Effects of NF-kappaB oligonucleotide "decoys" on gene expression in P7 rat hippocampus after hypoxia/ischemia

J Neurosci Res. 2004 Jul 1;77(1):108-18. doi: 10.1002/jnr.20156.

Abstract

"Decoy" oligonucleotides can be used as gene-specific nuclear factor (NF-kappaB) inhibitors to regulate gene expression. We applied two different decoy oligonucleotides that contained the NF-kappaB binding consensus sequences present in the immunoglobulin G (IgG)-kappaB and Bcl-x promoter into 7-day-old (P7) rat lateral ventricles before hypoxia/ischemia (HI) and compared their effects on gene expression in hippocampi to saline-treated, scrambled decoy-treated, or untreated hippocampi exposed to HI. Left hippocampi were collected at 12 hr after HI. Electrophoretic mobility shift assays (EMSAs) showed that the two decoy treatments had different effects on NF-kappaB binding to the IgG-kappaB and Bcl-x promoter-specific consensus sequences, respectively. We assessed the decoys' effects on gene expression 12 hr after HI using ribonuclease protection assays (RPAs) and Affymetrix DNA microarrays. RPAs showed that both decoys significantly decreased interleukin (IL)-1alpha mRNA levels but had no impact on IL-1beta, IL-6, and IL-10 mRNA levels. IgG-kappaB decoys significantly decreased tumor necrosis factor (TNF)-alpha and TNF-beta mRNA levels compared to minimal changes after treatment with Bcl-x decoys. DNA microarray analyses showed that Bcl-x decoy treatment significantly decreased Bcl-x(L) mRNA levels. The decreased Bcl-x(L) mRNA levels after Bcl-x decoy treatment was confirmed by RPA analysis. DNA microarray data also indicated that several other genes were affected by both decoys. Our results suggest that different NF-kappaB decoy treatments could differentially regulate transcriptional responses to central nervous system trauma. Careful design of decoy sequences, however, is essential to acquire selective effects on cell death outcome.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Binding Sites / genetics
  • Disease Models, Animal
  • Female
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / genetics*
  • Hippocampus / metabolism*
  • Hippocampus / physiopathology
  • Hypoxia-Ischemia, Brain / genetics
  • Hypoxia-Ischemia, Brain / metabolism*
  • Hypoxia-Ischemia, Brain / physiopathology
  • Immunoglobulin G / genetics
  • Interleukin-1 / genetics
  • Male
  • NF-kappa B / antagonists & inhibitors
  • NF-kappa B / metabolism*
  • Neurons / drug effects
  • Neurons / metabolism*
  • Oligonucleotides / pharmacology*
  • Promoter Regions, Genetic / genetics
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • RNA, Messenger / drug effects
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Tumor Necrosis Factor-alpha / genetics
  • bcl-X Protein

Substances

  • Bcl2l1 protein, rat
  • Immunoglobulin G
  • Interleukin-1
  • NF-kappa B
  • Oligonucleotides
  • Proto-Oncogene Proteins c-bcl-2
  • RNA, Messenger
  • Tumor Necrosis Factor-alpha
  • bcl-X Protein