JACAL

Symbolic Mathematics System
Version 1c6, February 2020

Aubrey Jaffer

This manual is for JACAL (version 1¢6, February 2020), an interactive symbolic mathe-
matics system.

Copyright (©) 1993-1999, 2002, 2006, 2007, 2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

Table of Contents

1 Overview.............. 1
1.1 Authors and Bibliography i 1
1.2 Installation......... ..o 2
1.3 Running Jacal....... ... 3
1.4 Release Notes ... 4
1.5 GNU Free Documentation License, 5

2 Algebra............... ... 14
2.1 Algebraic Operatorsuiiuiiiini i 14
2.2 Algebraic Commands.ouiuiiiiiiii .. 16
2.3 Rational EXpressiono.uiiiiiiiiiiiiiiiiiiiii i 19
2.4 Polynomials............ . 20
2.5 Interpolation 24
2.6 Factoring...........ooiiiiiiii 25

3 Calculus.............. ... 30
3.1 Differential Operator, 30
3.2 Derivatives 30
3.3 Integrationo 31

4 Matrices and Tensors.......................... 32
4.1 Generating Matrices. ... 32
4.2 Matrix Parts 34
4.3 Matrix commandsoiiiiiii 37
A4 TTEIISOTS oo vt e e 40
4.5 Tensor Multiplication..............coiiiiiiii .. 41
4.6 Tensor contraction............ ...t 42
4.7 Shifting of Tensor Indices....... i i 42
4.8 Swapping of Tensor Indices. ...t 43

5 Lambda Calculus............................... 44

6 Miscellaneous............... ... 46

T Flags ... 52

1 Overview

JACAL is a symbolic mathematics system for the simplification and manipulation of equa-
tions and single and multiple valued algebraic expressions constructed of numbers, variables,
radicals, and algebraic functions, differential, and holonomic functions. In addition, vectors
and matrices of the above objects are included.

JACAL 1c¢6 was released February 2020. Current information about JACAL can be
found on JACAL’s WWW home page:
http://people.csail.mit.edu/jaffer/JACAL

JACAL, part of the GNU project, is free software, and you are welcome to redistribute
it under certain conditions; See the file COPYING with this program or type (terms) () ;
to JACAL for details.

For a list of the features that have changed since the last JACAL release, see the file
ANNOUNCE. For a list of the features that have changed over time, see the file ChangelLog.

1.1 Authors and Bibliography

Aubrey Jaffer
Most of JACAL

Michael Thomas
Polynomial Factoring.

Jerry D. Hedden
Tensors.

The maintainer can be reached as ‘agj@alum.mit.edu’.
Bibliography

[ACP] Donald Ervin Knuth.
The Art of Computer Programming : Seminumerical Algorithms (Vol 2).
2nd Ed (1981) Addison-Wesley Pub Co; ISBN: 0-201-03822-6

[GCL] Keith O. Geddes, Stephen R. Czapor, George Labahn.
Algorithms for Computer Algebra.
(October 1992) Kluwer Academic Pub; ISBN: 0-7923-9259-0

[Siret] Y. Siret (Editor), E. Tournier, J. H. Davenport, F. Tournier.
Computer Algebra: Systems and Algorithms for Algebraic Computation
2nd edition (June 1993) Academic Press; ISBN: 0-122-04232-8

[R5RS] Richard Kelsey and William Clinger and Jonathan (Rees, editors)
Revised(5) Report on the Algorithmic Language Scheme (. ./r5rs_toc),
Higher-Order and Symbolic Computation Volume 11, Number 1 (1998),
pp. 7-105, or
ACM SIGPLAN Notices 33(9), September 1998.

[SLIB] Todd R. Eigenschink and Aubrey Jaffer.
SLIB; The Portable Scheme Library (../slib_toc)

http://people.csail.mit.edu/jaffer/JACAL
../r5rs_toc
../slib_toc

Chapter 1: Overview 2

1.2 Installation

The JACAL program is written in the Algorithmic Language Scheme. So you must ob-
tain and install a Scheme implementation in order to run it. The installation procedures
given here use the SCM Scheme implementation. If your system has a Scheme (or Guile)
implementation installed, then the ‘scm’ steps are unnecessary.

JACAL also requires the SLIB Portable Scheme library which is available from http://
people.csail.mit.edu/jaffer/SLIB.

x86_64 GNU/Linux with Redhat Package Manager (rpm) [System]

wget http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5£3-1.x86_64.rpm
wget http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6-1.noarch.rpm
wget http://groups.csail.mit.edu/mac/ftpdir/scm/jacal-1c6-1.noarch.rpm
rpm -U scm-5£3-1.x86_64.rpm slib-3b6-1.noarch.rpm jacal-1c6-1.noarch.rpm
rm scm-5£3-1.x86_64.rpm slib-3b6-1.noarch.rpm jacal-1c6-1.noarch.rpm

The command ‘jacal’ will start an interactive session.

Unix [System]
GNU/Linux [System]
wget http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5£3.zip
wget http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6.zip
wget http://groups.csail.mit.edu/mac/ftpdir/scm/jacal-1c6.zip
unzip -ao scm-5£f3.zip
unzip -ao slib-3b6.zip
unzip -ao jacal-1c6.zip
(cd slib; ./configure --prefix=/usr/local/; make install)
(cd scm; ./configure --prefix=/usr/local/; make scm; make install)
(cd jacal; ./configure --prefix=/usr/local/; make install)
rm scm-5£3.zip slib-3b6.zip jacal-1c6.zip

The command ‘jacal’ will start an interactive session using ELK, Gambit, Gauche,
Guile, Larceny, MIT-Scheme, MzScheme, Scheme48, SCM, or SISC. Type ‘jacal
--help’ for instructions.

Apple [System]
http://www.io.com/~cobblers/scm/ has downloads and utilities for installing SCM
and SLIB on Macintosh computers.

x86 Microsoft [System)]
Download and run http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6-1.
exe,

http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5£3-1.exe, and
http://groups.csail.mit.edu/mac/ftpdir/scm/jacal-1c6-1.exe.
Compiling Jacal

For Scheme implementations with compilers, it is worthwhile to compile SLIB files, and the
JACAL files types.scm and poly.scm.

http://people.csail.mit.edu/jaffer/SLIB
http://people.csail.mit.edu/jaffer/SLIB
http://www.io.com/~cobblers/scm/
http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6-1.exe
http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6-1.exe
http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5f3-1.exe
http://groups.csail.mit.edu/mac/ftpdir/scm/jacal-1c6-1.exe

Chapter 1: Overview 3

1.3 Running Jacal

If you successfully executed one of the installations of the previous section, then typing
‘jacal’ or clicking an icon will begin an interactive session.

To manually start jacal, start your Scheme implementation with SLIB. This may involve
setting up that implementation’s initialization file or LOADing a ‘.init’ file from the slib
directory. Then type:

(slib:load "/usr/local/lib/jacal/math")
where /usr/local/lib/jacal/ is a path to the JACAL directory. JACAL should then
print:

JACAL version 1c6, Copyright 1989-1999, 2002 Aubrey Jaffer

JACAL comes with ABSOLUTELY NO WARRANTY; for details type ‘(terms)’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘(terms)’ for details.

;35 Type (math) to begin.

Do as it says:

(math)

=

type qed; to return to scheme, type help; for help.
el :

And you are ready to try the commands described in the rest of the manual.

Demonstrating Jacal
There are several demonstration files in the jacal directory. To run, use the batch command
Chapter 6 [Miscellaneous], page 46.
‘batch("demo") ;’
Demonstrates a variety of JACAL features.

‘batch("test.math");’
Tests each operator.

‘batch("rw.math");’
Demonstrates tensors and The Robertson-Walker Cosmology Model.

Recovery from Errors

As JACAL is a complicated program there are bugs which will occasionally cause the
program to stop with some sort of error reported by the underlying Scheme system. In
interactive implementations (such as SCM) you can usually continue your session by typing
(math). The expression which was input to JACAL just before the error will be lost but
you should be able to otherwise continue with your session.

Stopping Jacal

The command quit(); will end your JACAL session.

