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Preface 

As the utilization of ceramic materials is developing at a great pace, so too 
is the science of ceramics improving the understanding we have about these 
high-technology materials. New and improved ways of examining and 
investigating monolithic ceramics and ceramic composites are also being 
developed and reported at a great pace in a wide-ranging area of the scientific 
and technical literature. This book has been written with the aim of increas­
ing the awareness of the general materials worker of developments in modern 
ceramics and of bringing to a focus how much the study of their hardness 
can contribute to our understanding of them and lead to technical data that 
can be of considerable use in this fast-growing field. The readership will 
consist of materials scientists, metallurgists, and engineers moving into the 
new worlds of advanced ceramics and ceramic-containing composites. 

Detailed works on hardness are to be found in the metallurgical area, 
where much of the theory and early applications were developed. This book 
does not overly stress this early development of theory and practice, but 
concentrates wherever possible on the ceramics and glasses. Thus Chapter 
1 introduces the general subject area to those whose interest may have been 
blunted in the past by the emphasis on one area of materials. Subjects raised 
in the first chapter are developed more fully in later chapters. Chapter 2 
focuses on some practical aspects of the most commonly encountered 
techniques. Chapter 3 is a truly ceramic chapter, for it is in the area of 
single-crystal examination that the technique has made its greatest contribu­
tion to developing theory and uses. Much of the style of this chapter derives 
from work and ideas of Professor C. A. Brookes of Hull University, who 
set out with me to write this book but unfortunately was not able, due to 
pressures of time and work, to continue. I am indebted to him for the early 
discussions we had. 

Chapter 4 introduces the ideas that external factors can affect the 
hardness of ceramics and so conversely these can be studied via the tech­
niques of hardness measurement. 

vii 
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Chapter 5 is an extensive view of the useful work that can be done 
when hardness measurements lead to cracked areas in ceramics. This is 
probably the most important recent development in the areas of both 
hardness and ceramic properties. Thus Chapter 5 contains many examples 
of the way that relatively simple experiments can lead to many important 
data on polycrystalline, single-crystal, and fiber-formed ceramics. The last 
chapter, Chapter 6, brings together the previous five chapters via a discussion 
of many important ceramic systems and tabulates hardness data from the 
literature for them. Chapters 5 and 6 make this book a particular fusion of 
ceramic science and hardness developments. Overall the attempt has been 
to maintain an interdisciplinary approach, in keeping with the author's 
earlier publications, and as a result it is hoped that the contents and style 
will suit the wide readership at which the book is aimed. 

Many people have helped me in my endeavors, and without them what 
has been achieved would not have been. Among them I acknowledge 
particularly the work of my student Dr. I. Inwang in drawing many figures 
and providing experimental data, Miss M. Cobb for devoted typing, and 
the technical staff of the department of Industrial Technology of Bradford 
University, who together form a great team. 

I. J. McColm 
Bradford, England 
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Chapter 1 

Introduction and Overview 

1.1. HOW LONG IS A PIECE OF STRING? 

When asking the above question one is often implying that a previous 
request for information is too open and has no precise answer. Indeed it 
should be the answer to a type of question frequently asked: "How hard 
is this ceramic, this rock or powder, etc.?" 

The problem is even deeper than it first seems because our questioner, 
when asked "how long is a piece of string?" could make the rejoinder, 
"measure it and see." Everyone agrees that a length may be measured in 
meters, inches, or some multiple of these and that it does not matter which 
because both units are traceable to a natural standard, namely, the 
wavelength of a particular reproducible light source. The same is true for 
many other properties of materials, making it possible to agree on values 
because the conversion factor from one unit, obtained by a particular method 
of measurement, to another is known precisely. 

Hardness stands outside this convenient framework; the hardness of 
a material is not a unique property but is a measure of the reaction of the 
material to the type of disturbing force imposed. Following from this, the 
hardness is a function of the test method, and the dynamic nature of the 
measuring process imposes a different pattern of stress on the sample for 
different load ranges. A wide variety of very different hardness test pro­
cedures has been developed: 

1. Scratch Tests, in which it is simply observed whether one material 
is capable of scratching another (the Mohs test). 

2. The Ploughing Test, in which a hard blunt material like diamond is 
loaded and pulled across a surface to make a groove. The width and 
depth of the groove are a measure of hardness (the Bierbaum test). 

3. The Cutting Test, in which a sharp tool is used to remove a chip of 
standard dimensions. 
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4. The Abrasion Test, in which a specimen is loaded against a rotating 
disk and the rate of wear as determined optically or by weight loss 
is used as a measure of hardness. 

5. The Erosion Test, a variation on the abrasion test, in which abrasive 
grains are fired onto the sample surface and the loss of weight in a 
given time is used as a measure of hardness. 

6. The Damping Test, in which a pendulum with a very hard pointed 
pivot is set rocking on the sample surface and the time to decrease 
the amplitude of the swing by 50% is used as a measure of hardness 
(the pendulum test or Herbert test). 

1 PHASE '1 
DEVELOPMENT OF TEST METHODS 

I es me o s J 
STUDY OF PARAMETERS AFFECTING HARDNESS 

LOAD 

GEOMETRY CONSEQUENCE 

TEMPERATURE 

TIME 

MICROSTRUCTURE - (il Relative 
ENVIRONMENT hardnesses 

(iiI Phase 
identification 

IPHASE41 1 PHASE 31 

LOPMENT IN CERAMICS CRYSTALLOGRAPHIC ASPECTS CRACKDEVE 

TOUGHNESSM 
BRITILENESS I 

CONSEQUENCE 

(il 
(iiI 

EASURE 
NDEX 

CONSEQUENCE 
r 

Kjc Values I 
Crack growth 

ANISOTROPY OF HARDNESS -SURFACE ENERGY 
ROLE OF DISLOCATIONS 
PLASTIC FLOW-SHEAR STRESS 

I (il Slip systems I 
identified 

(iiI Stren th of solids 
IpHASE 51 g 

CONSEQUENCE CHEMICAL ASPECTS 

HARDNESS AND CHEMICAL BONDS 
SURFACE ENERGY CORROSION 

CONSEQUENCE 

I WEAR PARAMETERS I 
Figure 1.1. Flow chart showing the stages in the development of hardness science and hence 
the topics covered in the text. 
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7. The Rebound Test, a test easily adapted to measurements over wide 
temperature ranges whereby a ball is bounced on the sample surface 
and the height of the rebound is taken as a measure of hardness. 
(Shore's name is sometimes associated with this measure of 
hardness.) 

