400G and 800G Ethernet and Optics

Andreas Bechtolsheim Arista Networks, Inc Founder, Chief Development Officer and Chairman

The upcoming 100G-400G Transition

Ethernet Speed Transitions have been the primary driving force to improve the throughput and the price-performance of data center networks

4

The NEW Technology Learning Curve

Source: Brad Booth and Tom Issenhuth Microsoft, IEEE 802.3 400G

For a new technology to ramp quickly, it must be more cost-effective than the previous technology it displaces

40G - 100G - 400G Switch Port Transition

Source: Dell'Oro Group July 2018 Ethernet Switching Forecast

ARISTA

40G to 100G Ethernet Transition [Ports]

Source: Dell'Oro Market Research, Ethernet Switch Update, July 2018

7

Expected 400G Ethernet Ramp [Ports]

400G ramp is slower than 100G for at least three key reasons:

Availability of new 400G optics
Availability of new 400G switches
Qualification of new systems

Source: Dell'Oro Market Research, Ethernet Switch Update, July 2018

Vast Majority of 400G Will be Deployed in Cloud

8

Expected 100G to 400G Bandwidth Cross-Over

Source: Dell'Oro Group July 2018 Ethernet Switching Forecast

Expected Transition from 50G to 100G SERDES

Source: 650 Group LLC, December 2018

Merchant Switch Silicon Bandwidth Growth

ARISTA

Jericho VOQ Big Buffer Bandwidth Per Chip

400G Datacenter Optics

400G Datacenter Optics Standards

Name	Fiber	Reach	Modulation
400G-ZR/ZR+	Duplex SMF	10km-1000km	16-QAM
400G-FR4/LR4	Duplex SMF	2km/10km	100G-PAM4
400G-DR4	8xSMF	500m/2km	100G-PAM4
400G-SR8	16xMMF	50m	50G-PAM4
400G-CR8	copper	3m	50G-PAM4

Arista will support all 400G Optics that are relevant in market

ARISTA

Transition of Cloud Networks from 100G to 400G

The most interesting new optics: 400G-ZR and 400G-ZR+

What is 400G-ZR/ZR+?

- Industry's First Multi-vendor DWDM Standard
- Coherent, Tunable, Pluggable DCO Module
- 400G, 300G, 200G and 100G speeds
- Dense Client Optics Formfactor
- Supports 14.4 Tbps per 1U
- Max 20W power for 400G-ZR+

Order of Magnitude Cost Reduction

18

400G-ZR Standards and Reach

Client Interface	Framing/FEC	Modulation	Reach
400GE 2x200GE 4x100GE OTU4	OIF 400ZR OpenROADM 2.1 OpenROADM 3.1 ITU G709.2 ITU G709.3 IEEE 802.3ck	400G-16QAM 300G-8QAM 200G-QPSK 100G-QPSK	Up to 1000km Up to 2000km Up to 4000km Up to 8000km

Use Cases for 400G-ZR/ZR+

- DCI (Datacenter Interconnect)
- Metro-Reach DWDM Networks
- Long-Reach DWDM Networks
- 5G Aggregation
- Cable R-PHY Aggregation

ARISTA

400G-ZR+ Covers Most of USA with 400G DWDM

400G-ZR+ Covers all of Europe with 400G-DWDM

PAN EUROPEAN FIBEROPTIC NETWORK ROUTES PLANNED OR IN PLACE

Image Credit: Mattia Cantono, Roberto Gaudino, Vittorio Curri, Stephan Pachnicke, "Potentialities and Criticalities of Flexible-Rate Transponders in DWDM Networks: A Statistical Approach," J. Opt. Commun. Netw. **8**, A76-A85 (2016);

400G-ZR+ Covers Most of Asia

Customers Can Source 400G-ZR Modules Directly

-> Avoids Margin Stacking

System Vendor Can Build One System Design

-> No extra Investment Required to Deliver DCO

Customers Can Mix and Match DCO and Client Optics

-> Easy configurability and easy field replacement Multiple SKUs Expected

-> 10km-100km-300km-1000km, high-output-power, etc

Pluggable DCO Form Factor Transition to OSFP

ARISTA

Roadmap to 800G-ZR

- 800G-16QAM Feasible with 120 Gbaud
- Same Pluggable Formfactor (800G-OSFP)
- Targeting Same Power Envelope ~ 20W
- Double the Power Efficiency per bandwidth
- Significantly improved price-performance
- Backward compatible with 400G-ZR/ZR+

400G-ZR/ZR+ Summary

- First True Multi-vendor Interoperable DCO Standard
- Revolutionary Price-Performance
- Very High Density: 14.4T per 1U
- Very Low Power: 20W for 400G 1000km Reach
- High-density Pluggable Formfactor
- Eliminates Separate Transport Shelf
- Eliminates Special DCO System Designs
- Roadmap to 800G-ZR/ZR+ in 2022/2023

400G and 800G Optics Module Form Factors

The OSFP (Octal Small Form Factor Pluggable)

High Port Density: Up to 36 per 1U

28.8T with 8x100G SerDes

High Thermal Capability

Up to 20W Power Capability

Backward Compatible with QSFP

With Simple OSFP-QSFP Adaptor

The QSFP-DD (QSFP Double Density)

Eight Lanes at 56G-PAM4

Supports 400G with 8x50G lanes

Port Density: 36 per 1U

14.4 Tbps per 1U

Dual Row Connector Design

Challenging to support 112G

Thermal Limitations

Difficult to support > 15W

QSFP-DD Type 1 and Type 2 form factors.

Pluggable Form Factors Comparison

OSFP is the right good choice for ZR+ and 800G (Dual 400G)

ARISTA

112G-PAM4 SerDes Demonstration (OFC 2018)

10 inch overall channel

10" Trace Channel plus OSFP Connector 24db Insertion Loss Die to Die, 16db Ball-to-Ball Measured BER= approx. 6x10⁻⁷

400G-ZR 100km Reach 15W Power 400G-ZR+ up to 1000km Reach 20W Power

400G-ZR+ Optics Approaching the Performance of Traditional High-end DWDM Optics

400G-FR4/LR4 Optics 10-12W Thermal Envelope Dual 400G/800G Optics Need 20W Thermal Envelope

No Significant Power Reduction going from 400G to 800G

The Biggest Challenge for Operators

How to Increase Bandwidth for next-gen Applications while simultaneously lowering CAPEX and OPEX

400G Router Price per Port

10X Improvement in Price-Per Port with with Merchant Silicon Routers compared to legacy Router Price Points

Legacy Router

Merchant Silicon

400G DWDM Price Per Bandwidth

Order of Magnitude Cost-Reduction with 400G-ZR/ZR+ compared to legacy Optical Transport Price Points

Legacy DWDM

400G-ZR/ZR+

Fatter Pipes are Easier to Manage

Fatter Pipes are more efficient and easier to manage than equivalent bandwidth with smaller pipes

Fatter Pipes are Lower Cost per Bandwidth

400G is fundamentally lower cost than 4x100G

400G Summary

Large Improvement in Bandwidth Price-Performance

Enables Fundamentally more cost-effective Networks that are also more efficient and easier to manage

Timeline: Field Trials in 2019, Production in 2020