With non-interactive Scheme implementations the JACAL command ged () ; or typing
the end-of-file character (C-z on MS-DOS and VMS, C-d on others) will end your JACAL
session.

Chapter 1: Overview 4

The command ged(); will return to the interactive Scheme session. Typing (math)
will return to the JACAL session.

From the interactive Scheme session (exit) or possibly an end-of-file character will
terminate the session.

1.4 Release Notes

With the standard input grammar, the precedence of ‘=’ as a prefix behaves strangely.
a”-b*c becomes a” (-b*c) while a"b*xc = (a"b) *c.

Using divide to divide a polynomial by an integer does not work.

The command example executes the example it gives. This can lead to unpredictable
results if the variables and constants in the example have already been given values by the
user.

The function minor should be modified to accept lists for row and col.

Resultant might be modified to compute the resultant of a system of polynomials with
respect to a list of variables.
Conventions

Things that are labeled as Operators can occur in expressions output by Jacal. Things
that are labeled as Commands act upon their arguments and do not generally occur in
expressions output by Jacal. Things that are labeled as flags are set to control aspects of
the Jacal environment.

The examples throughout this text were produced using SCM.

Jacal has several grammers it understands. The standard grammar is used in this
manual. It is like simple TeX grammar and algol family computer languages.

Identifier names are case sensitive and can be any number of characters long.

Manifest

COPYING
details the LACK OF WARRANTY for Jacal and the conditions for distributing
Jacal.

HELP is online introduction to using Jacal.

ChangeLog
documents changes to Jacal.

jacal is a unix (sh) script to start an interactive jacal session.

demo demonstrates batch file use. "batch(demo);" to use in jacal.

rw.math is a batch file of Robertson-Walker model of General Relativity.
test.math is a batch file which tests Jacal.

jacal.texi is documentation on how to use jacal in TeXinfo format.

DOC has files telling about how jacal works.

algdenom gives an algorithm for clearing radicals and other algebraic field
extensions from denominators.

Chapter 1: Overview 5

grammar explains how to create new grammars.
history gives a little history of jacal.
lambda explains mid-level data formats. From a Dr. Dobbs article.
ratint.tex article explaining jacal’s integration algorithm.
math.scm is the file you load into scheme in order to run jacal.

toploads.scm
contains comments describing the rest of the files.

modeinit.scm
has initializations for modes in Jacal.

view.scm is a program for viewing TeX expressions.

1.5 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

http://fsf.org/

Chapter 1: Overview 6

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

Chapter 1: Overview 7

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time

Chapter 1: Overview 8

you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

Chapter 1: Overview 9

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

Chapter 1: Overview 10

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

Chapter 1: Overview 11

10.

11.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

http://www.gnu.org/copyleft/

Chapter 1: Overview 12

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Chapter 1: Overview 13

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

14

2 Algebra

2.1 Algebraic Operators

+ augend addend [Operator]
Addition of scalar quantities or componentwise addition of bunches is accomplished
by means of the infix operator +. For example,

e2 : a:[[1, 3, 5], [2, 4, 71];

[1 3 5]
e2: []
[2 4 7]

e3 : b:[2, 4];

e3: [2, 4]

ed : a + b;
[3 5 71

ed: []
[6 8 11]

eb : 3 + 2;

eb: b

e6 : c + b;

e6: [2 +c, 4 + c]
e7 : el + eb;

2 2
e7: 5+ (8a+12a)b

- minuend subtrahend [Operator]

- subtrahend [Operator]
The symbol - is used to denote either the binary infix operator subtraction or the
unary minus.

Chapter 2: Algebra 15

el : -[1,2,3];

el: [-1, -2, -3]

e2 : 3-7;

e2: -4
+/- minuend subtrahend [Operator]
-/+ minuend subtrahend [Operator]
+/- augend [Operator]
-/+ augend [Operator]

Jacal allows the use of +/- and -/+ as ambiguous signs (unary plus-or-minus, unary
minus-or-plus) and as ambiguous infix operators (binary plus-or-minus, binary minus-
or-plus). The value +/- is also represented by the constant %sqrtil, while -/+ is
represented by -%sqrtl.

e7 : u:+/-3;

e7: 3 Jsqrti

e8 : u2;
e8: 9

e9 : +/-(W;
e9: 3

el0 : u-/+3;

el0: b-/+(3 Y%sqrtl, 3)

* multiplicand1 multiplicand?2 [Operator]
Multiplication of scalar expressions such as numbers, polynomials, rational functions
and algebraic functions is denoted by the infix operator *. For example,

el : (2 + 3 xa) x4 x*xa*x b"2;

2 2
el: (Ba+12a)b

One can also use * as an infix operator on bunches. In that case, it operates compo-
nentwise, in an appropriate sense. If the bunches are square matrices, the operator
* multiplies corresponding entries of the two factors. It does not perform matrix
multiplication. To multiply matrices one instead uses the operator . (i.e., a period).
More generally, any binary scalar operator other than ~ can be used on bunches and
acts componentwise.

Chapter 2: Algebra 16

/ dividend divisor [Operator]
The symbol for division in Jacal is /. For example, the value returned by 6 / 2 is 3.

e3 : (x"2-y72) / (x - y);

e3: x +y

~ expression exponent [Operator]
The infix operator ~ is used for exponentiation of scalar quantitites or for compo-
nentwise exponentiation of bunches. For example, 275 returns 32. Unlike the other
scalar infix operators, one cannot use ~ for component-wise operations on bunches.
Furthermore, one should not try to use ~ to raise a square matrix to a power. Instead,
one should use ~~.

e7 : (1+x)74;

2 3 4
e7: 1 +4x+6x +4x +X

= expressionl expression2 [Operator]
In Jacal, the equals sign = is not used for conditionals and it is not used for assign-
ments. To assign one value to another, use either : or :=. The operator = merely
returns a value of the form 0 = expression. The value returned by a = b, for example
is0O=a-hb.
e6 : 1=2;
e6: 0 = -1
Il Z1 Z2 [Operator]
The infix operator || is from electrical engineering and represents the effective

impedance of the parallel connection of components of impedances Z1 and Z2:

el : 71 || Z2;

2.2 Algebraic Commands

eliminate [eqn_1 eqn_2 ...] [var_1 var_2 ...] [Command]
Here eqn_i is an equation for i = 1 ... n and where var_j is a variable for j =1 ...
m. eliminate returns a list of equations obtained by eliminating the variables var_1,

., var_m from the equations eqn_1, . .., eqn_n.

Chapter 2: Algebra 17

e39 : eliminate([x"2+y=0,x"3+y=0], [x]);

2
e39: 0 =-y -y

e40 : eliminate([x+y+z=3,x"2+y~2+272=3,x"3+y"3+z2"3=3], [x,y]1);
ed0: 0 =1 -2z

suchthat var eqn [Command]|
The equation eqn must contain an occurence of variable var. suchthat returns an ex-

pression for all complex values of var satisfying eqn. suchthat is useful for extracting
an expression from an equation.

e0 : axx+b*y+c = 0;
e0: 0O =c+ax+by

el : suchthat(x, e0);

suchthat var exp [Command]
If an expression rather than an equation is given to suchthat, it is as though the
equation exp=0 was given.

e2 : suchthat(x, e0);

| var exp_or_eqn [Operator]
An alternative infix notation is also available for suchthat.

When used in combination with the ‘{ }’ notation for or, the set notation used by
some textbooks results.