8. Static Indentation Tests, by far the most widely used, the most widely 
analyzed, and the most generous in the breadth of data they supply. 
A ball, cone, or pyramid is forced into a surface and the load per 
unit area of impression is considered the material's hardness. Several 
types of such tests are well known: Brinnel, Vickers, Rockwell, and 
Knoop. 

What emerges from the above is that no single unit of hardness can be 
defined such that a single linear hardness scale can be established. 

Why not adopt the seemingly obvious course of finding or defining a 
reproducible natural standard suitable for establishing reference points on 
the practical scales which result from the various measuring techniques? 
No one reproducible natural standard exists that would provide unam­
biguous measurements across the very large range of values encountered 
in ceramic systems. For example, applied loads that produced clear, 
uncracked indents in the test material may be too small for some systems 
and would measure only very local surface properties. More important, a 
hardness test, while not destructive of the object in a macroscopic sense, 
is destructive of the local area tested and cannot therefore be repeated 
precisely. 

After this salutary beginning, is it worthwhile pursuing the question of 
how hard a ceramic is? Yes, because the attempts at answering this question 
have followed several routes that shed light on ceramic development. Figure 
1.1 is a flow chart of the development of the subject that should make it 
clear how the topics in this book are grouped for study. 

7.2. CERAMICS OF PRINCIPAL INTEREST 

Mitsubishi Heavy Industries announced plans in 1984 to begin mass 
production of ceramic turbines 40% lighter than conventional nickel alloy 
types. Made from "clay and air," these superior new materials come from 
an old source and they are formed by "traditional" thermal processes, but 
there all likeness to the popular conception of ceramics ends. It is impossible 
to visualize the traditional ceramic, made by heating earthy materials, 
withstanding the stresses, strains, and temperatures required in the Mit­
subishi turbine. Then what are these new superceramics? In the case of the 
turbocharger they are silicon nitride, ShN4 , and silicon carbide, SiC, but 
are these the only possibilities? Development has required the solution of 
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problems in purity, powder technology, moulding and forming, machining, 
and ceramic-to-metal bonding which clearly, to the satisfaction of an indus­
trial giant, have been overcome; if something as difficult as this can be 
accomplished, then it will be possible to make almost anything from ceramic 
materials. However, lagging somewhat behind has been the development 
of testing methods, particularly nondestructive methods, and it is here that 
hardness testing may be of growing importance, as Figure 1.1 indicates. 

However, to return to the unanswered question in the above paragraph, 
what are superceramics? How should we limit our consideration and our 
compilation of data? These questions have been tackled in a previous book( 1) 

in which, starting from Griffith's theoretical equation, an expression was 
developed that related the fundamental intrinsic properties of sublimation 
energy, density, Young's modulus, and molecular mass: 

(Ll) 

From equation (1.1), in order to achieve high modulus values and hence 
superior strength, a material must possess covalent bonds or, at second 
best, ionic bonds; both of these are common in ceramic materials. Besides 
this combination of chemical bonds, a suitable ceramic material must have 
a low molecular weight, thus relatively few materials need be discussed in 
this book, principally beryllium, boron, carbon, silicon, boron carbide 
(B4C), silicon carbide (SiC), boron oxide (B20 3), silicon oxide (Si02) and 
glasses, magnesium oxide (MgO), aluminium oxide (AI20 3), zirconia 
(Zr02), boron nitride (BN), silicon nitride (Si3N4 ), and some refractory 
carbides and nitrides. Because of their considerable commercial importance, 
we must add to this list some "fine ceramics" that have assumed considerable 
importance in electronic and magnetic applications: gallium arsenide, ger­
manium, borides, garnets, ferrites, and perovskites. These then will form 
the main focus of our numerical data, and sections will be devoted to each 
when we discuss applications. 

Being ceramics, these materials are characterized, as has already been 
stated, by covalent or ionic bonding or combinations of these, with the 
result that much of the theory and many of the concepts of hardness have 
to be reviewed because they were developed principally for metals, in which 
weak nondirectional bonding lends itself to interpretation of data almost 
exclusively in terms of dislocation flow and easy plastic deformation. It is, 
however, interesting to see how far the conventional theories and concepts 
can be extended to ceramics. One aspect of hardness technique both unusual 
and extremely pertinent to ceramics is the question of brittleness. 

The term "brittleness" has always loomed large in discussions of 
ceramics because it suggests serious problems which may be holding back 
the use of the engineering ceramics discussed in this text. Because of those 
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problems, the design and testing of ceramic systems is bounded by the 
desire to prevent the initiation and propagation of cracks as materials 
respond to two competing mechanisms of applied stress, namely, flow and 
fracture. In indentation hardness testing we have a controlled way of 
producing irreversible deformation together with crack patterns around and 
within the same sample volume of ceramic, enabling these two parameters 
to be determined, analyzed, and combined for each specimen into a measure 
of brittleness(2) since H v, the Vickers hardness, is a measure of deformation 
and Kc is a measure of resistance to fracture. This leads to Hvl Kc being 
an index of brittleness. This index is of small predictive value stating as it 
does the seemingly obvious (see Table 5.2 ir Chapter 5, where toughness 
and hardness are discussed) but its derivation is an application of the 
hardness technique to ceramic systems that leads to the useful prediction 
of p* and c* as the maximum load and maximum associated flaw size that 
a ceramic system might sustain without starting a fracture process. In 
principle this useful design information can be obtained from a single 
indentation hardness determination, at least in a semiquantitative way which 
can nevertheless prove valuable. Thus part of Chapter 5 deals more fully 
with the brittleness index and its relationship to the grindability of ceramic 
powders. 

