
The Evolution of Eclipse

Tom Mens1, Juan Fernández-Ramil2,1 and Sylvain Degrandsart1
1Institut d’Informatique, Université de Mons-Hainaut
Avenue du Champ de Mars 6, 7000 Mons, Belgium

{ tom.mens | j.f.ramil}@umh.ac.be

2Computing Department, The Open University
Walton Hall, Milton Keynes, MK7 6AA, U.K.

j.f.ramil@open.ac.uk

Abstract

We present a metrics-based study of the evolution of
Eclipse, an open source integrated development environ-
ment, based on data from seven major releases, from re-
leases 1.0 to 3.3. We investigated whether three of the laws
of software evolution were supported by the data. We found
that Eclipse displayed continual change and growth, hence
supporting laws 1 and 6. Six size indicators, out of eight,
closely followed trend models. Four were linear and two
superlinear. We found evidence of increasing complexity
(law 2) in only two indicators, out of five. At subproject
level, size and complexity are not distributed uniformly, and
subproject size can be modelled as a negative exponential
function of the rank position. We encountered a range of
different size and complexity trends across subprojects. Our
approach and results can help in evaluating the future evo-
lution of Eclipse, the evolution of other systems and in per-
forming comparisons.

1. Introduction

Real-world software systems, either proprietary or open
source software (OSS), require fixes and enhancements, that
is, evolution, since their first release and as long as they are
used. The so-called laws of software evolution were pro-
posed by Lehman [7] to provide a better understanding of
this phenomenon over a software system’s lifetime, which
often spans over several years [10]. The laws originated
from studies of proprietary software in the 70s [7]. They
have been a topic of research ever since. The laws offer a
starting point for a theory of software evolution [8], a basis
for justification of software maintenance good practice [9]
and have been cited in textbooks (e.g., [13]).

Many improvements in software processes and technol-
ogy have occurred since the 70s, when the laws of soft-
ware evolution were first proposed. Such advances include
object-orientation, iterative and evolutionary processes and
OSS. For example, a study of Linux, a popular OSS, by
Godfrey and Tu [5] published eight years ago found su-
perlinear growth, in apparent contradiction to some of the
laws. It is not sufficiently well known to what extent con-
temporary OSS evolution follows the laws [4] and further
empirical research is needed. In this paper, we present the
results of our measurement-based study of the laws of soft-
ware evolution for the popular Eclipse1 open source project.
Eclipse is an interesting case because it is a large software
system of approximately 2 million lines of code (LOC) at
release 3.3 and with a huge user community. At the moment
of performing this study, data on its evolution history were
available for approximately a six-year time period. The fo-
cus of this research was to examine data in order to deter-
mine whether Eclipse supports three of the laws of software
evolution. The results offer a basis to study future evolu-
tions of Eclipse, and to compare its evolution to other OSS.

This article is structured as follows: In Section 2 we
briefly present three laws of software evolution for which
we study the empirical evidence in Eclipse. Section 3 pro-
vides details about the Eclipse system and the data that we
have extracted. Section 4 discusses the tools and measure-
ments we used. Section 5 presents the analysis of the re-
sults at the global level, considering the Eclipse as a single
evolutionary entity. Section 6 covers the analysis of em-
pirical evidence at the level of “namespaces” (subprojects).
Section 7 discusses the threats to validity. We compare our
results with some earlier studies of other OSS in section 8.
Section 9 presents topics of future research in this area.

1http://www.eclipse.org/

2. The laws of software evolution

Eclipse seems to match well E-type software’s [7] type.
An E-type system solves a problem or addresses an appli-
cation in a real-world domain. The laws were proposed as a
description of the evolution of this type of software. In this
paper, we use measurements to characterise the evolution
of Eclipse and explore the empirical support for three of
the eight laws. Barry et al. [1] classified the laws into
three broad groups. Laws 1, 2, 6 and 7 are seen as related
to the evolution characteristics of the software. Laws 4 and
5 are linked to organisational and economic constraints.
Laws 3 and 8 are seen as meta-laws. Due to the limited
effort available for data extraction and analysis, we initially
focused on the first subset of laws (1, 2, 6 and 7), the ones
related to characteristics of the evolving software. Later in
our study, we excluded law 7 because of challenges in data
collection, such as the need for an appropriate measurement
of the evolving quality of the system as perceived by the
users. A recent statement of the three laws that we studied
is given below [9]:

Law 1: Continuing Change. An E-type system must
be continually adapted else it becomes progressively less
satisfactory in use.
Law 2: Increasing Complexity. As an E-type system is
evolved its complexity increases unless work is done to
maintain or reduce it.
Law 6: Continuing Growth. The functional capability of
E-type systems must be continually incrased to maintain
user satisfaction over the system lifetime.

As in other OSS, Eclipse can be studied using various
data such as the source code of each release, the bytecode
for each supported platform for each release, the defect
database Bugzilla2, version repositories, and mailing lists.
In our study, due to effort and time constraints, we focused
on the Eclipse source code and the bytecode for Windows.
We also considered data from the Bugzilla defect database.
Our research question is the following: Having Eclipse’s
code repository (source and bytecode) and its Bugzilla re-
ports as data sources, what is the empirical support for laws
1, 2 and 6, by considering Eclipse as a single entity and by
looking at its major components?

