statistically robust ensemble sizes to reject H0 are values
≥12. Please note that this does not necessarily mean that
H1 can be accepted without any doubts. High 𝛼 values only
cast doubt on the validity of H0.
Figure S6. Difference of annual precipitation amount
(top) and annual mean surface air temperature (bottom)
between non-perturbed WRF simulation using bulk urban

parameterization and non-perturbed WRF simulation
using Single-Layer Urban Canopy Model (SLUCM),
i.e. bulk urban minus SLUCM. It can be seen that the
parameterization heavily impacts on the precipitation
with highest differences in remote regions, whereas the
differences for temperature are locally restricted to the
region of LULCC.
Figure S7. Standard deviation of annual precipitation
[mm] at the Nong Son station for the deforestation scenario
Deforest-20 depending on different ensemble sizes for the
year 2010. The three-member solution, e.g. comprises the
members 5, 14, and 15 (see Table 4 for more information).
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