This is one example of the wide scope for hardness measurements in 
the rapidly developing field of modem ceramic science and technology. 
The interlinking of hardness theory, hardness methods, strength, toughness, 
brittleness, wear, crystallography, structure, microstructure, and bonding 
to topics of current and future importance is the aim of the ensuing chapters. 

1.3. CONCEPT OF HARDNESS 

As already stressed, the concept of hardness has no precise definition 
and as a result possesses no recognized dimensions; some methods of 
measurement give it units of pressure and some units of time, while in 
others it is dimensionless. Even when the types of experiment to measure 
hardness seem on their face to be very similar-for example, the methods 
involving indentation of a crystal surface-the various hardness scales are 
not readily comparable. The reason for this situation is explained in Section 
1.4 and Chapters 2 and 3 but can be briefly stated at this stage: In an indent 
test the measured hardness is a function of several parameters. This difficulty 
in tum has led to several models being used to interpret and quantify 
measured hardness values: tensile strength(3) and ease of plastic flOW(4,5); 
surface energy(6); and chemical bond strength.(4,7,S) 

The importance of each of these concepts and their role as rationalizing 
ideas in ceramic hardness studies are described in detail in this book, and 
the applicability and usefulness of each will be stressed. However, because 
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of the variable nature of hardness and the wide range of bond types 
encountered in ceramic systems, it is stressed that a variety of models should 
be considered before the applicability of anyone is overemphasized. Briefly, 
then, what are the general parameters that affect a hardness test such as 
the indentation of a ceramic surface by a faceted diamond? First, but not 
necessarily most important, is grain size. It has been shown that in polycrys­
talline samples grain size has an important effect when it is of the same 
order as the indent diameter. A decrease in grain size is accompanied by 
an increase in hardness as the dislocations generated by the indenter are 
blocked by the grain boundaries. Figure 1.2 illustrates the practical problem 

30 

III 
GI .a 20 .. 
1\1 
s: e 
u 
:i 

WC+25% Co P=0·29N 

10~--------~----------~----------~--10 20 30 

Grain diameter 11m 

a 

b 

Figure 1.2. Grain size eftects in microhardness testing. (a) Results from tungsten carbide 
cutting-tool compositions. (b) Apparent hardness changing as grain size to indent size decreases. 
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here. We can see immediately that a range of instrumentation is necessary 
to enable various load ranges to be used so that the indent-to-grain size 
ratio can be controlled. This in tum has led to the division of the subject 
into regions variously defined as macro- and microhardness depending on 
the load used. 

Figure 1.3 emphasizes the arbitrary nature of the nomenclature in this 
type of hardness determination as well as the way in which load affects the 
determined hardness value. 

The divisions into areas a, b, and c with their respective titles are 
arbitrary but commonly accepted as being near to the loads indicated. Only 
in area c with load in the range 3-10 kg is hardness independent of the 
applied load or sample microstructure. Area a shows the hardness value 
increasing as load diminishes, but great care is necessary in making determi­
nations and interpreting results in this region when such small loads are 
applied. Variations in technique and microstructure can and do produce 
hardness values in area a that for one sample can range from 50% to 400% 
of the standard hardness value. 

The need to control indent size according to the grain size of specimens 
leads to two areas of importance: What is hardness measuring if large loads 
are used with polycrystalline samples of fine grain size, and can load 
variation itself introduce problems as various parameters in the function 
that describes hardness become dominant? 

Thus a second indentation-test parameter is the applied load. If the 
load is too light and the indenter impression is then shallow, the 
micro hardness can be dominated by the ease with which dislocations can 

~ ~ 
a ~ b ~ c 

~ ~ 
en ~ Low ~ Standard 
en ~ load ~ hardness CD c: 
'E Micro- hardness ~ 
III hardness s: ~ ~ c: 
0 

~ ~ :;:: 
III -c: 
CD 

1:1 ~ ~ .E 

~ ~ 
104 

-3 -2 -1 0 1 2 
10 10 10 10 10 10 

Applied load kg 

Figure 1.3. Range of load and hardness type in the indentation hardness method. 
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move in the near surface regions. Hence the nature of the surface will 
appear to be dominant in setting a hardness value for the material. This 
has been shown to be important in the effect that absorbed water has on 
reducing the measured values of hardness of ceramics such as SiC, MgO, 
and Al20 3 (9) when tests are made with small loads, for example, less than 
100 g for MgO. 

Here we see an important potential of hardness investigations because 
typically ceramics are used to take advantage of their "hard" surfaces. 
Furthermore they frequently have to be drilled, ground, or polished; hence, 
changes in their surface properties need to be monitored so that technical 
processes can be improved as ceramics become more widely used in 
engineering applications. 

Once again, however, a warning note must be sounded because of the 
multivariable problem we are considering. If the indent is only shallow, 
then the nature of the surface itself and not just the surface environment 
is important. Surfaces can become hardened by the working and polishing 
needed to get a satisfactory area for testing. Such hardening could mask 
the environmental softening effect, and in order to study this aspect proper 
surface treatments should be used prior to hardness determinations. 
Chapters 2, 3, 4, and 6 deal more fully with these points. 

Too great a load chosen for deep penetration to overcome or minimize 
the sample surface factors can produce erratic hardness results as brittle 
ceramics crack locally around the indent and energy is expended on crack 
propagation. Deliberate overloading has now been shown to be a nonde­
structive microscopic way of determining important properties of ceramic 
systems, and as such occupies the whole of Chapter 5. However, when a 
polycrystalline ceramic is not obviously cracked and the indented area 
extends over many grains, then other microstructural features become 
dominant. For example, equation (1.2) is found to relate hardness to porosity 
in sintered materials.(IO) 

(1.2) 

In equation (1.2), Hx is the measured hardness, Ho is the hardness at 
zero porosity, and 8 is the fractional porosity. Typically B is less than unity 
and for boron carbide, B4C, it has the value 0.35 for 8 in the range 0-1.0. 
The bifunctional dependence of hardness on porosity contrasts with 
equations used to relate ceramic porosity and strength, for example, equation 
(1.3), 

0" = 0"0 exp (-b8) (1.3) 

which has been used to determine strengths of hydraulic cements for many 
years. 
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The mechanism of material flow beneath the indenter in the case of 
porous samples is referred to in Section 5.2.3, and the change in sample 
microstructure in the indented area is shown in Fig. 6.23 for a porous 
composite of ,B-Al203 + zr02. 