3. About Eclipse

Eclipse is an open source, extensible, integrated devel-
opment environment (IDE) and also an application frame-
work (i.e., it can be used as a basis for other software sys-
tems). Eclipse is written in the popular object-oriented pro-
gramming language Java. In addition, a small part of the

2https://bugs.eclipse.org/bugs/

Eclipse implementation requires specific code for each plat-
form (e.g., Windows, Mac OS X, Linux) to improve the in-
teroperability of Eclipse and its performance.

We focused on the Eclipse SDK (i.e., Software Develop-
ment Kit), which includes the Eclipse Platform, Java Devel-
opment Tools (JDT), and the Plug-in Development Environ-
ment (PDE). Based on the data obtained from the Eclipse
project website3 there are about 60 active “committers”.
The majority of these contributors seem to be from IBM,
the company that initially created the system.

At the time of conducting this research, the release his-
tory data is available over a period close to six years, from
release 1.0 in November 2001 to release 3.3.1 in Septem-
ber 2007. There are several types of releases available4.
In this study we only studied the major releases of Eclipse.
They are indicated in boldface in Table 1, together with their
release date and the size difference of the downloadable
.zip file (in megabytes) with respect to the previous re-
lease. We excluded the minor releases from our study since
their small size increments suggest only a marginal contri-
bution to the overall Eclipse functionality. A similar conclu-
sion was reached when computing the incremental growth
in terms of number of .java files, number of .jar files,
number of compiled classes and LOC.

Table 1. Eclipse public releases
release type of release date ∆ size

3.3.1 minor Fri, 21 Sep 2007 0.2
3.3 major Mon, 25 Jun 2007 19.0

3.2.2 minor Mon, 12 Feb 2007 1.0
3.2.1 minor Thu, 21 Sep 2006 0.3

3.2 major Thu, 29 Jun 2006 17.1
3.1.2 minor Wed, 18 Jan 2006 0.0
3.1.1 minor Thu, 29 Sep 2005 0.4

3.1 major Mon, 27 Jun 2005 17.6
3.0.2 minor Fri, 11 Mar 2005 0.1
3.0.1 minor Thu, 16 Sep 2004 0.3

3.0 major Fri, 25 Jun 2004 22.5
2.1.3 minor Wed, 10 Mar 2004 0.0
2.1.2 minor Mon, 3 Nov 2003 0.0
2.1.1 minor Fri, 27 Jun 2003 0.9

2.1 major Thu, 27 Mar 2003 7.4
2.0.2 minor Thu, 7 Nov 2002 0.4
2.0.1 minor Thu, 29 Aug 2002 0.0

2.0 major Thu, 27 Jun 2002 17.4
1.0 major Wed, 7 Nov 2001 36.6

The Eclipse SDK represents nearly 2 million (more pre-
cisely, 1,988,767) LOC at the most recent release (3.3). At

3http://www.eclipse.org/projects/project_summary.php,
consulted on 26 May 2008 to obtain an up-to-date list of active committers to the
Eclipse Platform, PDE and JDT, respectively.

4http://download.eclipse.org/eclipse/downloads/build_
types.html

release 1.0, Eclipse counted only half a million LOC (to
be precise, 506,252), so the size of Eclipse in LOC has in-
creased four times over the considered period.

Each release can be downloaded as a single .zip file5

(e.g., eclipse-SDK-2.1.2-win32.zip) containing
code and both user and programmer documentation. For our
study we concentrate on the Java source code (in .java
files) and the compiled code (in .class files that are bun-
dled in .jar files). For studying the compiled versions
of the Eclipse SDK, we used the ones for the Windows
98/ME/2000/XP platform. While the code is an important
part of the .zip file, many other files are included for con-
figuration, data storage and documentation. To get an idea,
for release 3.0 about 63% of the files were Java code (10,635
.java files out of a total of 16,816 files).

4. Measurements and tools

To quantify changes (law 1), we compared the code at
consecutive pairs of releases. We used our own Python
scripts to count files and file sizes, and to compute differ-
ences (additions, deletions, modifications) between releases
using various Unix commands (diff, find, grep, sed).
We considered five complementary “types” of complexity
(law 2) and looked at six of its indicators. These included
measurements of code quality provided by STAN, a com-
mercial static code analysis tool [11], and defect data from
Eclipse’s defect reports stored in the Bugzilla bug tracking
system. Size (law 6) was assessed through eight size mea-
surements at different levels of abstraction and granularity.
Measurements of LOC were extracted by STAN. We de-
rived the other size measurements manually by inspecting
the Eclipse downloadable files. We used Microsoft Excel
for plotting and trend analysis.

STAN performs structural analysis on compiled Java
code, taking a set of .jar files as input. STAN com-
putes program dependencies, calculates various types of
measurements (e.g., size, cyclomatic complexity, coupling),
and produces visualisations of dependency graphs at vari-
ous levels of abstraction. The tool classifies all the mea-
surements into three categories: green (acceptable), yellow
(referred to as “warnings”) and red (referred to as “errors”),
comparing them to a set of thresholds. These thresholds
might be fine-tuned to specific domains or applications. In
our study we used the default threshold values. For cyclo-
matic complexity, these threshold values are ‘> 15’ for yel-
low and ‘> 20’ for red. One of the complexity indicators
that we considered, called quality issues by us, was calcu-
lated by adding the number of entities with yellow and red
measurements.

