An Inquiry into the
Stability and Reliability of

UNIX Utilities

Brian L. Bowers

blbowers@cs.wisc.edu

KarlenLie
soph@cs.wisc.edu

Gregory J. Smethells
smethegj @cs.wisc.edu

University of Wisconsin — Madison
Computer Sciences Department
1210 West Dayton Street
Madison, W1 53706 USA

Abstract

We tested a large set of UNIX utilities under two popular UNIX variants, a GNU/Linux platform and a

Solaris platform, for characteristics of stability and reliability. The testing methodology we employed was simple,

yet effective — we subjected the utilities to input streams of random characters. Four percent to eleven percent of the
utilities we tested failed, either by crashing or by looping infinitely, and were subjected to scrutiny and debugging to

determine the cause.

1 Introduction

Our goals were two—fold: (1) to produce an updated set of tools and (2) to compare the reliability of current
UNIX utilities to the reliability found by earlier studies [1,2]. We chose GNU/Linux and Solaris as our test platforms
because they are representative of UNIX variants commonly used on workstation available today. The tests were
performed on machines running installations of Red Hat 6.2 and SunOS 5.7. After making minor substitutions with
equivalents for a few utilities, we went on to test essentially the same set of UNIX utilities as has been previously
examined by fuzz reports [1,2]. Our study’s results displayed improvement for utilities on both platforms, but

showed that the highest reliability continues to be found in systems running a GNU/Linux distribution.

To examine the reliability of these utilities, we used a program named fuzz that is able to produce a stream
of pseudo-random bytes on its stdout. These bytes are then given as input to other utilities to determine their

reliability and stability. No crashes or infinite loops were considered to be valid reactions to the input stream.

We took our definitions of a crash and an infinite loop from the original fuzz paper [1]. Any utility that we
caused to seg—fault and produce a core dump using only the random input from fuzz was labeled as an application
that crashed. Also, any utility that we caused to hang or produce output for a significant amount of time after the
input was exhausted was labeled as an infinite loop. Generally, we allowed at least five minutes to pass before
considering it to be a significant amount of time. Finally, any utility that hung waiting with input available was also
labeled as an infinite loop. Utilities that were suspended through the operating system (by control-z) were not

considered in this final case.

Initially, we assumed that we would see a similar proportion of crashes and hangs as in previous studies
[1,2]. We also assumed that previously reported "defects” would be removed. We were surprised to see
approximately 50% improvement on both platforms; we were equally surprised when we were able to discover bugs

in certain utilities that existed in one form or another since 1990.

This paper is organized in the following manner: Section 2 describes the testing methods we have used
during this research. Section 3 discusses how we updated the fuzz and ptyjig tools provided by the earlier studies.
Section 4 comments on the results of running these tools on our GNU/Linux and Solaris workstations. Section 5
offers some discussion surrounding related works. Section 6 provides our conclusions about the results of this study.

Lastly, Section 7 describes what further directions we feel this research could follow.

2 Methodology

The approach we employed is the same as that used in the original fuzz paper. We tried to repeat their

experiments with as little change as possible to allow valid comparisons between all sets of results.

We used random streams of bytes generated by the program fuzz as input to the various utilities, either via
stdin or a pseudo—terminal adaptor program, ptyjig. Each utility tested is expected to quit, with or without a verbose
error message, if the input does not meet its criterion for valid input. Any crashes or infinite loops, as defined above,
were not considered acceptable. Because the input streams we used cover a varied set of random characters, they
seem to be fairly adept at exposing latent bugs, even though the approach does not adhere to any particular strict
testing methodology. In the fuzz project’s view [1], any method that can find a bug in a repeatable manner is a good

method. Although the approach is crude, what it lacks in complexity is compensated by its speed and ease—of-use.

Non-interactive utilities were tested using several different types of random character input streams as
described in Table I on the following page. For interactive utilities the streams described in Table | were split into
lines of random length, having a mean of 128 characters to avoid "overflowing the input buffers on the terminal
device" [1]. This method parallels that of the original fuzz paper and should allow valid comparisons between all

results involved.

Character Types NULL char Input stream size (in bytes)

1 printable + nonprintable Yes 1x10°
2 printable + nonprintable Yes 1x10*
3 printable + nonprintable Yes 1x10°
4 Printable Yes 1x10®
5 Printable Yes 1x 10
6 printable Yes 1x10°
7 printable + nonprintable 1x10°
8 printable + nonprintable 1x 10
9 printable + nonprintable 1x10°
10 printable 1x10®
11 printable 1x10*
12 printable 1x10°

Tablel: Various types of randominput char stream types used during testing
Thistable originally appeared in the first fuzz paper [1].