If var in eqn has multiple roots, a named field extension will be introduced to represent
any one of those roots. When multiple values are returned, the result (in disp2d and
standard grammars) is wrapped with ‘{ }.

e3 : x | axx™2 + b*x + c;

2
ext3: {:06 | 0O0=c+Db :@+a :0}
e3: ext3

ed : e3 T 2;

Chapter 2: Algebra 18

- c - b ext3

extrule extsym [Command]|
Returns the rule defining named field extension extsym.

e5 : extrule(ext3);

2
eb: 0= c + b ext3 + a ext3

or expr-1 ... [Command]

or eqn_1 . .. [Command]
The function or takes as inputs one or more equations or values. If the inputs are
equations, then or returns an equation which is equivalent to the assertion that at
least one of the input equations holds. If the inputs to or are values instead of two
equations, then the function or returns a multiple value. If the inputs to or consist
of both equations and values, then or will return the multiple values.

el : or(x=2,y=3);

el: 0=-6+3x+ (2-x)y

e2 : or(2,3);

2
e2: {:@ | 0=-6+5 :06 - :@ }
e3d : e272;

2
e3: {:@ | 0=-36+ 13 :@ - :@ }

e4 : or(x=2,17);
e4: 17

‘{eqgn, ... } can be used as an alternate syntax for or:
eb : {+1, -1};

2
eb: {:@ | 0=-1+ :0 %}

Chapter 2: Algebra 19

2.3 Rational Expression

num expr [Command]|
The function num takes a rational expression as input and returns a numerator of the
expression.

e25 : num((x"2+y~2)/(x"2-y"2));

2 2
e2b: - x -y

e26 : num(7/4);
e26: 7

e27 : num(7/(4/3));
e27: 21

denom rational-expression [Operator]
The Jacal command denom is used to obtain the denominator of a rational expression.

e26 : denom(4/5);
e26: 5

listofvars expr [Command]
The command listofvars takes as input a rational expression and returns a list of
the variables that occur in that expression.

e7 : listofvars(x~2+y~3);

e7: [x, y]

e8 : listofvars((x~2+y~3)/(2*x~7+y*x+z));
e8: [z, x, vyl

imagpart z [Command]|
Returns the coefficient of %i in expression z;

realpart z [Command]|
Returns all but the coefficient of %i in expression z;

abs z [Command]
cabs z [Command]|
l z |

Returns the square root of the sum of the squares of the realpart and the imagpart
of z.

Chapter 2: Algebra 20

2.4 Polynomials

degree poly var [Operator]
Returns the degree of polynomial or equation poly in variable var.

degree poly [Operator]
Returns the total-degree, the degree of its highest degree monomial, of polynomial or
equation poly.

e26 : degree(a*x*x + b*y*x + cxy*xy + d*x + exy + f, y);
e26: 2

e27 : degree(a*x*x + b*y*x + cxy*y + d*x + exy + f);

e27: 3
coeff poly var [Operator]
coeff poly var deg [Operator]
coeffs poly var [Operator]

The command coeff is used to determine the coefficient of a certain power of a
variable in a given polynomial. Here poly is a polynomial and var is a variable. If the
optional third argument is omitted, then Jacal returns the coefficient of the variable
var in poly. Otherwise it returns the coefficient of var~deg in poly. The function
coeffs returns a list of all of the coefficients. For example,

eld : coeff((x + 2)°4, x, 3);
eld: 8
el5 : (x + 2)74;

2 3 4
elb: 16 + 32 x + 24 x +8x + x

el6 : coeff((x + 2)74, x);
el6: 32
el8 : coeffs((x + 2)74, x);

el8: [16, 32, 24, 8, 1]

poly var vect [Operator]

poly var coeffl ... [Operator]
The function poly provides an inverse to the function coeffs, allowing one to recover
a polynomial from its vector or list of coefficients.

Chapter 2: Algebra 21

el5 : poly(y, [16, 32, 24, 8, 1]);

2 3 4
elb: 16 + 32y +24y +8y +y

el

(e}

: poly(y, 16, 32, 24, 8, 1);

2 3 4
elé: 16 + 32y +24y +8y +y

poly eqn [Operator]
The function poly returns the expression equal to 0 in equation eqn. Be aware that

the sign and scaling of the returned polynomial will not necessarily match those in
the equation creating eqn.

el7 : 2%a = 4x*c;
el7: 0 =-a+ 2c
el8 : poly(el7);

el8: - a+ 2 c

content poly var [Operator]
Returns a list of content and primitive part of a polynomial with respect to the
variable. The content is the GCD of the coeflicients of the polynomial in the variable.
The primitive part is poly divided by the content.

e24 : content (2*x*xy+4*x"2%y~2,y);

2
e24: [2 x, y+2xy]

divide dividend divisor var [Operator]

divide dividend divisor [Operator]
The command divide treats divident and divisor as polynomials in the variable
var and returns a pair ‘[quotient, remainder]’ such that dividend = divisor *
quotient + remainder. If the third argument var is omitted Jacal will choose a
variable on its own with respect to which it will do the division. In particular, of
dividend and divisor are both numerical, one can safely omit the third argument.

Chapter 2: Algebra 22

eb : divide(x"2+y"2,x-7*y"2,x);

2 2 4
e5: [x+7y,y +497]

e6 : divide(-7,3);
e6: [-2, -1]
ell : divide(x"2+y~2+z"2,x+y+2) ;

2 2
ell: [-x-y+2z,2x +2xy+2y]

eld : divide(x"2+y~2+z2"2,x+y+z,y);

2 2
eld: [-x+y-2,2x +2xz+2z]

el5 : divide(x"2+y~2+z"2,x+y+z,z);

2 2
elb: [-Fx-y+2z,2x +2xy+2y]

mod polyl eqn var [Command]
mod polyl poly2 var [Command]
mod polyl poly2 [Command]|

Returns polyl reduced with respect to poly2 (or eqn) and var. If poly2 is univariate,
the third argument is not needed.

mod polyl n [Command]
Returns polyl with all the coefficients taken modulo n.

mod polyl [Command]|
Returns polyl with all the coefficients taken modulo the current modulus.

If the modulus (n or the current modulus) is negative, then the results use symmetric
representation.

Chapter 2: Algebra 23

el9 : x"4+4 mod 3;

4
el9: 1 + x

e20 : x74+4 mod x"2=2;
e20: 8
e22 : mod(x"3*ax7+x*8+34, -3);

3
e22: 1 - x + ax

€23 : mod(5,2);

e23: 1

e24 : mod(x"4+4,x"°2=2,%);
e24: 8

gcd poly_1 poly_2 [Command]|
The Jacal function ged takes as arguments two polynomials with integer coefficients
and returns a greatest common divisor of the two polynomials. This includes the case
where the polynomials are integers.

el : gcd(x"4-y 4,x"6+y"6);

2 2
el: x +y

e2 : gcd(4,10);
e2: 2

discriminant poly var [Command]
Here poly is a polynomial and var is a variable. This function returns the square of
the product of the differences of the roots of the polynomial poly with respect to the
variable var.

e7 : discriminant(x~3 - 1, x);
e7: =27

resultant poly_1 poly_2 var [Command]
The function resultant returns the resultant of the polynomials poly_1 and poly_2
with respect to the variable var.

Chapter 2: Algebra 24

e2 : resultant(x"2 + a, x"3 + a, X);

2 3
e2: a + a

equatecoeffs zl z2 var [Command]|
Returns the list of equations formed by equating each coefficient of variable var~n in
z1 to the corresponding coefficient of var™n in z2. z1 and z2 can be polynomials or
ratios of polynomials.

2.5 Interpolation

interp mat [Command]|
interp vecl vec2 ... [Command]
The only argument, mat, must be an array having at least one row of two expressions:
[[x1,y1],[x2,y2],...]. It is an error if there are any duplicates in the first column of

the second argument,

interp returns a polynomial function poly(@I1) such that mat[1,2]=poly(mat[1,1]),
mat[2,2]=poly(mat[2,1]), etc.