5http://archive.eclipse.org/eclipse/downloads

5. Results - global view

This section presents the results of the analysis of data
extracted from the Eclipse SDK when looking at Eclipse
globally, that is, as a single evolutionary entity. Unless
stated otherwise, from now on in this paper, wherever we
mention Eclipse, we refer to the Eclipse SDK.

5.1. Growth - global

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

0

5

10

15

20

25

1.0 2.0 2.1 3.0 3.1 3.2 3.3

subprojects (left axis)

features (left axis)

plugins (right axis)

Figure 1. Size of Eclipse measured in number
of subprojects, features and plug-ins.

Since Eclipse follows a well-defined plug-in architec-
ture [3, 12], we started our study by looking at the growth
of Eclipse in terms of architectural entities. In particu-
lar, we considered three different entities: plug-ins (the
components, which are the basic unit of functionality in
Eclipse [12], features (a grouping mechanism for plug-ins),
and subprojects. Subprojects are “namespaces” that store
code based on a ‘prefix’ naming convention, e.g., the jdt
subproject is built up from everything recursively contained
in org.eclipse.jdt.

Fig. 1 shows the growth trends of these architectural
units over releases. We observe that the number of plug-ins
has increased from 38 to 149 plug-ins (292%). The features
and subprojects have increased more slowly than plug-ins,
in relative terms (only by 38%). Because the notion of fea-
ture was introduced in Eclipse at release 2.0, its trend starts
at that release and not at 1.0.

At a finer granularity (bytes), Fig. 2 shows the growth
trend of Eclipse measured by the size of the .zip files
that contain the compiled (byte-code) and source code as re-
leased. Fig. 1 displayed the release numbers on the x-axis,
whilst Fig. 2 shows the release dates in format mm/dd/yy.
Since the major releases of Eclipse have been made avail-
able at more or less equally spaced time intervals, both re-
lease sequence numbers and real time dates show roughly
the same information. Therefore, the remaining plots in this

30

40

50

60

70

80

90

100

110

120

130

140

150

1
1
/0

7
/0

1

0
6
/2

7
/0

2

0
3
/2

7
/0

3

0
6
/2

5
/0

4

0
6
/2

7
/0

5

0
6
/2

9
/0

6

0
6
/2

5
/0

7

s
iz

e
 i
n

 M
B

release date

compiled code

source code

Figure 2. Size of downloadable .zip files (in
megabytes) as a function of release dates.

paper use the release sequence on the x-axis. It is worth
noting that the regularity in the timing of the major releases
suggests that the Eclipse development team followed a well-
planned release process.

0

300000

600000

900000

1200000

1500000

1800000

2100000

6000

9000

12000

15000

18000

21000

24000

27000

1.0 2.0 2.1 3.0 3.1 3.2 3.3

.java files (NOF)

compiled classes (NOC)

lines of code (LOC); see right axis

Figure 3. Growth in number of files (NOF), of
classes (NOC) and lines of code (LOC).

Fig. 3 shows similar growth trends to those of Fig. 2, this
time measured as the number of .java files (NOF), num-
ber of compiled classes (NOC) and LOC. The growth in
estimated LOC was computed by the STAN tool. The aver-
age growth has been 260 KLOC per each major release. The
relative growth in LOC between releases 1.0 (506 KLOC)
and 3.3 (1,988 KLOC) is about 293% and very close to the
relative growth in number of plug-ins (292%).

Visual inspection of Figures 1 to 3 suggests that continu-
ing growth is a dominant characteristic. In order to confirm
this, we calculated the incremental growth between releases
and checked whether it was positive, zero or negative. A
large portion of positive increments would support the hy-
pothesis that there is increasing growth. In total, out of 45
increments, one was negative (in features, from releases 2.1

to 3.0), six were zero (4 in subprojects and 2 in features)
and the rest (38 out of 45, or 84%) were positive, provid-
ing support that Eclipse’s evolution has followed law 6 of
“continuing growth”.

A further question that we explored is what type of trend
predominates. In order to do this, we examined the growth
trends of the eight size measures presented in figures 1 to 3.
Using Excel’s ‘trendline’ function, we fitted its five differ-
ent models (2nd order polynomial, linear, exponential, log-
arithmic and power models) to each measurement. Second
order polynomials have the property that the sign (positive
or negative) of the second order term can indicate whether
a trend is superlinear or sublinear [6]. This can give us in-
sights about the evolving complexity as is explained in sec-
tion 5.3. We used the coefficient of determination R2 as the
goodness-of-fit criterion. We fitted the models using the re-
lease sequence numbers on the x-axis. When observing the
trend line or curve superimposed on the actual data, for R2