From all of the above we see that load selection is very important in 
determining the actual value of a measured hardness in this type of test, 
and as such it is dealt with in full detail in Chapter 4. 

A third indentation test parameter of fundamental importance is tem­
perature. In several studies of the temperature dependence of hardness, an 
activated process becomes apparent from Arrhenius-type behavior.(4) Calcu­
lation of the activation energies associated with thermal softening is charac­
teristic of the activated processes governing plastic flow in crystals.(S,Il) 
Thus, the role played by the crystal structure in determining micro- and 
low-load hardness values must be a major one since, apart from its effect 
on lattice energy, the actual arrangement of the ions in a ceramic crystal is 
important in determining the ease of plastic flow. This aspect of ceramic 
hardness and its potential applications is discussed in Chapter 3. 

It should be noted at this stage that variations in micro- and low-load 
hardness observed as functions of indenter geometry and crystal orientation 
are in fact only reflections of different distributions of shear stress within 
the bulk of the crystal. In this respect, too, the variations in chemical bond 
type found in ceramics must be important since ionic bonding proves less 
of a barrier to plastic flow than the strictly directed covalent bonds. 

When considering the hardness of ceramics, a fourth parameter is 
purity. It is known that aliovalent cation impurities are a potent source of 
solution hardening. For example, in MgO the solution hardening rate due 
to Fe3+ is an order of magnitude greater than that due to FeH (Refs. 12 
and 13); a closely related result is found for Ti4+ in Al20 3 when compared 
to Ti3+ .04 ) The main thrust in the interpretation of solution hardening has, 
like much interpretation of ceramic hardness, involved dislocation theory; 
aliovalent cations are believed to form complexes with compensating lattice 
defects, which in turn cause elastic and bond distortions of the lattice, and 
then both these factors control the solution hardening rate by their inter­
action with crystal dislocations. Since many ceramic systems are solid 
solutions this aspect is important; it is dealt with in Chapter 3. However, 
we must return to our earlier warning and see that one type of explanation 
must not be overused because some ceramics show an impurity softening 
effect which is more readily rationalized through a chemical bond strength 
model; the solid solution hardness values of the dicarbides show this(lS) as 
does the variation of hardness with carbon content in carbides and of 
,B-boron as metals are dissolved in it.(7) These and many other aspects and 
examples are gathered together in Chapter 6 in sections dealing with each 
ceramic in terms of its structure, microstructure, uses, and values for 
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hardness, together with other properties that have been calculated for each 
material following the measurement of its hardness. 

What we have just considered for one type of test procedure has 
parallels for others, but in each case the dominant function can be different. 
With respect to ceramic specimens the following test procedures, outlined 
here and described in Chapter 2, are most commonly encountered. 

1.4. TYPES OF TEST 

1.4.1. Static Indentation Tests 

This group of tests has already been referred to in order to emphasize 
the multifunctional nature of hardness. There are several modes depending 
upon whether a ball, cone, or pyramid is forced into the ceramic surface. 
In all cases the load per unit area of impression is given as the measure of 
hardness. Results here are more variable than might seem necessary because 
different test methods use different unit areas. For example, in the Brinell 
test where a small sphere is used to indent the surface the hardness is 
calculated from the contact area, not the area in the plane of the surface 
which would seem to be a more directly measured and calculated variable. 
Thus 

P P 
HB = = ------=-~-:-:-::-

contact area 7TD[D - (D2 _ d 2)1/2] 
(1.4) 

where P = applied load, D = sphere diameter, and d = diameter of the 
impression left in the sample surface. 

Equation (1.4) has a different form and therefore a different hardness 
value is quoted when the area used is that projected onto the plane of the 
surface; this is then the Meyer hardness H M • 

P 4P 
H M = --

projected area - 7Td 2 
(1.5) 

When a ball or spheroconical indenter is used but no indent area is calcu­
lated, then the Rockwell hardness is obtained. In fact the Rockwell indenta­
tion hardness is a depth of penetration value. 

When a pyramid with apex of 136° is forced into the surface and the 
contact area is used to determine the stress, then the Vickers hardness H y 
is obtained. 

P 
H y =----­

contact area 
0.322P O.464P 

(1.6) 
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In this equation, 2a is the mean diagonal length expressed in microns of 
the diamond-shaped impression made in the indented surface and the load 
P is expressed in newtons. 

Ceramics, because of their brittle nature or because they may be present 
as thin surface coatings in an engineering application needing to be tested, 
have dictated the development of a blunter indenter producing shallower 
impressions. When the pyramid has at the apex two angles, one of 172.5° 
and the other of 130°, a Knoop impression is made in a surface. This has 
the characteristic of one long diagonal, seven times longer than the short 
diagonal. Knoop hardness is not directly comparable to Vickers hardness 
because the projected area and not the contact area has always been used 
to determine the stress. 

P 2P 
HK = (1.7) 

projected area di( cot 172S + tan 130°) 

In this expression for hardness, d1 is the length of the long diagonal of the 
indent. 

Because it is sometimes advantageous to have an indenter that more 
closely reflects the symmetry of the plane being indented, a triangular-based 
pyramidal indenter was developed during the late 1950's; it is the Berkovich 
indenter. This indenter has an angle of 65° between the vertical axis and 
each of its three faces which penetrate the surface. Equation (1.8) allows 
hardness values to be calculated when aB is measured as the perpendicular 
distance from an apex to the opposite base of the triangular indent shape 
produced on the surface. 

l.732P 
HB =--2-

aB 

where P is expressed in newtons and a in microns. 