3 Software Update

One of our goals was to provide an updated version of the original fuzz and ptyjig programs used to do the
random input testing. These programs were written during the original fuzz project [1]. One of the reasons for the
update was in the interest of keeping the differences between the tests done by our project and those that preceded us
to aminimum so that we could make valid comparisons between results. Also, we noted that it had been several
years since the code had been updated. We assumed an update might be necessary to even allow some of the code to
compile using current compilers and libraries. Lastly, to be of service to the community at large, we have been given

permission to release these utilities under the GNU General Public License (GPL).

3.1 Fuzz

We modernized fuzz from Kernighan and Ritchie (K&R) C style to modern ANSI C. During these changes,
we discovered, ironically, that fuzzitself contained a bug as shown below:
}/oi d nyputs(char *s)
i nt C;

while(s 1= 0) {

A comparison in a while—loop, attempting to find the end of an input string, was comparing a pointer to
NULL (zero). The pointer never took on the value NULL; however, what it pointed to did. The fix was to simply
look for the NULL-character which terminates C—style strings:

}/0id nyputs(char *s)
i nt C;

while (*s !'= 0) {

The bug was in rarely used code. The code is only used when an "epilog" to the sequence of characters

produced by fuzz is specified — such as "<esc>:q" to cause vi to quit properly. Since the scripts used for testing by

the original project did not utilize this feature the bug remained hidden until now.

3.2 Ptyjig

The fixes to fuzz were extremely minimal compared to ptyjig, partly due to the system dependent nature of
low-level pseudo—terminal code, which ptyjig uses extensively, and partly due to the evolution of standards in the C
programming language.

Initial changes to the ptyjig code base were related to the differences in pseudo—terminal implementations.
One of our major testing platforms was Solaris, which continues to have a BSD—-style pseudo—terminal interface.
Although ptyjig was originally written for BSD—style pseudo—terminals, the standards had changed. Header files
had been moved, renamed, or simply eliminated. We added numerous #include lines when we could. In some cases
we simply filled in missing MACRO constants with our own #define lines. Our other major platform was Red Hat
Linux and that required a significant amount of porting of the ptyjig code to the current POSIX standard for pseudo—

terminals used by that system. Much of this port was inspired by code found in The Linux Kernel Book by Card,

Dumas, and Mevel [3].

Some of the programs we tested needed their own command line arguments. The getopt routine, used by
ptyjig parses the entire command line as arguments to ptyjig. For example, we wanted emacsto run in the terminal
where it was started, without spawning its own X-Window. If we provided emacs with the command line flag "~
nw" it would behave just that way. We changed ptyjig so that the command "ptyjig —d 0.05 emacs —nw" would pass

the "—-nw" flag to emacs.

Also, to allow the code to compile on either Linux or Solaris, code segments related only to one system or
the other were encased in guard statements (#ifdef ... #endif) to support conditional compiling. These modifications

allowed the code, with proper #define statements set for the current OS, to compile and run successfully.

4 Discussion

Under the guidance of Dr. Barton Miller, we examined the set of utilities to be tested. Specifically, we
looked for software that was unmaintained. We replaced the ditroff package of utilities in our test bed with the more
modern groff package and replaced the venerable vi with vim. Despite our goal of reproducing the original fuzz tests
with as little change as possible, we felt it would be a foolish consistency to use software that had no chance of being
updated and that was being phased out of active use. Testing the current software gave us a better view of current
reliability.

For completeness we did perform initial tests on several utilities in the ditroff package, such as ditroff, nroff,
eqgn, and refer, all of which crashed under Linux and Solaris. Their counter—parts in the groff package did not crash

at all when given the same input files of random characters. Table Il is provided to show the commonly used name

along with the specific name used during testing on given platforms.

Common Name Sun0S3.2,4.0,4.1.3 SunOS5.7 Slackware 2.0.1 Red Hat 6.2

dbx dbx dbx gdb gdb
csh csh csh csh tcsh

eqn eqn gegn - gegn

groff ditroff groff ditroff groff
lex lex lex flex flex

nroff nroff gnroff nroff gnroff

refer refer grefer refer grefer
vi ex vim == vim

Tablell: Namesused in Table Il under the column "Utility" that had equivalent versions
under a different name, which we use during our testing.

A similar table appears in the second fuzz paper [2].
Our initial test runs of vimtook longer than expected. Our input files contained character sequences that
put the program into a suspended state. vimdid not "fail" our tests; the tests simply did not complete. Fortunately,
vimis capable of being flagged as "-Z" or run as rvim, a restricted instantiation of vimthat does not allow

suspension of the process. Since our definition does not allow suspended states to be considered infinite loops,

testing in the above manner allowed us to fairly apply our criterion for failure or success to vimas well (use of "-Z"

was not necessary on Red Hat 6.2).