There is a variant of the interp command that takes multiple vector arguments
instead of a matrix. These vectors represent points to be interpolated over. The
same constraints apply as in the matrix version. All the variants of the interpolation
procedure described later have both these forms.

e9 : interp([[2, 3], [0, -111);

e9 : lambda([@1], -1 + 2 @1)

el0 : interp([[2, 3], [1, z]1);

el0 : lambda([@1], -3 + 2 z + (3 - z) @1)
ell : interp([2, 31, [y, zl);

3y-2z+ (-3+2z)a01

ell : lambda([@1], -—-—-——————————————————)
_2 + y
interp.lagrange mat [Command]|
interp.lagrange vecl vec2 ... [Command]

This is the same as the interp command.

interp.newton mat [Command]
interp.newton vecl vec2 ... [Command]
This is similar to interp command with an added option of including derivative values
when defining points. The same constraints apply as in interp. You can choose to

Chapter 2: Algebra 25

specify some number of derivatives for each point. That number does not have to be
the same for all points.

e0 : interp.newton([-1, 0], [0, 1], [1, 01);

2
e0: lambda([@1], 1 - @1)

el : interp.newton([-1, 0], [0, 1, O, 20], [1, 01);

2 4
el: lambda([@1], 1 + 10 @1 - 11 @1)

e2 : interp.newton([-1, 0], [0, 1, O, al, [1, 01);

2 4
2+a0l + (-2 -a) el
e2: lambda([@1l], -———————————————————————)
2
interp.neville mat [Command]|
interp.neville vecl vec2 ... [Command]|

The same as interp in its functionality, but uses newtons form when constructing
the polynomial.

2.6 Factoring

factor int [Command]|
The Jacal command factor takes as input an integer and returns a list of the prime
numbers that divide it, each occurring with the appropriate multiplicity in the list.
If the number is negative, the list will begin with -1.

The results of the factor command are shown in a special factored format, which
appears as the product of the factors.

e0 : factor(120);

3
e0: 2 35

el : factor(-120);

3
el: -1 2 35
factor polyratio [Command]
Given a univariate ratio of polynomials polyratio, returns a matrix of factors and
exponents.

As above, the results are shown in factored form.

Chapter 2: Algebra

e2 :

e2:

e3 :

e3:

ed :

ed:

eb :

eb:

eb6 :

eb:

e’

e7:

ed

e8:

e9 :

factor((14*x~4-10/68%x"-5)/(5xx"2+1));

9
-5 + 476 x

217 (1 +5x) x

(14%xx~4-10/68*x~-5) / (5xx~2+1) ;

34 x + 170 x

(476%x79-5) / (34* (5xx~2+1)*x"5) ;

34 x + 170 x

factor (x*y) ;

y x

factor ((x+a)*(y~4-z));

4
-1 (a+x) (-y +2)

: factor ((x+u*xa~3)*(y~4-z));

3 4
-1 (a u+x) (-y + 2)

: factor ((x+u*xa~3)"2*(y~4-z)/((x+1)*(u"2-v"2)));

4 3 2
-y +2) (@ u+x

(1 +x) (Fu+v) (u+v)

factor(200* (—1*xx+1+y)* (u-r~6) * (21*x+2-t"4)) ;

26

Chapter 2: Algebra

3 2 6 4

e9: 2 56 (-r +u) (1-x+y) (2-t +21x)

el :

elO:

ell

ell:

el2 :

el2:

el3

el3:

eld :

eld:

elb :

elb:

el6

el6:

el7 :

el7:

factor (2% (at+u) * (-v+b) * (axx+y) "2) ;

2
-12(@+uw (-b+v) (ax+7y)

: factor (2*(a+u) * (-v+b) * (a*x+y) 2/ ((0u"2-v"2) * (11*x+55))) ;

2
2 (@+uw (-b+v) (ax+y)

11 5 +x) (Fu+v) (u+v)

27

factor (2x(a+u) * (-v+b) * (axx+y) "2/ ((u"2-v~2) *x"4* (11*x+55))) ;

2
2 (a+uw) (-b+v) (ax+y)

11 G +x) (Fu+v) (u+v) x

: factor((c~3xut+bxa)* (bxb*a+v*p~2%q~2%c));

3 2 2 2
(ab+c w (@b +cp q v

factor ((2*xz+y-x) * (y~3-a*x"2) * (bxz"2+y)) ;

2 2 3
(-x+y+22z2) y+bz) (-ax +y)

factor ((a*xaxb*z+d) * (2*xa*b*b*z+c)) ;

2 2
(d+a bz (c+2ab z)

: factor ((axaxb*z+d) * (2%xaxb*bxz+c) * ((u+a) *x+1)) ;

2 2
(1 +(a+uw)x) d+a bz (c+2ab 2

factor ((cxz+a)* (axz+b) * (b*xz+c)) ;

(b+az) (c+bz) (a+cz)

Chapter 2: Algebra 28

el18 : factor((axaxb* (x+w)*z+d) * (2%axb*b*z+c)) ;

2 2 2
el8: (d+ (a bw+a bx)z) (c+2ab z)

el19 : factor(((x+w) "2*xz-u*d)* (-2*a*b*xz+c));

2 2
el9: -1 (-c+2abz)(-du+w +2wx+x) z)

e20 : factor ((-200%%i*x-c)*(x-d-z"5)/(a*(b~3-(atu)*z)));

5
-1 (¢ + 200 %1 x) (d-x+2z2)

a(-b + (a+u =z

The rest of this section documents commands from the factoring package. To use this
package, execute the following command from the JACAL prompt:

require("ff");

Several of these commands return a matrix. The first column contains the factors and the
second column contains the corresponding exponent.

sff poly [Command]
Given a primitive univariate polynomial poly, calculate the square free factorisation
of poly. A primitive polynomial is one with no factors (other than units) common to
all its coeflicients.

ffsff poly p [Command]|

ffsff poly p m [Command]|
Given a monic polynomial poly, a prime p, and a positive integer m, calculate the
square free factorisation of poly in GF(p~m)[x]. If m is not supplied, 1 is assumed.

e0 : ffsff(x"5+x~3+1, 53);

[2 3 1]
[16 - 22 x + 26 x + X 1]
e0: []
[-13 + x 2]
berl poly n [Command]|

Given a square-free univariate polynomial poly and an integer power of a prime, q,
returns (as a bunch) the irreducible factors of poly.

e2 : berl(x"5+x"3+2, 53);

2 2
e2: [1 +x,5-26x+x, 11 + 25 x + x]

29

parfrac polyratio [Command]|
Returns the partial fraction expansion of a rational univariate polynomial polyratio.
The denominator of polyratio must be square free. This code is still being developed.

30

3 Calculus

3.1 Differential Operator

differential expr [Operator]

> expr [Operator]
The Jacal command differential computes the derivative of the expression expr
with respect to a generic derivation. It is generic in the sense that nothing is assumed
about its effect on the individual variables. The derivation is denoted by a right
quote.

e6 : differential (x"2+y~3);

2
e6: 2 xx’ +3y y’

e7 : (x"2+y~3)7;

2
e7: 2xx’ +3y y’

3.2 Derivatives

diff expr varl ... [Command]
The Jacal command diff computes the derivative of the expression expr with respect
to varl,

e6 : diff(x"2+y~3,y);

2
e6: 3 y

partial expr varl ... [Command]|
The Jacal command partial computes the partial derivative of the expression expr
with respect to varl,

e6 : partial(x~2+@1°3,1);

2
e6: 3 Q@1

PolyDiff poly varl ... [Command]
The Jacal command PolyDiff computes the derivative of the expression poly with
respect to varl, It is faster than diff but poly must be a polynomial.

Chapter 3: Calculus 31

3.3 Integration

integrate expr var [Command|
Returns the indefinite integral of rational expression expr, if that integral is a rational
expression. Otherwise returns 0.

integrate expr var a b [Command]|
If the indefinite integral of rational expression expr is a rational expression, then

integrate returns the difference of that integral evaluated at b and a. Otherwise
returns 0.

32

4 Matrices and Tensors

In JACAL, a matrix is just a bunch of equal length bunchs, and this is the structure
that the matrix operations currently supported by JACAL (ncmult(), ~~, transpose(), etc.)
expect. A row-vector is coded like [[a,b,c]]; a column-vector is coded by [[al, [b], [c]]
or [[a,b,c]]""t or [a,b,c] " t.

4.1 Generating Matrices

bunch elt_1 elt_2 ... [Operator]
[elt_1, elt_2, ...]