(1.8) 

As anisotropy measurements and toughness determinations of ceramic 
systems have become more necessary, the indentation type of hardness 
measurement has become more popular, as Chapters 3 and 5 show. 

Each of these methods is subject to restrictions, some of which will be 
made clear in Chapter 2, on the design of apparatus and application of the 
stress; but when these restrictions are conformed to, the hardness values 
obtained, although not obviously directly comparable, are related through 
the general expression 

(1.9) 

where C is the constraint factor and u y is the uniaxial flow stress. 
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1.4. 1.1. Constraint Factors 

Hardness values are related to flow stress by a constraint factor. It is 
easy to visualize this by considering a simple compression test because in 
such a test the whole specimen goes plastic due to the fact that there is no 
resistance to side flow with the specimen being only surrounded by air. In 
the indentation test the part of the specimen that flows is surrounded by 
elastic material and so side flow is restricted. Therefore a greater mean 
stress is required to cause plastic flow in hardness tests than in simple 
compression tests. In equation (1.9) C is called the constraint factor, 
approximating to 3 for Brinell, Vickers, and Knoop hardness. 

Much theoretical consideration has been given to explain the origin 
and size of the constraint factor C. The common approach is given in terms 
of slip line field (SLF) theory, according to which plastic flow takes place 
in plain strain over a range determined by the displaced material, while at 
all other points the material is rigid. The SLF is a network of curves along 
which the shear stress or shear strain rate is a maximum; suitable flow 
patterns need to be consistent from the standpoint of velocities. Since 1920 
various suitable flow patterns have been suggested and analyzed. For 
example, if a blunt 2-D punch is used to indent, as shown in Figure 1.4, 
the solid lines are directions of constant maximum shear stress. They 
constitute a set of orthogonal shear stress coordinates a, {3. 

Normal stress on the surface 0"\ = 0 since this surface communicates 
with air, but below the punch normal stress is O"~ because the indented area 
communicates with the punch surface. The normal stress on the shear plane 
for any point within ABC will be PD = K. 

r 
~-----2a------~ 

Figure 1.4. Two-dimensional blunt punch indenter. 
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From C to E the ex. line is curved; therefore there is no change in shear 
stress, but the normal stress will change according to equation (1.10) 

P + 2cfJK = constant 

where cfJ = angle between ex. and x axis. 
At point C, cfJ = 900 = 7T / 4. 
At point E, cfJ = 2700 = -7T/4. 
Hence Pc + 2KcfJc = constant = PE + 2kcfJE = k(1 + 7T). 
Normal stress on the punch face in area AEG is given by 

U~ = k + p' = 2k(1 + 7T/2) = 2k(2.57) 

(1.10) 

(1.11) 

The corresponding mean stress on the punch for plane strain uniaxial 
compression is 2k. Hence the constraint factor C = (1 + 7T/2)2k/2k = 2.57. 
The relation between the plane strain flow stress 2k and the axisymmetric 
(3-D) flow stress Uy is 2k = 2uy/(3)1/2. Therefore the 3-D constraint factor 
will be 

Experimental values for many materials are around 3; therefore, good 
agreement exists. 

For a perfectly elastic-plastic solid the theory of hardness indentation 
is relatively simple leading to the important conclusion expressed by 
equation (1.9), that the hardness or average pressure under an indenter is 
a constant factor of yield stress. In its simplest form, as shown above, 
C = 3.0, which is the Tabor relationship. This arises because ~ the pressure 
under the blunt indenter is hydrostatic, the remainder being shear stress, 
and only this can produce the plastic flow necessary to leave a permanent 
indent. The effects of elastic deformation are considered unimportant and 
this obviously makes this constraint factor far from useful for engineering 
ceramics, which are far from perfectly elastic-plastic. Indeed, 43 years ago 
Westwood showed that C could be as large as 35 for single-crystal materials 
with alkali halide structures, while perspex or nylon materials have C values 
considerably below 3. As a result the constraint factor relating hardness to 
flow stress has received fairly constant attention in theory and in modelling 
the indentation process. This later aim is not easily achieved because the 
strain under an indenter is very complicated, involving considerable shear. 
However, Marsh in particular believed that elastic deformation in ceramic 
or glass systems was important and sought to bring this aspect out in the 
analysis. 
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Marsh recognized that in order to obtain a value for the flow stress of 
glass one is forced to work from indentation hardness tests since this is the 
only simple way to measure flow stresses for macroscopically brittle materials. 
This was in a sense learning from Tabor's model of the flat rigid indenter 
penetrating an elastic-plastic material. Such a material is sometimes called 
a Mises material. However application of Tabor's model to glass produces 
values for uy well below the observed brittle fracture stress and flow 
characteristics should be apparent in the breaking behavior of glass. 

This was not the case. Marsh turned to Hill's analysis of a spherical 
cavity expanding under an internal pressure and not forcing the material 
to the surface as the rigid die model does because experimental observation 
shows the plastic zone to be hemispherical for a great range of materials. 
He had to introduce constraints to account for the inclusion of a flat surface 
to produce a hemisphere. For ceramic and glass materials with high values 
of uy/ E Marsh derived semi-empirically the relationship 

Hy 
-= C+ kBlnZ 
uy 

(1.12) 

where C and k are constants and Band Z are functions of uy/ E, respec­
tively, and Hy is the Vickers hardness of the sample. 

Equation (1.12) holds only when B In Z is less than 4 and the constants 
were such that 

E 
Hy = 0.07 + 0.6 In -

uy 
(1.13) 

Further development of Hill's expanding cavity model by Johnson, taking 
into account the shape factor associated with the different types of indenter, 
leads to equation (1.14). 