We observed few crashes and infinite loops in the utilities under GNU/Linux. Only emacs became caught
in an infinite loop and only ptx and tcsh crashed. Solaris utilities exhibited more crashes and hangs than Linux.
Among those that crashed were adb, col, dc, plot, ul, and units. For infinite loops, there were two: dbx and look. In

comparison to the 1990 and 1995 studies, these results are an improvement.

In the tradition of fuzz reports, we shall give examples of each category of failure type taken from the

source code of utilities we tested.

4.1 Arrays and Pointers

Easily the most prominent cause of failures, pointers generally caused crashes of utilities because of a lack

in the conditional tests of an enclosing control-loop. A prime example is found in tcsh:

file sh.lex.c: line 669

while ((c = getC(0)) = (1)) {
*np++ = (char)c;
ifgc == delim) delimcnt——;
if(ldelimcnt) break;

No attempt is made to check for the end of the array pointed to by the variable np inside the loop condition. The
variable np points to a fixed length array containing only 121 positions. Various ASCII input strings of proper length

with minimal delimiters can put np beyond the array’s bounds.

A simple solution would be to compare the position of np to the end of the corresponding array and
produce an error if the input string does not fit a length criterion. Errors of this variety occur within the code of
novices and experts alike. There exists an well-known association between an array and its length that cries for an
object—oriented approach to glue these pieces into one and allow only certain methods of access. Certainly issues of
efficiency versus reliability come into conflict here. However, in a computing environment growing ever more prone

to security hacks, errors involving pointer manipulation should be minimized.

4.2 Not Checking Return Codes

A cause of infinite loops that continues to exist in utilities is code that does not check the return value of a
function. The example we present is from adb. A bug of this form has existed in adb since the original fuzz paper,
though the binary we tested was as recent as 1998. The function rdc in adb makes a call to readchar without

checking the result returned:

file runpcs.c: line 279

whi | e ('isspace(lastc)) {
*p++=| ast c;
(voi d) readchar();

The variable lastc is set by the function readchar and contains the value -1 if readchar attempts to read past the end
of input (EOI). If EOI is reached before a space character is encountered, this while—loop will continue to iterate

unabated.

4.3 Dangerous Input Functions

Some utilities still depend upon dangerous input functions for parsing data. Generally, the function uses a
pointer parameter to store data, but no parameter related to the length of the array over which it will iterate. Here we
show code defining a function name getstr, in plot, which is similar in nature to gets:

file crtdriver.c: line 150:

'g'eistrgs, fin) char *s; FILE *fin; ({
or (;f*? = getcgfi?); S++)
i *s == '\n’

*s = '\0;

An obvious addition of a length parameter would help prevent this function from causing crashes, as would the use
of a loop structure that better defines how this function operates, such as a while—loop. The supposed while-loop’s
condition would check the return from getc and exit the loop if a newline was reached or if the length of the array

would be exceeded.

SunOS SunOS STION] SEW S Red Hat
Utility 3.2/4.0 413 5.7 2.1.0 6.2
(1990) (1995) (2001) (1995) (2001)

Tablelll: C- Crash, [C] — SunOS 3.2 only, <C> - SunOS 4.0 only,H — Hang, X — Not tested

Utility

SunoOS
3.2/4.0
(1990)

SunoSs
41.3
(1995)

SunoOS
5.7
(2001)

Slackware
2.1.0
(1995)

Red Hat
6.2
(2001)

tested 83 80 76 55 68
crash/hang 24 18 8 5 3
% failed 29% 23% 11%

9%

Tablelll: C- Crash, [C] = SunOS 3.2 only, <C> - SunOS 4.0 only,H — Hang, X — Not tested

5 Related Works

Two previous studies [1,2] from The University of Wisconsin — Madison have tested UNIX utilities.
Members of the Internet community have found these studies and have added their efforts to increase the reliability

of the various utilities.

An article on Slashdot [6] pertaining to the studies done at Madison inspired Ben Woodward to create an
alternate version of fuzz, for Linux, and release it under the GPL [4]. His utility runs more automated fuzz tests, on a
specified utility, in the spirit of the original fuzz program. Bug reports can be emailed back, if enabled during the
first run of the utility, to a central location to aid in collecting information about bugs in utilities in Linux
distributions (the version of Woodward’s fuzz we tested unfortunately did not compile on Solaris). The source code
to this fuzz utility and more information about its use can be found on SourceForge [4].

Another web-site, humorously entitled "The Bulletproof Penguin”, is focused on bringing about the fixes
of all bugs found in the 1995 fuzz paper and elsewhere [5]. This page is maintained by Scott Maxwell, who has been
diligent enough to send in patches to maintainers for all the bug fixes he has found. This, no doubt, has led to the

increase in stability, since the 1995 study, of the utilities we tested on our GNU/Linux platform.