values lower than 0.9 the trendline did not appear to be a
good fit. For this reason, we only recognised a trend model
as a good fit when R2 was equal or greater than 0.9. For
two competing models that were a good fit, if the difference
in R2 between a linear model and the best model was less
than 0.01, we report the trend as linear. This makes sense
because, generally, if the R2 difference is so low, the depar-
ture from linearity is marginal. Based on this, a trend model
was identified in six out of eight indicators. For subpro-
jects and features, the R2 values were lower than 0.9 and,
hence, no trend is reported. Within the six identified trends,
four of them (NOF, NOC, LOC and size of the compiled
code in MBytes) were linear, with R2 ranging from 0.992
to 0.997. For the other two (plug-ins and downloadable
source code in MBytes) the best fit were quadratic polyno-
mials (superlinear), with R2 values of 0.9712 and 0.9944,
respectively. For these two indicators, exponential models
provided slightly lower, but similarly good fits (R2 values
of 0.9706 and 0.9895, respectively). Our trend analysis sug-
gests that Eclipse’s evolution not only conforms to law 6
(“continuing growth”), but also that, according to six out of
eight growth indicators, the trends were sufficiently disci-
plined as to follow closely recognisable trend models.

5.2. Change - global

Fig. 4 presents the number of changes (i.e., additions,
modifications and deletions) in .java files between five
pairs of releases (2.0-2.1, 2.1-3.0, 3.0-3.1 and 3.1-3.2). It
is difficult to apply diff when the same filename occurs
more than twice in a pair of releases. Moreover, we could
not use the relative path as part of the filename because files
can be moved across folders between releases. Therefore,
for measurement of the number of modified files, we ex-
cluded all files with filenames that appeared more than once

in the same release. The percentage of excluded files varies
between 18% and 30% of all files, so we make an under-
estimation with maximum error of 30%. Fig. 4 shows the
number of files with modifications to code only, as well as
those files where the comments are also modified. Files
with modifications to code only (‘code modified files’ in
Fig. 4) represent between 75% and 90% of all modified
files. In the figure we observe that release 3.0 represents the
largest increment (number of additions) so far in the history
of Eclipse. This was accompanied by the largest number
of deletions, suggesting that 3.0 was also a restructuring re-
lease. Subsequently, the number of modified files reaches
its maximum in release 3.1, reflecting fixes and other re-
work necessary after release 3.0. Values of modifications
after release 3.1 decreased again.

0

2000

4000

6000

8000

2.0 - 2.1 2.1 - 3.0 3.0 - 3.1 3.1 - 3.2 3.2 - 3.3

net growth

modified files (with unique name)

code modified files (with unique name)

added files

deleted files

Figure 4. Added, changed and deleted files.

As a summary, we conclude that Eclipse also seems to
follow law 1 of “continuing change”. The highest number
of added files occurred at release 3.0 (see Fig. 4). The num-
ber of modified files is always higher than the number of
added files, with a peak of modified files at release 3.1.

5.3. Complexity - global

Complexity has possibly many dimensions and it is un-
likely to find a single generally accepted definition for each
of them. In this study, we explored six different ways to as-
sess complexity which correspond to five different “types”
of complexity. Some of the presented types may be over-
lapping and other types may be defined. The considered
types seemed compatible with the data that we were able to
extract. Due to lack of space, the statement of each type be-
low is short and we cannot explain their assumptions. There
is no meaning attached to the numerical order in the listing:

1. Complexity as size: given any program, a larger pro-
gram is likely to be more difficult to understand or
modify (assuming everything else constant). This
type of complexity can be described as related to size

through a monotonic function (e.g., Complexity =
a × Size, where a is a positive number). Within this
view, the observation of increasing size (e.g., in LOC)
will support the hypothesis of increasing complexity
of type 1.

2. Complexity as the inverse of productivity: as the
software gets more complex, the implementation of
any given enhancement is likely to be more diffi-
cult. If effort is constant, growth rate will decrease.
One hypothetical example of this would be a soft-
ware system that follows the relationship ∆Size =
b/∆Complexity where b is a positive number, re-
lated to the level of effort. Under this view, under
constant effort, a sublinearly increasing or stagnating
(∆Size = 0) size will support the hypothesis of in-
creasing complexity of type 2.

3. Complexity as the number of possible interconnec-
tions: increasing complexity of this type is likely to
lead to an increasing impact of any additions on exist-
ing code. Such impact can be measured by the ratio be-
tween number of additions and modifications. If type
3 complexity is increasing, this ratio will increase, that
is, adding every new entity will trigger the change of
an increasing number of existing entities [7].

4. Complexity as likelihood to introduce defects: increas-
ing complexity of this type will manifest itself as an in-
creasing number of defects introduced during its evo-
lution. The observation of an increasing number of de-
fects found, if other factors such as programming and
testing effort remain constant, will suggest increasing
complexity of type 4.

5. Complexity as code quality: an increasing number
of quality issues (or their density) identified by static
program analysis will suggest increasing complexity
of type 5. Quality issues are identified when a set
of complexity-related measurements, including cyclo-
matic complexity, exceed some threshold.

As seen in section 5.1, overall, the size of Eclipse has in-
creased over the six years considered. Hence, we can con-
clude that Eclipse’s type 1 complexity has been increasing.
With regards to complexity of type 2, either a sublinearly
growing size or stagnated size will suggest that it is increas-
ing. As also seen in section 5.1, six out of eight measure-
ments display either linear or superlinear growth with the
other two not displaying a consistent trend. Therefore, there
is no sufficient evidence that complexity of type 2 has been
increasing in Eclipse.