H 2 ( In E cos 0) 
=- 1+ u 

y 3 3uy y (1.14) 

where 0 is the semi-angle of the indenter. This last equation allows values 
of hardness measured by indenters of various standard geometries to be 
correlated with a single parameter 

( 1.15) 
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where Hx is any type of hardness as determined by indentation methods 
using pyramids of general geometry and f3 is the angle of inclination of the 
indenter to the surface at the edge of the indentation. Below, Figure 1.6 
shows that this angle might not be so simple to obtain. A more recent 
attempt to remove the empirical constants in Hill's approach concentrates 
on the fact that the plastic zone is hemispherical and the indentation pressure 
p is indenter shape insensitive. The volume V of the plastic hemisphere is 
directly equated to the plastic work of indentation which equals p ~ V, where 
~ V is the indent volume. 

The parameter f3 is defined as b / r where b is the plastic zone radius 
and r is the radius of the indent for a spherical indenter and 

f3 = ~ = (~)1/3 
r ~V 

For a wide-angle indenter, such as a Vickers pyramid, 

b (b) 1.644 
; = -;; cotO.33 'I' 

(1.16) 

where 2a is the indentation diagonal and 2'1' is the included angle between 
opposite faces. For the Vickers pyramid 'I' = 68° and r = 0.45a. The indenta­
tion pressure p can be converted to hardness Hx by using the appropriate 
area term. 

Hill's spherical cavity solution can then be adapted to give 

E 4.5[(1- 1I)f33 - 0.66(1- 211)] 
p 1 + In f33 

(1.17) 

and 

.1!.... = 0.66{1 + In [E/Uy + 2(1- 211)]} 
u y 3(1 + II) 

(1.18) 

Surface forces on the plane bisecting the spherical cavity generate shear 
stresses in the plastic hemisphere and these are added to those calculated 
for the symmetric solution in order to gain a quantitative picture of the 
stress at points on the surface, in the plastic zone, and in the elastic zone, 
both on indentation and on removal of the indenter. In order to do that 
the following equations can be used: 

Under Load 

a. Plastic zone 

U~l = [3In(r/a)]_1 
p 1 + 3ln f3 

(1.19) 
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Ufl = {3[ln (r/ a) + !]} _ 1 
P 1+3In~ 

(1.20) 

with U~l = radial stress at r', the distance from cavity center, in the plastic 
zone, and Ufl = the tangential stress in the plastic zone for ~ > r / a > 1. 

b. Elastic zone 

ur ~3 - = ----:-'----
(r'/ a?(1 + 3In~) 

(1.21) 
p 

el ~3 
U = 

p 2(r'/ a)3(1 + 3In~) 
(1.22) 

These apply for r'/ a > ~ and el signifies the elastic zone. 

On Removal of Load. The stresses in equations (1.19)-(1.22) are 
modified to become 

upl(r) 1 
~ = Equation (1.21) + (r'/a? (1.23) 

U~l(r) = Equation (1.22) - !(r'/ a)3 (1.24) 

uel(r) 1 
~ = Equation (1.23) + (r'/a)3 (1.25) 

uel(r) 1 
~ = Equation (1.24) - 2(r'/ a)3 (1.26) 

These are the residual stresses, hence the superscripts el(r), etc. This analysis 
shows that they are not negligible and playa dominant part in the production 
of fracture patterns around indents (see Chapter 5). To these cavity stresses 
have to be added the stresses caused by the flat surface needed to change 
the sphere to the hemisphere: 

f j f k s U, u, 
u = dA- gmm + dA-gmm 

plastic P elastic P 
(1.27) 

j = plastic, k = elastic or residual plastic or residual elastic as necessary; 
mm = xx, XZ, or zz and for a point force P applied at 000 acting in the 
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positive z direction, 

U zz ::: pgzz> 

z { (X)2 1 - 2v [ R ]} g = -- 1 - 2v - 3 - - R2 - x 2 + - (R2 - 2X2) (1 28) 
xx 27TR3 R (R+Z)2 Z • 

(1.30) 

(1.31) 

where R2 = x 2 + y2 + Z2 and v = Poisson's ratio. 
Analytic solutions of the integrals and calculation of the stresses at 

various points for indents of varying sizes and shapes lead to several common 
features: the peak tensions are at the elastic-plastic boundary; there is a 
rapid change to compression within the plastic zone and a linear decrease 
in tension into the elastic zone; and, for indenters with large '1', the residual 
stresses are greater than the peak stress at loading, so that these stresses 
are important as the load is removed. These predictions are consistent with 
observations made on many ceramic crystals. 

A plot of the U yy component of the tangential stress, normalized by 
the hardness, against distance in the x direction shows pictorially in Figure 
1.5 the small effect on surface stress different-sized indents have and the 
tensile nature of the stress with residual values exceeding load stresses. 

Experimental comparisons between the Vickers hardness Hy and the 
parameters in equation (1.15) as determined by bend tests, etc., give values 
of Hy in the range 6-12uy, and not the 4.5uy predicted by equation (1.15). 
The difference is due to factors such as the strain rate, E being very fast in 
hardness tests; the total strain, with values around 8% in hardness tests in 
the region around the indent shape compared to 1 % in compression tests 
before macroscopic bursting; and the true nature of the ceramic material. 
For example, for the covalent structures found for diamond, silicon, ger­
manium, quartz, silica, and glasses the room-temperature hardness may be 
a result not of normal plastic flow processes as found in metals and more 
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Figure 1.5. Tangential stress at the surface of a ceramic for different indent sizes. These stresses 
cause radial fracture. 

ionic solids such as alkali halides, but of a critical stress-dependent mechan­
ism. Such mechanisms include pressure-dependent semiconductor-to-metal 
transition-stress softening; athermal flow over the extremely strong Peierls 
barriers of these solids; densification under the indenter leading to a chang­
ing hardness as the penetration increases; the formation of cracks beneath 
the indenter; and stress-induced hardening. These parameters, especially 
densification for glasses and crack formation for general ceramic systems, 
have been included in analyses in extensive work to develop the hardness 
technique for finding toughness values for such materials. 

Ceramics which, when indented, undergo the mechanisms listed above, 
with the exception of cracking, can be grouped as Mohr-Coulomb materials 
for which five parameters-E, U y , If, iI, and a-are needed to calculate 
hardness. Here E, uy, and If have their usual meaning while iI is the stress 
hardening rate and a is the densification factor. Clearly if indentation causes 
densification then a and iI must be closely linked. 