To collect any number of Jacal objects into a bunch, simply enclose them in square
brackets. For example, to make the bunch whose elements are 1, 2, 4, type [1, 2,
4]. One can also nest bunches, for example, [1, [[1, 3], [2, 511, [1, 4]]. Note
however that the bunch whose only element is [1, 2, 3] is [1 2 3]. It is importance
to notice that one has commas and the other doesn’t.

e3 : a:bunch(1, 2, 3);
e3: [1, 2, 3]

e4 : b:[al;

ed: [1 2 3]

e5 : c:[bl;

e5: [[1, 2, 3]]

e6 : [[[1, 2, 311];

e6: [[1, 2, 3]]

flatten bnch [Operator]
Removes bunch nesting from bnch, returning a single bunch of the constituent ex-
pressions and equations.

e0 : flatten([a, [b, [c, 411, [511);

e0: [a, b, c, d, 5]

ident n [Command]
The command ident takes as argument a positive integer n and returns an nxn
identity matrix. This is sometimes more convenient than obtaining this same matrix
using the command scalarmatrix.

Chapter 4: Matrices and Tensors 33

e6 : ident(4);

[Tt 0 0o 0]
[]
[0 1 0 0]
e6: []
[0 0 1 0]
C]
(0 o o 1]
scalarmatrix size entry [Command]|

The command scalarmatrix takes as inputs a positive integer size and an algebraic
expression entry and returns an n * n diagonal matrix whose diagonal entries are all
equal to entry, where n = size.

el : scalarmatrix(3, 6);

[6 0 0]
[]
el: [0 6 0]
[]
[0 0 6]
diagmatrix list [Command]|

The Jacal command diagmatrix takes as input a list of objects and returns the
diagonal matrix having those objects as diagonal entries. In case one wants all of the
diagonal entries to be equal, it is more convenient to use the command scalarmatrix.

e3 : diagmatrix(12,3,a,s72);

[12 0 0 0]

[]

[0 3 0 O
e3: [

[0 o©

[

[0 0o 0 2

[s

)
o
| IS [y S [y N Dy N Dy N [y S—

e4 : diagmatrix([1,2],2);

(1, 2] o]
ed: []
[O 2]
sylvester poly_1 poly_2 var [Command]

Here, poly_1 and poly_2 are polynomials and var is a variable. The function
sylvester returns the matrix introduced by Sylvester (A Method of Determining
By Mere Inspection the Derivatives from Two Equations of Any Degree, Phil.Mag.

Chapter 4: Matrices and Tensors 34

16 (1840) pp. 132-135, Mathematical Papers, vol. I, pp. 54-57) for computing the
resultant of the two polynomials poly_1 and poly_2 with respect to the variable
var. If one wants to compute the resultant itself, one can simply use the command
resultant with the same syntax.

eb : sylvester(a0 + al*x + a2%x"2 + a3*x"3, b0 + bl*x + b2*xx"2, x);

[a3 a2 al a0 0]
[]
[0 a3 a2 al a0]
[]
e5: [b2 bl O O 0]
[]
[0 b2 bl b0 0]
[]
[0 0 b2 bl bo]
genmatrix function rows cols [Command]

The function genmatrix takes as arguments a function of two variables and two
positive integers, rows and cols. It returns a matrix with the indicated numbers of
rows and columns in which the (i,j)th entry is obtained by evaluating function
at (i,j). The function may be defined in any of the ways available in Jacal, i.e
previously by an explicit algebraic definition, by an explicit lambda expression or by
an implicit lambda expression.

ed : 0172+0272;

2
e4: lambda([@1, @2], @1 + @2)

eb : genmatrix(e4,3,5);

[2 5 10 17 26]

L]
e5: [6 8 13 20 29]
L]

[10 13 18 25 34]

4.2 Matrix Parts

rank matrix [Command|
The rank of matrix is the maximal number of linearly independent columns of matrix,
which is always equalt to the maximal number of linearly independent rows of matrix.

Chapter 4: Matrices and Tensors 35

el3

el3:

eld

eld:

elb

el5:

el7 :

el7:

el8 :

el8:

row matrix i

: rank([[0,0],[0,0]11);

: rank([[0,0],[0,1]11);

: rank([[2,0],[0,111);

rank([[b,c],[0,all);

rank([[b,c,d],[a,0,a],[e,f,all);

[Command]|

The command row returns the ith row of the matrix matrix, where i = int. If int is
larger than the number of rows of matrix, then Jacal prints an error message. The
corresponding command for columns of a matrix is col.

e3 : u:[l1, 2, 3], [1, 5, 311;
[1 2 3]
e3: []
[1 5 3]
ed4 : row(u, 2);
ed: [1, 5, 3]
col matrix integer [Command]|

The command col is used to extract a column of a matrix. Here, matrix is a matrix
and integer is a positive integer. If that integer exceeds the number of columns, an
error message such as

ERROR: list-ref: Wrong type in argl ()

appears. Here is an example of correct use of the command col:

Chapter 4: Matrices and Tensors 36

el9

el9:

e20 :

e20:

minor matrixij

:a:[[1,2,4],[2,5,61]1;

[1 2 4]
[]
[2 5 6]
col(a,2);
[2]
[1]
[5]

[Command]|

The command minor returns the submatrix of matrix obtained by deleting the ith
row and the jth column.

921 : b:[[1,2,3],[3,1,5]’[5:2’7]]:
[1 2 3]
[]

e21: [3 1 5]
[]
5 2 7]

e22 : minor(b,3,1);
[2 3]

e22: []
[1 5]

cofactor matrixij [Command]

The command cofactor returns the determinant of the i, j minor of matrix.

rapply bunch int_1 int_ 2 ... [Command]
The function rapply is used to access elements of bunches. It can also access elements
nested at lower levels in a bunch. In particular, it can also access matrix elements.
In the above syntax, bunch is the bunch whose parts one wishes to access, and n,
int_1, int_2, ..., int_n are positive integers. It returns the int_n-th element of the
int_{n-1}-th element of ... of the int_2-th element of the int_I1-th element of bunch.
One can have n = 0. In that case, rapply simply returns the bunch.

Chapter 4: Matrices and Tensors 37

e2 : rapply([[1,2,3],[1,4,6],31,2,3);
e2: 6

e6 : rapply([a,bl,2);

e6: b

e7 : rapply([a,bl);

e7: [a, b]

4.3 Matrix commands

transpose matrix [Command]|
Computes the transpose of (matrix).

determinant matrix [Command]|
The Jacal command determinant computes the determinant of a square matrix.

Attempting to take the determinant of a non-square matrix will produce an error
message.

el : a:[[1,2],[6,711;

[1 2]
el: []
[6 7]

e2 : determinant(a);

e2: -5

charpoly matrix var [Command]
The characteristic polynomial of matrix:

determinant(matrix - I var)

. matrix] matrix2 [Command]|
Matrix multiplication.

Chapter 4: Matrices and Tensors

el :

el:

e2

e2:

e3

e3:

e8:

e9 :

e9:

Negative exponents raise the inverse matrix to a power.

a:[[1, 2, 31, [5, 2, 71];

[1 2 3]

[]

[6 2 7]

: b:[[3, 2],
[3 2]

[]

[6 4]

b . a;

[13 10 23]
[]
[26 20 46]

matrix exponent
The infix operator

e :

a:[[1, 0],
[1 o]

[]

[-1 1]
a~"3;

[1 o]

[]

[-3 1]

(6, 411;

(-1, 111;

38

[Command]|
is used for raising a square matrix to an integral power.