In order to assess complexity of type 3, one possible
measurement is the portion of system handled (PSH) [7].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.0 - 2.1 2.1 - 3.0 3.0 - 3.1 3.1 - 3.2 3.2 - 3.3

total modified files (with unique name)

code modified files (with unique name)

Figure 5. Portion of system handled (PSH).

This metric represents the ratio between the number of mod-
ified files and the total number of files (size). Fig. 5 presents
this data for Eclipse. PSH decreases its value in 3 out of the
4 release pairs for which modifications were measured. Its
overall trend is predominantly decreasing and for this rea-
son PSH provides no consistent support for increasing com-
plexity of type 3.

To explore the evidence for increasing complexity of
type 4, we extracted the number of defects reported by the
Bugzilla defect repository for each of the Eclipse releases.
The overall trend is given in Fig. 6. Out of seven releases,
only 2 (releases 2.0 and 3.0) show an increase in the number
of defects with respect to the previous release. There isn’t
a consistent increasing trend in the number of defects and,
hence, no indication of increasing complexity of type 4.

0

5000

10000

15000

20000

25000

30000

1.0 2.0 2.1 3.0 3.1 3.2 3.3

Figure 6. Total number of defect reports.

In search for further evidence related to law 2, we looked
at the number of issues identified in Eclipse by the STAN
tool, as an indicator of complexity of type 5. Fig. 7 dis-
plays the increase in number of issues computed by STAN
(at class level). We observed that the total number of
issues grows over time, closely following a linear trend
(R2 = 0.996). If we consider the total number of issues as
a measure of complexity, then we conclude that complexity
has been increasing.

In summary, only two (complexity as total size and as
number of quality issues) out of five complexity indicators
provided evidence of increasing complexity in Eclipse.

0

500

1000

1500

2000

2500

3000

3500

4000

1.0 2.0 2.1 3.0 3.1 3.2 3.3

Figure 7. Total number of quality issues.

6. Results - subproject view

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.0 2.0 2.1 3.0 3.1 3.2 3.3

!"#!$

"%&'()#$

*+,-$

+"./,-0$

12.!3)/4$

!)4,.!$

+"./,-$

*5'$

)+6'$

2!7$

,)41./"$

.(!$

-"21$

&15.!"$

+8!$

,)/"$

5"9&6$

*3.,"$

!".4$

8"95.:$

+,/'1!'(6$

15"$

&'$

:,4$

*5!$

jdt

ui

jface

vcm

pde

team

debug
core

swt
update

Figure 8. Relative subproject size (based on
NOC) over releases.

In this section we analyse the evolution of Eclipse at
the level of subprojects. Fig. 8 shows the relative contri-
bution of each subproject to the total size of the system over
time. By large, subprojects jdt and ui make up the largest
part of Eclipse, accounting for about half of the total size
of Eclipse. The figure also reveals that the relative size of
the different Eclipse subprojects does not change much over
different releases (the lines are roughly parallel).

Another observation that can be made in Fig. 8 is that
the size distribution of subprojects is not uniform. Some
subprojects are much larger than others. For example, in
all studied releases the seven largest subprojects (32% of all
the subprojects) account for more than 80% of the classes.

Fig. 9 displays the subprojects size (release 3.3), ranked
in descending order, and using the logarithm of the size in
NOC for the y-axis. With regards to law 6 of “continuing
growth”, the size of a few subprojects dominates the size
trends that we presented in section 5.1 for Eclipse as a single
entity. It is interesting to notice that the data in Fig. 9 closely
follows a negative exponential model (R2 = 0.962), which

Figure 9. Ranked subproject size (in NOC) at
release 3.3.

corresponds to the linear trendline added to the figure. For
the other releases, we fitted a negative exponential models,
resulting in R2 values of 0.968, 0.845, 0.856, 0.888, 0.911
and 0.928, for 1.0 to 3.2 respectively. R2 was higher than
0.9 and a reasonably good in three of the cases. It remains
an open question to explain why Eclipse’s subproject size
behaved as described and, in particular, why a negative ex-
ponential model is a good fit in 4 of the 7 studied releases.

6.1. Growth - subprojects

As can be seen from Fig. 1, the number of subprojects
increased approximately by 38 % from 16 subprojects at re-
lease 1.0 to 22 in release 3.3. Changes at subproject level
are observed in releases 2.0, 3.0 and 3.1 only. In release 2.0,
two subprojects were deleted (scripting and webdav),
two were newly introduced (platform and tomcat), and
one was renamed and reworked significantly (vcm became
team). In release 3.0, four new subprojects were intro-
duced (ltk, osgi, search2, text), providing addi-
tional evidence that this release was a major restructuring.
Finally, release 3.3 added two new subprojects (equinox
and jsch).

Fig. 10 shows the size of the 15 largest subprojects
over releases, measured in LOC. We calculated the rela-
tive growth in LOC from release 1.0 to release 3.3. The
value was positive in 20 instances, providing evidence for
law 6 of “continuing growth” at subproject level. The rela-
tive growth could not be calculated for two subprojects that
have been introduced at release 3.3 and have a single size
measurement. Three other subprojects were present only
at release 1.0 and then either removed or became another
subproject.