Yield in Mohr-Coulomb materials follows a criterion which is the sum 
of stress terms and the Mises criterion: 

f = a(ux + U y + u z ) + (1 + a)(W/2 

x [(ux - Uy)2 + (uy - uz )2 + (uz - ux )2 + 6T;y]1/2 (1.32) 
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This yield criterion would need to be used in any extended calculation of 
Hx or indentation shape, which explains why empirical and semiqualitative 
work is the order of the day in this field and approximate constraint factors 
are used. 

The availability of computer time and the borrowing of the finite 
element method from architectural design has seen the growth of calculated 
hardness values for some ceramic materialsY6) 

1.4.1.2. Indent Shapes 

By advancing from Mises materials with the inclusion of different 
degrees of densification and stress hardening the prediction of indent 
cross-section is possible. When lal and iI are small, <0.1, the piled-up 
indent of the Tabor model arises. For a around -0.2 and iI up to 0.2E 
the flat surface expanded cavity indent occurs. Densification with a = -0.33 
which implies a contribution to deformation by this mechanism of 45%, 
the remainder being from flow processes, produces the rosette-like indent 
observed in many glassy ceramics. Large values ascribed to iI produce the 
partially piled-up cross section shown in Figure 1.6(d) along with the other 
schematic representations. Shapes (c) and (d) in Figure 1.6 are most com­
monly encountered in ceramic materials. 

Flow patterns in the surface around indents and their significance are 
dealt with in Chapter 3. The development of surface and subsurface crack 
patterns is the subject of Chapter 5. Changes of shape with time and 
temperature-that is, the relaxation and creep of indentations-are covered 
in Chapter 4. All the indentation methods can be adapted to make studies 
at high and low temperatures and with various degrees of atmosphere 
control with the result that in a quantitative sense indentation has massively 

p p p p 

l ! ! l 
~---A ~ __ rSurface --V -- --V---V --0- -- -

a b c d 

Figure 1.6. Schematic representation of indent shapes for materials with different constraint 
factors. (a) Mises material with Tabor constraint. (b) Mises material with Hill constraint or 
Mises-Coulomb material with a == -0.2, iI 0.2E. (c) Mises-Coulomb material with no stress 
hardening but about 45% densification, typical of glass. (d) Little densification but large values 
of iI. 
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outgrown all other hardness test methods which have to a large extent 
become comparative methods only. 

1.4.1.3. Theoretical Hardness 

So far for the method involving indentation we can see that the gen­
eralization in equation (1.33) applies: 

H=~ 
Area 

(1.33) 

Now, taking area down to the fundamental cross-sectional area of one 
structural unit-atom, ion, or molecule-we might find a way to define and 
determine a fundamental hardness for any material. Figure 1.7 shows the 
model we might use. 

In Figure 1.7, on the atomistic scale shown, the area of indent = r; 
and so we have one part of equation (1.33). To get the second variable from 
the figure we see that after time t atom B is moved by P until it reaches a 
position such that r between A-Band B-C is increased sufficiently to 
produce an opposition force to P and cause a new equilibrium. In this 
process we have shortened the distance between Band 0 to r2 and caused 
a repulsive force to dominate in the shortened bond directly beneath the 
indenter. Thus we need an expression to represent the potential energy 
between the structural units so that we can redefine the new energy for the 
system. 

Several expressions have been defined which have a form combining 
attractive forces with shorter-range repulsive forces, for example, the 
Lennard-lones 6-12 potential: 

(1.34) 

p 
p 

Time. 

Figure 1.7. Atomistic representation of hardness indentation process. 
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A more general expression of this type is given as 

(1.35) 

In equation (1.35) the first term in the bracket is the repulsion force, 
important when, < 'e; m and n are constants related to bond type which 
will reflect the ionic, covalent, or mixed ionic-covalent bonding in the 
ceramic systems considered in this book. Ve is the equilibrium potential, 
'e is the distance at which V = 0, and, is the distance '1, '2 as shown in 
Figure 1.7. 

To generalize further the terms z/ bl and z/ b2 need to be introduced 
into equation (1.35) to allow for structural variations by accounting for the 
number of type A atoms and type 0 atoms in Figure 1.7; hence z is the 
coordination number of the structure and 

v=~~[m(!!)nJ -~~[n(!!)mJ 
m - n bl , m - n b2 , 

(1.36) 

Ignoring the repulsive part of equation (1.36) for the stretched bonds 
and ignoring the attractive part for the compressed bonds we can find dv/ d'i 
and dv / d'2, which when combined will give the force of interaction for the 
system. Resolving the stretching force vertically and combining it with the 
compression force (P in Figure 1.7) the second part of equation (1.33) will 
be found. 

First considering the bond stretched from 'e to '1, the first term in 
equation (1.36) is ignored, so that 

V= 

Vez nm('e)m+1 
= (m - n) b2'e ~ 

For the angle (J in Figure 1.7 this force resolves in the P direction as 

(1.37) 
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Similarly the repulsive force as 'e decreases to '2 can be found. 

V- -m -Ve Z ('e)n 
(m-n)b I '2 

dV Vezmn ('e)n+I 
(m - n)bI'e , 

Chapter 1 

(1.38) 

Combining equations (1.37) and (1.38) with respect to the action of P, 

Veznm ('e)m+I('e - '2) Vezmn ('e)n+I 
P = (m - n)b2 , '1 -'-1 - + (m - n)b I , ;; 

Veznm [1 ('e '2) ('e)m+I 1 ('e)n+I] 
P = (m - n)'e b2 '1 - '1 ~ + bi '2 (1.39) 

Now, substituting equation (1.39) and the area of indent into equation 
(1.33), we have an expression for theoretical hardness: 

H = eznm _!!. _ '2 'e + _ 'e V [ 1 ( ) ( ) m+I 1 ( )n+I] 
(m - n),! b2 '1 '1'1 bi '2 

(1.40) 