Chapter 4: Matrices and Tensors

e :

e8:

e9 :

e9:

el :

el0:

ell :

ell:

el2 :

el2:

el3 :

el3:

[[a, b], [c, dll;
[a ©b]
[]
[c d]
e8""-1;
| -bp]
[~]
[-bc+ad -bc+adl
[]
(-c a]
[~]
[-bc+ad -bc+adl
e8""-2;
L 2 -ab-bd]
L bc+d = 00—mmmmmmmmmm———————— o]
[mmmmmmmm e 2 2 2 2]
[2 2 2 2 b ¢c -2abcd+a 4]
[b ¢ -2abcd+a d]
[2]
[-ac-cd a +bc]
---------------—-— -]
[2 2 2 2 2 2 2 2]
[b ¢c -2abcd+a d b c -2abcd+a d]
e8 e9;
[1 0]
[]
[0 1]
e9 . e8;
[1 0]
[]
[0 1]

el0 . e8 . e8;

[1 o]
L]
[0 1]

39

Chapter 4: Matrices and Tensors 40

dotproduct vector_-1 vector_2 [Command]|
The Jacal function dotproduct returns the dot product of two row vectors of the
same length. It will also give the dot product of two matrices of the same size by
computing the sum of the dot products of the corresponding rows or, what is the
same, the trace of one matrix times the transpose of the other one.

e28 : a:[1,2,3]; b:[3,1,5];
e28: [1, 2, 3]

e29 :
e29: [3, 1, 5]

e30 : dotproduct(a,b);

e30: 20

crossproduct vector_1 vector_2 [Command]
The Jacal command crossproduct computes the cross product of two vectors. By
definition, the two vectors must each have three components.

e25 : crossproduct([1,2,3],[4,2,5]);

e25: [4, 7, -6]

4.4 Tensors

The tensors supported by JACAL are an extension of the matrix structure (i.e., a bunch
of bunches of bunches . . .) with the added stipulation that all dimensions of the tensor be
the same length (e.g., 4x4x4). The number of dimensions (indices) in a tensor is its rank:
A scalar is a tensor of rank 0; a vector is a rank 1 tensor; a matrix has rank 2; and so on.

Further, just as matrix binary operations place restrictions on the matrices involved
(e.g., the row/column length requirement for matrix multiplication), the tensor binary op-
erations require that the dimensions of each tensor be of the same length. For example, you
could not multiply a 3x3 tensor and a 4x4x4 tensor.

JACAL’s tensors do not support the construct of contravariant and covariant indices.
Users must keep track of this information themselves, and perform the necessary operations
with an appropriate metric so that the "index gymnastics" is performed correctly.

Before using any of JACAL’s tensor operations, execute the following command from
the JACAL prompt:

require("tensor");

This loads the file tensor.scm into JACAL, and makes the tensor operations available
for use.

JACAL currently supports four tensor operations: tmult, contract, indexshift, and
indexswap. Each of these is described in detail below.

Chapter 4: Matrices and Tensors 41

4.5 Tensor Multiplication

tmult matrix_1 matrix_2 index_1 index_2 [Command]|
tmult takes a minimum of two arguments which are the tensors on which the multi-
plication operation is to be performed.

With no additional arguments, tmult will produce the outer product of the two input
tensors. The rank of the resulting tensor is the sum of the inputs’ ranks, and the
components of the result are formed from the pair-wise products of components of
the inputs. For example, for the input tensors x[a,b] and y[c]

z:tmult(x,y); = zla,b,c] = x[a,b]l*ylc]

With an additional argument, tmult will produce the inner product of the two tensors
on the specified index. For example, given x[i,j] and y[k,1,m]

z:tmult(x,y,3);

=
length
\
zla,b,c] = > x[a,q] * y[b,c,q]
/
q=1

Note that in this case x only has 2 indices. All of JACAL’s tensor operations modify
index inputs to be between 1 and the rank of the tensor. Thus, in this example, the 3
is modified to 2 in the case of x. As another example, with x[i,j,k] and y[1,m,n]

z:tmult(x,y,2);

=
length
\
Z[a,b,C,d] = > X[a,q,b] * YEC,q,d]
/
q=1

With four arguments, tmult produces an inner product of the two tensors on the
specified indices. For example, for x[i,j] and y[k,1,m]

z:tmult(x,y,1,3);

=
length
\
z[a,b,c] > xl[q,al * ylb,c,ql
/

Chapter 4: Matrices and Tensors 42

Note that matrix multiplication is the special case of an inner product (of two "two
dimensional matrices") on the second and first indices, respectively: tmult(x,y,2,1)
= ncmult(x,y)

Finally, tmult handles the case of a scalar times a tensor, in which case each component
of the tensor is multiplied by the scalar.

4.6 Tensor contraction

contract matrix indexI . .. [Command]
The contraction operation produces a tensor of rank two less than a given tensor. It
does this by performing a summation over two of the indices of the given tensor, as
clarified in the examples below.

contract takes at least one argument which is the tensor on which the contraction
operation is to be performed. One or two additional arguments may be provided
to specify the indices to be used in the summation. If no additional arguments are
provided, the summation is performed over the first and second indices. With one
additional argument, the summation is over the specified index and the one following
it (e.g., if 3 is specified, the third and fourth indices are used). With two additional
arguments, the summation is performed over the indices specified. The actual indices
used will be constrained to be between 1 and the rank of the tensor.

Examples:

1) For a square matrix (tensor of rank 2), contract returns a scalar that is the sum
of the diagonal elements of the matrix.

2) Given x[i,]j,k,1], the command
y:contract(x,2,4);

produces:
length
\
yla,b] = > x[a,q,b,q]
/
qQ=1

Special cases: If contract is given a scalar (rank 0 tensor) as input, it just returns
the scalar. For a vector (tensor of rank 1), contract returns a scalar that is the sum
of the elements of the vector.

4.7 Shifting of Tensor Indices

indexshift matrix indexl ... [Command]|
indexshift rearranges the indices of a tensor. It is one of two generalizations of the
matrix transpose operation (cf. indexswap).

indexshift takes at least one argument which is the tensor on which the index
shifting is to be performed. One or two additional arguments may be provided to

Chapter 4: Matrices and Tensors 43

specify the index and the position to which it is to be shifted. If no additional
arguments are provided, the first index of the tensor is shifted to the second position
(equivalent the matrix transpose operation). If one additional argument is provided,
it specifies the index to be shifted, and that index will be shifted "to the right" one
position (e.g., if 3 is specified, the third index will be shifted to the forth position).
If two additional arguments are provided, the first specifies the index and the second
specifies the position to which it is to be shifted. The actual index shifted and its
shifted position will be constrained to be between 1 and the rank of the tensor.

For example, given x[a,b,c,d], the command y:indexshift(x,1,3); produces a
tensor y such that y[la,b,c,d] = x[b,c,a,d]. In this example, the element that
was in position [a,b,c,d] in x will be in position [b,c,a,d] in y.

Special cases: If indexshift is given a scalar (rank 0 tensor) as input, it just returns
the scalar. For a vector (tensor of rank 1), indexshift transposes the 1-by-n matrix
(row vector) to an n-by-1 matrix (column vector).

4.8 Swapping of Tensor Indices

indexswap tensor ... [Command]|
indexswap rearranges the indices of a tensor. It is one of two generalizations of the
matrix transpose operation (cf. indexshift).

indexswap takes at least one argument which is the tensor on which index swapping
is to be performed. One or two additional arguments may be provided to specify the
indices to be swapped. If no additional arguments are provided, the first and second
indices of the tensor are swapped (equivalent the matrix transpose operation). With
one additional argument, the specified index is swapped with the one following it
(e.g., if 2 is specified, the second and third indices will be swapped). If two additional
arguments are provided, they specify the indices to be swapped. The actual indices
used will be constrained to be between 1 and the rank of the tensor.

For example, given x[a,b,c,d], the command y: indexswap(x,2,4) ; produces a tensor
y such that y[a,b,c,d] = x[a,d,c,b]. In this example, the element that was in position
[a,b,c,d] in x will be in position [a,d,c,b] in y.

Special cases: If indexswap is given a scalar (rank 0 tensor) as input, it just returns
the scalar. For a vector (tensor of rank 1), indexswap transposes the 1-by-n matrix
(row vector) to an n-by-1 matrix (column vector).