We fitted five different trend models (linear, quadratic,
exponential, power and logarithmic) to the growth data from
20 subprojects. Each of the other 5 subprojects had one
data point only and were excluded from this analysis. We
followed the same rules as we did for fitting models to the
global growth (section 5.1). We found that, within these 20

1

100001

200001

300001

400001

500001

600001

700001

1.0 2.0 2.1 3.0 3.1 3.2 3.3

jdt ui pde

swt team core

core debug update

help osgi ant

compare ltk jdi

Figure 10. Size of 15 largest subprojects over
releases (LOC).

subprojects, the growth of 15 subprojects can be modelled
with a good fit with R2 values in the range 0.998 to 0.923.
We identified 7 linear, 4 superlinear and 4 sublinear trends.
This group of 15 subprojects includes the eight larger sub-
projects, with size between 76 and 720 KLOC. Five subpro-
jects (all below 45 KLOC) displayed growth patterns that do
not provide a good fit to any of the models we fitted.

Unfortunately we were not able to extract data on the
number of modifications for each subproject. This is an
item for further work. However, additions to existing code
often lead to modifications (e.g.. in order to link the new
functionality to the existing code in some suitable way). For
this reason, the evidence in support of law 6 of “continuing
growth” can also be seen as providing indirect support for
law 1 of “continuing change”.

6.2. Complexity - subprojects

Due to lack of effort for data extraction we could only ex-
amine complexity types 1, 2, 4 and 5 (see section 5.3) at the
subproject level. The evidence of increasing size in at least
20 out of 25 subprojects (positive relative growth) given in
section 6.1 indicates that type 1 complexity has increased in
all the 20 subprojects that have been evolved (i.e., present
during more than one release). There is evidence that com-
plexity of type 2 has increased for 4 subprojects only (the
ones with a sublinear growth trend model).

To find out whether defect reports are an indicator of sub-
project complexity (type 4), we extracted the similar data of
Fig. 6 for each subproject. We encountered an additional
difficulty that the defect reports produced by Bugzilla can-
not be mapped in a straightforward and one-to-one way to
our notion of subprojects. In Bugzilla, some of the sub-
projects are classified as products (in particular equinox,
jdt and pde), while most of the other subprojects are clas-
sified as components of the Platform product. Although

this may affect our results, Fig. 11 seems to indicate the
same kind of behaviour for each of the subprojects as we
encountered for Eclipse as a whole. Although clearly some
subprojects have had more defects than others, we again ob-
serve a peak in releases 2.0 and 3.0. For the same reasons
given when discussing Fig. 6 in section 5.3, no evidence
can be found in Fig. 11 that complexity of type 4 has been
increasing.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1.0 2.0 2.1 3.0 3.1 3.2 3.3

jdt ui

swt pde

debug ant

compare search

team update

Figure 11. Number of defect reports in the 15
largest subprojects.

0

200

400

600

800

1000

1200

1400

1.0 2.0 2.1 3.0 3.1 3.2 3.3

jdt ui pde

swt team core

jface debug update

help osgi ant

compare ltk jdi

Figure 12. Number of STAN issues reported
for the 15 largest subprojects.

In order to evaluate complexity of type 5, we computed
the equivalent of Fig. 7 at subproject level, by counting the
number of issues reported by STAN per release for each
subproject. It is shown in Fig. 12. For 11 subprojects, the
number of quality issues is always increasing over releases.
Five subprojects have only one release interval for which
the number of quality issues is constant or decreasing, 3 of
which occur between releases 3.2 and 3.3, the most recent
studied. We fitted models as we did in section 6.1. Increas-
ing trends were identified for 14 subprojects with R2 values
in the range from 0.996 to 0.928 (6 were superlinear, 4 lin-

ear, and 4 sublinear). In 6 subprojects no trends were iden-
tified according to our criterion (R2 was lower than 0.9).
The remaining 5 subprojects had only one data point, so no
trend could be found.

In Fig. 13 we show the distribution of STAN issues
across subprojects. As was the case for the size distribution
(cf. Fig. 8 and Fig. 9), a negative exponential model best ex-
plains the distribution (when compared to linear, quadratic
polynomial, power, and logarithmic models).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.0 2.0 2.1 3.0 3.1 3.2 3.3

webdav

vcm

tomcat

text

platform

search2

equinox

jsch

ltk

search

compare

jdi

ant

help

osgi

debug

scripting

update

jface

team

core

pde

swt

ui

jdt

jdt

ui

swt

pde
core
team
jface

update debug

Figure 13. Distribution of number of quality
issues for subprojects.

In order to check whether subproject size, class size and
the number of quality issues were related across subpro-
jects, we did the following: (i) first, we computed the ra-
tio of LOC against number of classes for each subproject,
assuming that a higher average number of LOC per class
indicates a higher complexity (consistent with type 1 view);
(ii) second, we computed the ratio of STAN issues against
number of classes for each subproject (an indicator related
to complexity of type 5). In both cases, we counted in how
many releases the ratio was above average. We excluded
all subprojects that were available in one release only. The
results are summarised in Table 2. The values in the ta-
bles are fractions A/B where B is the number of releases
in which the subproject is present, and A the number of
times the value is above average. For example, ant has a
value of 2/7 for “issues/NOC”, indicating that the ratio is
above average in 2 out of 7 releases. Observe that 2 out of
3 of the biggest subprojects (ui and pde) do not appear on
this list because they are never above average. In contrast,
three of the smaller subprojects (swt, core and jdi) ap-
pear to have a significantly higher relative complexity when
looking at Table 2. In future work we intend to investigate
further why this is the case.