6 Conclusions

Fuzz testing treats software as a black—box. Random inputs are fed to the program and the results are
observed. If the program crashes or hangs, it has failed the test and has bugs. Unfortunately, it is not possible to say
that a program has no bugs, simply because it did not crash and did not hang; the lack of a failure only indicates that
the test failed to find any bugs. However, if a bug is found, the method makes repeatability very simple, and hence,
tracking down a bug easier. It has made creating reliable software that much easier and, at the very least, UNIX
utilities on the GNU/Linux platform have benefited [5].

UNIX utilities have improved since the original Fuzz testing [1]. We were only able to crash or hang 4% to
11% of the current utilities as compared to 9% to 23% in the previous study [2]. Despite the improvement, we still
found bugs that were similar to bugs found in the original paper eleven years ago and these bugs occur despite well-

known warnings.

The following quote is taken, by way of the original fuzz paper, from the Solaris 2.3 manual page for gets

and is related to the bug described in Section 4.3:

When using gets(), if the length of an input line exceeds the size of s, indeterminate behavior may result.
For thisreason, it is strongly recommended that gets() be avoided in favor of fgets().

An updated version of the gets manual page, from Mandrake—-Linux 7.2, says the following in its BUGS section:
Never use gets(). Becauseit isimpossible to tell without knowing the data in advance how many characters
gets() will read, and because gets() will continue to store characters past the end of the buffer, it is
extremely dangerousto use. It has been used to break computer security. Use fgets() instead.

The majority of the errors we found were pointer related. In fact, even the failure due to using a gets variant
is related to pointers. Many of these errors were simply caused by moving pointers beyond an array’s fixed sized

bounds. These errors can be found in commonly used utilities, such as tcsh. Books, including Deitel and Deitel’s

C++: How to Program, warn about over—running array boundaries [8]:

When storing a string of charactersin a character array, be sure that the array is large enough to hold the
largest string that will be stored. ? If a string islonger than the character array in which it isto be stored,
characters beyond the end of the array will overwrite data in memory following the array.
Pointer errors were the prominent cause of crashes in utilities in each of the fuzz studies [1,2]. From this, we know
these types of errors occur because programmers did not heed the warnings and experiences of others. We speculate
that making pointer arithmetic available in a language will cause some pointer related errors. However, based on the

fact that GNU/Linux utilities attained 4% failure rate we believe that at least this level of reliability is possible and

these types of errors are preventable.

7 Looking Ahead

Another logical next step is to systematically test network related daemon software, including BIND, ftpd,
fingerd, and sendmail. Events such as the Internet Worm in 1989, were a warning that local software problems could
affect many systems. Recent Distributed Denial of Service attacks have raised some awareness of software
vulnerabilities in network related packages. Each day more businesses and homes get broadband connections to the
Internet. Attempts are made on a daily basis to remotely crack systems using stack smashing and buffer overflows.
Fuzz generated input streams can be used to find software vulnerable to these types of attack. We, as a community,

need to perform benevolent attacks on our own systems, to find and repair defective software.

Acknowledgements

We would like to thank Dr. Barton Miller for his suggestions and guidance during this project. Thanksis
also due for the assistance provided by David Parter and the Computer Systems Lab during our examination of the

Solaris source code.

Bibliography

[1] Miller, Bart, Lars Fredriksen, and Bryan So. "An Empirical Study of the Reliability of UNIX Utilities",
Communications of the ACM 33.12 (1990): 32-44.

[2] Miller, Bart, et. al., "Fuzz Revisited: A Re—examination of the Reliability of UNIX utilities and Services",
Madison: U of Wisconsin, 2000.

[3] Card, Remy, Eric Dumas, and Franck Mevel. The Linux Kernel Book. Paris: Editions Eyrolles, 1997.
English Ed., John Wiley and Sons, Ltd., 1998.

[4] Woodward, Ben. "Fuzz home page." 29 Nov. 1999. SourceForge.Net.
17 Apr. 2001. <http://fuzz.sourceforge.net>.

[5] Maxwell, Scott. "The BulletProof Penguin." 1 Aug. 2000. Pacbell.Net.
17 Apr. 2001. <http://home.pacbell.net/s—max/scott/bulletproof—penguin.html>.

[6] Hemos. "Linux and GNU at Their Best." 10 Jan. 1999. Slashdot.Org
1 May 2001. <http://slashdot.org/articles/99/01/10/173223.shtml>.

[7] Deitel, H.M. and P.J. Deitel. C++: How To Program. 3™ Ed. New Jersey: Prentice Hall, Inc., 2001.