44

5 Lambda Calculus

lambda varlist expression [Operator]
Jacal has the ability to work with lambda expressions, via the command lambda.
Furthermore, Jacal always converts user definitions of functions by any method into
lambda expressions and converts the dummy variables of the function definition into
symbols such as 1, 2, Jacal can manipulate lambda expressions by manipulating
their function parts, as in ‘e14’ below. Jacal can also invert a function using the
command finv.

el2 : lambda([x],x"2);

2
el12: lambda([@1], @1)

el3 : lambda([x,y,z],x*xy*z);
e13: lambda([@1, @2, @3], @1 @2 @3)
eld : el2+el3;

2
eld: lambda([@1l, @2, @3], @1 + @1 @2 @3)

elementwise function matrixl matrix2 . .. [Command]
The arguments matrixl, matrix2, ... must have the same shape. The command

elementwise returns a new matrix formed by applying function to each tuple of
elements of matrixl, matrix2,

e9 : elementwise(foo, [a, b], [c, d1);

e9: [foo(a, c), foo(b, d)]

el0 : elementwise(@1+5%0@2, [a, b], [c, d]);
el0: [a+ 5 c, b+ 5 d]

el : elementwise(@1-@2,[9,8,7]1,[[1,0],([4,5],[6,3]1]);

[8 9]
L]
el: [4 3]
(]
[1 4]
finv function [Command]|

function™"-1

45

The command finv takes as input a function of one variable and returns the inverse
of that function. The function may be defined in any of the ways permitted in Jacal,
i.e. by an explicit algebraic definition, by an explicit lambda expression or by an
implicit lamba expression. If f is the function, then typing £~~-1 has the same effect
as typing finv(f).

e0 : w(t):=t+1;
w(t): lambda([@1], 1 + @1)
e0 : finv(w);

e0: lambda([@1], -1 + @1)

46

6 Miscellaneous

pA [Command]|
The symbol % represents the last expression obtained by Jacal. It can be used in
formulas like any other constant or variable or expression.

e21: 5
e22 : %
e22: 5
e23 : h°2;
e23: 25
batch filename [Command]

The command batch is used to read in a file containing programs written in Jacal.
Here, filename is a string in double quotes. The precise way in which one refers to a
file is, of course, system dependent.

batch("demo") ;

of the file demo in the JACAL directory will give a demonstration of JACAL’s capa-

bilities.
tex expr [Command]|
scheme expr [Command]|
disp2d expr [Command]|
standard expr [Command]|

Displays expr in TeX, Jacal’s two-dimensional output format, or Jacal’s infix input
format, respectively.

tex string [Command]|
Read TeX expression string.

scheme string [Command]|
Read Scheme expression string.

disp2d string [Command]
standard string [Command]
Reads string in Jacal’s infix input format.

Chapter 6: Miscellaneous

e24 : b~ 2-4xa*c;

2
e24: b -4 ac

e25 : tex(e24);
b~{2} - 4\,a\,c

47

e25 : tex("b {2} - 4\,a\,c");

2
e25: b -4 ac

e26 : disp2d(e25);
2
b -4ac

e26 : disp2d("b~2-4xa*c");

2
e26: b -4 ac

e27 : scheme(e26);
- C b2 (x4ac)

e27 : scheme("(- (" b 2) (x4 ac))");

2
e27: b -4 ac

commands

[Command]

The command commands produces a list of all of the command available in Jacal. It
is called as s function of no arguments.

e21 : commands();

%hx+ -/ =" "" abs args augcoefmatrix b+/- b-/+ batch bunch cabs
cartprod chain charpoly coeff coeffs coefmatrix cofactor col commands
content continue crossproduct degree denom depends describe

determinant diagmatrix
dotproduct elementwise
factorial factors finv
interp interp.lagrange
listofvars load matrix

diff differential discriminant disp2d divide
eliminate equatecoeffs example extrule factor
flatten func gcd genmatrix help ident imagpart
interp.neville interp.newton jacobi jacobian
minor mod ncmult negate num or over parallel

partial poly polydiff polyelim prime? ged quit rank rapply realpart
require restart resultant row scalarmatrix scheme set shadow show
standard sylvester system terms tex transcript transpose u+/- u-/+
verify wronski wronskian

Chapter 6: Miscellaneous 48

describe command [Command]
The command describe is the heart of the online help facility of Jacal. Here, com-
mand is a string which is the name of a command and describe produces a brief de-
scription of the command and in many cases includes an example of its use. Together
with the command commands (), which prints a list of all available Jacal commands,
and the command example, which gives an example of the use of the command, one
can in principle use Jacal without a manual after one has learned how to get started.

e27 : describe(col);

column. column of a matrix

e27 : describe(resultant);

resultant. The result of eliminating a variable between 2
equations (or polynomials).

27 : describe(+);

Addition, plus.

a+b

example command [Command]|
Here, command is a string which is the name of a Jacal command. example gives an
example of the use of the command. See also Chapter 6 [Miscellaneous], page 46.

e43 : example(+);
a+hb

ed3: a + b

load string [Command]
The Jacal command load takes as input a string and reads in a ‘Scheme’ file whose
name is obtained by appending the extension .scm to the string. If you want to read
in a file of Jacal commands, do not use load. Instead use the command batch. To
load in the file foo.scm,

e9 : load("foo");

e9: foo

ged [Command]|
Exit from Jacal to Scheme. With interactive Scheme systems (such as SCM), It does
not return you to the operating system. Instead it suspends Jacal and returns you
to the underlying scheme. You can return to the Jacal session where you left off
by simply typing (math). If you do not wish to return to Jacal but really want to
terminate the session and return to the operating system, then after typing qed O ;,
type (slib:exit) or use quit.

quit [Command]
Exit directly from Jacal to the operating system. You will not be able to continue
your Jacal session.

Chapter 6: Miscellaneous 49

type ged(); to return to scheme
el : ged(Q);

scheme

> (math)

type gqed(); to return to scheme
e2 : quit();

unix>

system command [Command|
One can issue commands to the operating system without leaving Jacal. To do this,
one uses the command system. For example, in a UNIX operating system, the com-
mand system("1s") ; will print the directory. One way in which the command system
might be especially useful is to edit files containing Jacal scripts without leaving Jacal,
particularly in non-UNIX machines or on machines without GNU emacs.

e0 : system("echo hi there");
hi there

e0: O

terms [Command]
Prints a copy of the GNU General Public License

el : terms();
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[rest deleted for brevity]

transcript string [Command]
The command transcript allows one to record a Jacal session. It is called with the
syntax transcript (string) ;, where string is the name of the file in which one wants
to keep the transcript of the session. When one wishes to stop recording, one types
transcript();. One is then free to use transcript again later in the session on
another file. One can use it on the same file, but the file is overwritten. Presently,
the command transcript does not echo commands to a file.

Chapter 6: Miscellaneous 50

e9 : a:[1,2,3];

e9: [1, 2, 3]

e10 : transcript("foo");
el10: foo

ell : a;

ell: [1, 2, 3]

el2 : tramscript();
el2 : system("cat foo");

el0: foo

ell : a;

ell: [1, 2, 3]

el2 : transcript();

el2: 0

set flag value [Command]|

show

There are various flags that the Jacal user can control, namely the Jacal command
line prompt, the priority for printing terms in Jacal output, the input grammar and
the output grammar. For a discussion of the various grammars please See Chapter 7
[Flags], page 52. The command show is closely related, allowing one to see what the
current settings are.

flag [Command]
The command show enables the Jacal user to examine the current setting of various
flags as well as to list the flags that can be set by the user and to display other
information. To change the settings of the flags, use the command set. To see all
the information accessible through the show command, type show all. To see the
available grammars, type show grammars. To see the current input grammar type
show ingrammar. To see the current output grammar, type show outgrammar. To see
the current priority for printing expressions, type show priority.

o1

el : show all;

all debug echogrammar grammars horner ingrammar linkradicals outgrammar
page phases priority prompt trace version width

el : show prompt;

el: el

e3 : show priority;

ed :

ed

ed .

ed:

eb:

eb:

:@ (differential :@) @3 @2 @1 y x wronskian wronski verify u-/+ u+/-
transpose transcript tex terms t system sylvester standard show shadow
set scheme scalarmatrix row resultant restart require realpart rapply
rank quit qed prompt priority prime? polyelim polydiff poly partial
parallel over or num negate ncmult mod minor matrix load listofvars
jacobian jacobi interp.newton interp.neville interp.lagrange interp
imagpart ident help genmatrix gcd func flatten finv factors factorial
factor extrule example equatecoeffs eliminate elementwise e0 dotproduct
divide disp2d discriminant differential diff diagmatrix determinant
describe depends denom degree crossproduct continue content commands col
cofactor coefmatrix coeffs coeff charpoly chain cartprod cabs c bunch
batch b-/+ b+/- b augcoefmatrix args all abs a °~ =~ 7?7 = ::0 / - + *
%hsqrtl %i

show outgrammar;
: disp2d

show ingrammar;
standard

show grammars;

[scheme, null, schemepretty, standard, disp2d, tex]

52

7 Flags

prompt string [Flag]
If one changes the prompt, string is a string of alphanumeric characters without
quotes. After this command is executed, subsequent commands will cause new
prompts to be obtained from string by incrementing it. If the prompt ends in a
letter, it will be treated as a digit in base 26 and incremented. If it ends in a string
of digits, that string will be treated as a number in base 10 and incremented. The
remaining characters in the string will play no role in this incrementation.

el : set prompt az9Z;

el : a+tb;
az9Z: a + b
az9AA : a+b;

az9AA: a + b

az9AB : set prompt ok99;

az9AB : a+b;
0k99: a + b
0k100 : a+b;

0k100: a + b

ok101 :
ingrammar grammar [Flag]
outgrammar grammar [Flag]

The following examples show how one changes the input grammar or the output
grammar.