Table 2. Relative complexity of subprojects.
subproject issues/NOC LOC/NOC

above average above average
jdt 7/7 7/7

swt 6/7 7/7
jdi 7/7 5/7

core 5/7 6/7
osgi 3/4 4/4
ant 2/7 2/7

update 2/7 1/7
compare 7/7

jface 4/7
search 3/7
debug 3/7

platform 2/6
team 1/6

tomcat 6/6
text 3/4

7. Threats to validity

This section lists specific threats to the validity of our
results. These are in addition to the more general threats to
validity that one may encounter in similar studies [4].

Eclipse is a large system and there are different ways
of measuring it. For practical reasons, we focused on the
Eclipse SDK for Windows only. This explains why there are
differences in measurement values (e.g., in the number of
plug-ins) with respect to other studies (e.g., [14] that purely
focused on Eclipse’s architecture).

Law 2 states that “complexity increases unless work is
done to maintain or reduce it”. This means that, for rig-
orously assessing it, one should also measure the amount
of anti-regressive (i.e., complexity control) work [7] (e.g.,
refactorings which have led to a decrease in complexity).
Unfortunately, we could not do this due to the sheer size of
Eclipse and our effort limitations. In future work, refactor-
ing identification tools (e.g., [15]) could be helpful.

The five types of complexity (section 5.3) involve some
assumptions that we were not able to check due to lack
of data or effort to extract them. For example, a link
between increasing complexity and a sublinearly increas-
ing size trend (type 2) requires that the system have been
evolved at a constant level of effort. Changes in effort
level could trigger changes in growth and growth rate, even
stronger than those potentially related to changes in com-
plexity. Similarly, the use of defect data as an indicator of
complexity (type 4) assumes that the testing effort is con-
stant, since higher testing may lead to more defects found,
despite lack of any significant changes in complexity.

When using STAN to compute metrics for the whole
Eclipse SDK, for reasons of computer memory require-
ments we needed to restrict ourselves to computing the
class-level metrics only, thereby excluding all data that
could be gathered at the level of methods and fields. In prac-

tice, this means that we were not able to compute and study
three well-known coupling and cohesion metrics: coupling
between object classes (CBO), response for a class (RFC)
and lack of cohesion for methods (LCOM) [2].

8. Related work

A partial survey of empirical studies of OSS that are re-
lated to the laws is reported in [4]. We briefly discuss below
related work that is particularly relevant to our research.

Godfrey and Tu [5] studied the growth of Linux, and
found superlinearity in its growth (size in LOC). In our
study, we also found superlinear growth in Eclipse for size
in plug-ings and in MBytes (downlodable source code). As
seen in section 5.3, superlinearity does not support an in-
crease of type 3 complexity. However, complexity has other
dimensions (cf. section 5.3) and, in general, superlinear
growth can be seen as an indicator of increasing type 1
complexity. In particular, for Linux, the frequent addition
of device drivers by a large community of contributors can
explain the observed increase in growth rate. For the eval-
uation of complexity, device drivers should be considered
“external” to the studied system.

Herraiz et al. [6] studied the evolution of 13 OSS
projects, finding superlinear growth in 6 of them, linear
growth in 4 and sublinear in the remaining 3 systems. This
study looked only at the size (in number of files and LOC) at
the global level, finding similar results using any of the two
measures. In our study we looked at a single system, but us-
ing a larger number of metrics and we considered evolution
at both the global and subproject level.

Xing and Stroulia [15] investigated the structural evolu-
tion of Eclipse to find out which of the changes were due to
refactorings. Their focus was different than ours, and was
oriented towards detailed change information at the level of
classes, interfaces, methods and fields. They only looked at
the jdt subproject, which accounts for about one third of
the total size of Eclipse (see Fig. 8). In addition, only the
differences between 3 pairs of Eclipse releases were inves-
tigated (namely 2.0-2.1, 2.1.3-3.0, and 3.0.2-3.1).

Wermelinger et al. [14] studied the evolution of Eclipse
to find out to which extent it complies with architectural
design principles that have been argued to impact software
maintainability. To this extent, they analysed the Eclipse
architecture at the level of plug-ins. Our goal was not to
study the architectural evolution of Eclipse, but to assess,
more generally, whether Eclipse conforms to three of the
laws of software evolution. However, our own approach
complements the research of these authors in several ways.
First, we relied on different data sources (i.e., source code,
compiled code and bug reports) for our analysis. Second,
our analysis was performed at a different level of granularity
(mainly subprojects, classes and LOC).

9. Conclusions and further work

In this paper, we studied data from the popular open
source Eclipse IDE, reflecting about six years of its evolu-
tion. We examined empirical evidence for three of the laws
of software evolution, both at the global and “namespace”
(subproject) level. We looked at the behaviour of about 17
indicators for Eclipse as a single entity and 7 or so indica-
tors at subproject level. At the global level, Eclipse’s data
supports laws 1 and 6. Law 2 is only partially supported.
At subproject level, we observed that only a few of the 25
subprojects concentrate most of the code. A negative ex-
ponential model seems to capture well the relationship be-
tween size and the size ranking. We identified a variety of
size and complexity behaviours at subproject level. Our ap-
proach and results can help in the study of Eclipse’s further
evolution and in making comparisons to other IDE’s (e.g.,
NetBeans) and other OSS in general.

The study we report in this paper can be extended in dif-
ferent ways, some of which have already been mentioned.
One natural extension of this work is to evaluate whether
Eclipse’s evolution is consistent with the remaining five
laws (laws 3, 4, 5, 7 and 8). For this it will be necessary
to extract and analyse data from other data sources such
as versioning systems (CVS and Subversion repositories),
change request reports and community mailing lists. An-
other question for further research is how the Eclipse devel-
oper community evolves and how it relates to the technical
evolution characteristics of Eclipse itself.

Currently, there is a lack of a generally accepted set of
indicators, measurements and data analysis techniques to
evaluate the laws of software evolution. In order to achieve
this, further work is needed including comparative analysis
of different possible indicators and approaches.

Since Eclipse follows a plug-in architecture, it would be
helpful to study the evolution of the “external” Eclipse plug-
ins (in terms of lifetime, quality, popularity, effort and so
on) and how this relates to the evolution of Eclipse itself. In
particular, it would be interesting to assess the evolution im-
pact of a plug-in architecture on the quality and evolvability
of the “ecosystem” made by the core Eclipse and the many
external plug-ins.

Finally, further work will be required to establish
whether our present findings and approach can be gener-
alised by comparing the evolution of Eclipse to other sys-
tems that have similar characteristics (e.g., other OSS, other
IDE, other systems that follow a plug-in architecture).

Acknowledgements. Drs M. Wermelinger and Y. Yu
shared with us their insights about Eclipse. Israel Herraiz
brought to our attention the topic of asymmetrical distri-
butions in software size. Yann-Gaël Guéhéneuc provided
helpful comments on an early draft of this paper. We thank
C. Beck for clarifications about STAN. Support from the

F.R.S.-F.N.R.S. through postdoctoral scholarship 2.4519.05
to the research stay of one of the auhors (JFR) at UMH is
gratefully acknowledged.

References

[1] E. J. Barry, C. F. Kemerer, and S. A. Slaughter. How soft-
ware process automation affects software evolution: a longi-
tudinal empirical analysis. Journal of Software Maintenance
and Evolution: Research and Practice, 19(1):1–31, 2007.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design. IEEE Trans. Software Engineering,
20(6):476–493, June 1994.

[3] E. Clayberg and D. Rubel. Eclipse: Building Commercial-
Quality Plug-ins. Addison-Wesley Professional, 2 edition,
April 2006.

[4] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and
A. Capiluppi. Empirical studies of open source evolution. In
T. Mens and S. Demeyer, editors, Software Evolution, pages
263–288. Springer-Verlag, 2008.

[5] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. In Proc. Int’l Conf. Software Main-
tenance (ICSM), pages 131–142, Los Alamitos, California,
2000. IEEE Computer Society Press.

[6] I. Herraiz, G. Robles, J. M. Gonzalez-Barahona,
A. Capiluppi, and J. F. Ramil. Comparison between
SLOCs and number of files as size metrics for software
evolution analysis. In Proc. European Conf. Software
Maintenance and Reengineering (CSMR), Bari, Italy,
March 2006.

[7] M. M. Lehman and L. A. Belady. Program Evolution: Pro-
cesses of Software Change. Apic Studies In Data Processing.
Academic Press, 1985.

[8] M. M. Lehman and J. F. Ramil. Towards a theory of software
evolution - and its practical impact. In Proc. Int’l Workshop
on Principles of Software Evolution (IWPSE), pages 2–11.
IEEE Computer Society Press, November 2000. Kanazawa,
Japan.

[9] M. M. Lehman and J. F. Ramil. Rules and tools for soft-
ware evolution planning and management. In Special Issue
on Software Management, volume 11 of Annals of Software
Engineering, pages 16–44, 2001.

[10] M. M. Lehman, J. F. Ramil, P. Wernick, D. E. Perry, and
W. M. Turski. Metrics and laws of software evolution - the
nineties view. In Proc. IEEE Symp. Software Metrics, pages
20–32. IEEE Computer Society Press, 1997.

[11] Odysseus Software. STAN - Structure Analysis for Java.
http://www.stan4j.com, Fall 2007.

[12] D. Rubel. The heart of Eclipse. ACM Queue, 4(8):36–44,
October 2006.

[13] I. Sommerville. Software Engineering. Addison-Wesley, 6th
edition, 2001.

[14] M. Wermelinger, Y. Yu, and A. Lozano. Design principles
in architectural evolution: a case study. In Proc. Int’l Conf.
Software Maintenance (ICSM), 2008.

[15] Z. Xing and E. Stroulia. Refactoring practice: How it is and
how it should be supported - an Eclipse case study. In Proc.
Int’l Conf. Software Maintenance (ICSM), pages 458–468.
IEEE Computer Society Press, 2006.