Chapter 7: Flags 53

el : a:[[[1,2,3]11];
el: [[1, 2, 3]1]

e2 : set outgrammar standard;
e2 : a;

e2: [[[1, 2, 3111

e3 : set outgrammar scheme;
ed : a;

(define e3 #(#(#(1 2 3))))
ed : (1+x)°5;

(define e4 (+ 1 (* 5 x) (*x 10 (" x2)) (x 10 (" x3)) (x5 (" x4)) (C x5))
e6 : set ingrammar scheme;
e6 : (+ ed 1);

(define e6 (+ 2 (* 5 x) (x 10 (" x 2)) (x 10 (" x 3)) (x5 (" x 4)) (" x 5)))
e7 : (set ingrammar disp2d)
e7 : diagmatrix(3,6);

(define e7 #(#(3 0) #(0 6)))
e8 : set outgrammar disp2d;

e8 : e7;
[3 0]

e8: []
[0 6]

e9 : set outgrammar standard;
e9d : e7;

e9: [[3, 0], [0, 6]]

Note that in the above examples, it is possible to input and output expressions in
scheme by setting the ingrammar and/or outgrammar to scheme. Doing so result in
linear output (as with standard grammar) as opposed to a two dimensional display (as
with disp2d). The analogue of disp2d for scheme output is scheme pretty-printing.
To have such output, set the output grammar to schemepretty.

Chapter 7: Flags 54

e4 : set outgrammar schemepretty;
ed : (1+x)°5;

(define e4
(+ 1
(x 5 %)
(x 10 (" x 2))
(x 10 (" x 3))
(x 5 (" x 4))
(" x 5)))

Jacal also allows for output to be automatically typeset in TEX. This can be quite
useful if one wants to use the results of one’s computations in published articles.

Continuing with the example of (1+x) "5 above, we have:

eb : set outgrammar tex;
eb : e4;

e5: 1 + 5 x + 10 x~{2} + 10 x~{3} + 5 x~{4} + x~{5}

e6 : (1+1/x)°3/(1-1/y)"4;

e6: {\left(1 + 3 x + 3 x~{2} + x"{3N\right) y {4} \over{x {3} - 4 x"{3} y +
6 x~{3} y~ {2} - 4 x~{3} y {3} + x~{3} y~{4}}

After being included in a document in math display mode, these two examples will
appear in the following way.

1+ 5z + 102% + 102> + 5zt + 2

(1+ 3z + 32% + %) y*
3 — 43y + 623y? — 4ady3 + a3yt

priority int [Flag]
The following examples show how to set the priority of printing terms.

el0 :

elO:

ell

3

el2 .

el2:

el3d :

el3:

eld

eld:

el5 :

elb:

el6 :

el6

a;
[Cf1, 2, 3111

: show priority a;
not a simple variable:
show priority b;
128

show priority c;
128
: bt+c;
b +c

c+b;
b +c

set priority b 200;
: b+c;

(((123)

O)

0)

95

/P 46
’
L 30
*
K 15

o 14
F 15
AP 14
Rl P 15

.. 37

2P 16
T 16
P 16
N 38
| 17
Ll 16

abs ... 19
Algebra.........ooiiiiiiiiiii 14
Algebraic Commands 16
Algebraic Operators.......................... 14
APl . 2

56

batch. 46
ber L . 28
Bibliography............cooiiiiiiiiiii 1
buUnCh. ... 32

CabS . . 19
Calculus .. oit i 30
charpoly 37
coeff . . 20
coeffs. .. e 20
COfaCtOr .ot 36
COL Lttt 35
COMMANAS .« ot vveee ettt ettt iieee e iieeen 47
Compiling Jacal..........ooiiiiiiiiinnnnnnn. 2
o e3 X =Y s P 21
contract ... 42
Conventions........ooiiiinii i 4
crossproduct.......................LL 40

D

degree..... ... 20
Demonstrating Jacal........................... 3
AOMOM . . ottt e e e 19
describe 48
determinant..............c.oiiiiiiiiiiie.. 37
diagmatrix.........coiiiiiiiiii 33
diff ..o 30
differential..........., 30
discriminant........... 23
Aisp2d. .. 46
divide. . ..o 21
dotproduct 40

E

elementWwisSe . ..ot 44
eliminate.....o 16
equatecoeffs........ .. il i 24
@XAMPLE ..ottt e 48
EXtTULE .ot 18

F

factor. ... 25
Factoring..........l 25
e = e 28
ANV . e 44
flatten ... 32

Index

BCA . 23
genmatrix............. ...l 34
GNU/LADUXK . oottt 2

ident.......... 32
IMagpart ... 19
indexshift........... ool 42
indexsWapooviiiii 43
ingrammar 52
integrate............ ...l 31
INterp. ..o 24
interp.lagrangec.ooiiiiiiiiiiiaea.. 24
interp.nevillel 25
interp.newtonot 24
Interpolationcovvuiiiiiiiiinnennnnnn, 24

lambda. ..o e 44
listofvars........ciiiiiiiin i 19
1oad . .o e 48

Manifestcoiiiiiii i e 4
115 o 36
117 Yo P 22

TIUM . oottt e e e et e 19
OF o ittt 18
OULGTammMaT\ttt 52
OVerview ..ot 1

P

parfrac ...l 29
partial ... 30
POLY oo 20, 21
POLYDAFE ..o 30
Polynomials................. ..o, 20
Priorityo 54

PIOMPt. ..ottt 52

o7
Q
Lo =T 48
QUit ... 48
R
TANK . oottt 34
Tapply. ... 36
Rational Expression.......................... 19
realpart ...l 19
Recovery from Errorso 3
Release Notes.............cooiiiiiiiii s, 4
resultant 23
TOW ottt ettt e e e e e e e e e e e 35
Running Jacal, 3
S
scalarmatrix..............l 33
scheme............ ... o il 46
SCheme. ... 2
Set .. 50
sEf 28
SHOW . .ot 50
standard i 46
Stopping Jacal.........ccoiiiiiiiiiiiiiiiii.. 3
suchthat i 17
sylvester.............. ... 33
SYSEeM. .ttt 49
T
TOIMS . ..t 49
7D PN 46
EMULE . . 41
transcript. ...t 49
transposel 37
U
Unix ..ot 2
X
XBB ottt 2
XBB_B4. . . 2

	Overview
	Authors and Bibliography
	Installation
	Running Jacal
	Release Notes
	GNU Free Documentation License

	Algebra
	Algebraic Operators
	Algebraic Commands
	Rational Expression
	Polynomials
	Interpolation
	Factoring

	Calculus
	Differential Operator
	Derivatives
	Integration

	Matrices and Tensors
	Generating Matrices
	Matrix Parts
	Matrix commands
	Tensors
	Tensor Multiplication
	Tensor contraction
	Shifting of Tensor Indices
	Swapping of Tensor Indices

	Lambda Calculus
	Miscellaneous
	Flags
	Index