Given Ve and 'e we might be able to use this expression, but what about 
'1 and '2? It is worthwhile making substitutions for these terms to arrive 
at a more easily envisaged and easily used expression. Assuming average 
bond lengths at equilibrium, then 

(1.41) 

Here Vm is the molar volume, No is Avogadro's number, and K is a structure 
factor related to the coordination number z. For a surface atom, 

(1.42) 

where UL is the lattice energy, z is the coordination number, and W is the 
number of atoms per formula unit. 
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In order to obtain expressions for rl and r2, since we have equation 
(l.40) we need to find the ratios rei r1 and rei r2. To do this we analyze the 
model further. As the indenter displaces atom B, r1 increases and the 
restoring force dVI drl increases. This can continue only until a maximum 
force is developed and the bond breaks, hence dvl dr1 will be zero. Thus, 
differentiating equation (1.35) twice, 

.. 0 = (n + Oc:) n+2 - (m + Oc:) m+2 

and 

c:r-m 

- -:-:-: 

so that 

re = [m + l]l/(n-m) 
r 1 n + 1 

(1.43) 

To find rei r2 we can make use of the fact that at equilibrium V in 
equation (1.35) will be zero, and the repulsive parts of extended bonds and 
the attractive parts of shortened bonds can be ignored. 

V = 0 = _re [m(re)n _ n(re)m] 
m - n r2 r1 

since m = n, 

and 

substituting from equation (1.43): 

~ = (m + l)-l/(n-m) = (n + 1 )l/(n-m) 
r2 n + 1 m + 1 

(1.44) 
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(1.45) 

Putting equations (1.40-(1.45) into the theoretical hardness equation (1.40) 
gives rise to the general equation 

Hth = nmULK (~{(m + 1)(m+I)/(n-m)[(m + 1)1/(n-m) -I]} 
(n - m) Vm b2 n + 1 n + 1 

+ ~(n + 1 ) (n+l)/(m+l)) 

b l m+ 1 
(1.46) 

Equation (1.46) suggests that four properties control the hardness of 
a material: 

• The bonding, through values of nand m. 
• The structure, through b l and b2 • 

• The lattice energy. 
• The molar volume of the material. 

The direct dependence on lattice energy and inverse dependence on molar 
volume have been qualitatively inferred in the past. 

An example of a special ceramic, silicon, which has a cubic structure 
reveals a similarity between this approach and the findings of theoretical 
strength calculations: for silicon, Vm = 12.045 X 10-6 m-3 per atom and 
UL = 488.2 X 103 J per atom. It has a face centered cubic (fcc) structure 
with K = 0.7, b l = 1.5, b2 = 1.0, and m = 3, n = 6. These values substituted 
in equation (1.46) predict a theoretical hardness of 400 GN m-2 , about 80 
times greater than the observed hardness. It could be argued that application 
of equation (1.46) depends on the structure of the material in that the 
hardness of a material with an open structure is determined by the extension 
of the bonds with little contribution from compression. This implies that 
equation (1.46) can be considered in two parts, the first dealing with 
extension and the second with compression. Silicon therefore can be thought 
to be dominated by the first term whereby its hardness would be approxi­
mately 14 GN m -2, which is still two to three times larger than experimental 
values (see Table 6.16). 

Dense, close-packed structures such as the metals have would involve 
using only the second term in the brackets in equation (1.46). 

The theoretical strengths of materials are consistently shown to be one 
to three orders of magnitude greater than real strengths; thus, researchers 
have concentrated on the defects that lead to this discrepancy. Clearly 
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similar considerations would be worthwhile in hardness studies. Where this 
approach is tried, it will be highlighted in the text. 

1.4.2. Damping Tests 

A detailed description and analysis of this method is given in Chapter 
2. The alleged similarity between this method and drilling processes together 
with the relatively unsophisticated type of apparatus, which can be readily 
made in the laboratory, makes this the next most used type of test on ceramic 
and glass systems. In 1923 Herbert introduced as the pendulum hardness 
sclerometer a steel ball pivoted on a mineral surface, but in this form the 
rolling friction rather than an indentation effect was being measured. 
Kuznetsov changed the design in 1929 to a single diamond point and related 
damping to hardness. Rebinder further developed the method with a two­
diamond fulcrum and introduced the mathematical analysis. It has been 
demonstrated several times since then that there is a critical weight for a 
pendulum that depends on the material to be tested. The critical weight 
increases with hardness and the system is at its most sensitive at the critical 
weight. Although the energy of oscillation and subsequent damping can be 
calculated quite easily, the transfer of that energy to the surface of the solid 
ceramic becomes a source of theoretical development, dependent on the 
models used to describe the process. Such an analysis is given in Chapter 
2. However, for all practical purposes the hardness obtained this way is 
used only in a relative way and to study changes within particular systems. 

In this test hardness is usually defined by equation (1.47): 

H = -Ao 
p (dA) 

dt 1=0 

(1.47) 

Although this equation shows little resemblance to those defining indenta­
tion hardness, it has recently been shown that the major process contributing 
to a hardness value is material flow in the solid and not comminution. Thus, 
the two types of hardness are more closely related than at first might be 
thought. The relationship is found to be exponential when sclerometer 
hardness is compared to Knoop microhardness values for the range of 
minerals used as standards in the Mohs linear rank scale (see Figure 1.8). 
Using the same comparison, namely, the Mohs minerals, the relationship 
between surface energy and pendulum hardness is found to be exponential 
and given by equation (1.48), which produces a straight-line relationship 
between pendulum hardness and surface energy measured in ergs cm- 1 

In Hp = 0.5066 + 0.9198 In l' (l.48) 
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Pendulum hardness closely approximates the scale of the rank of Mohs 
minerals, which is also shown in Figure 1.8. 

1.4.3. Rebound Tests 

Rebound tests are used even less frequently than the two previous types 
of test and represent a bridge between indentation and damping. A sphere 
of very hard material or of the same composition as the test surface is 
dropped onto the flat surface and two parameters are measured, first the 
height of rebound and second the diameter of the surface impression. This 
method is most easily adapted to measure hardness at very high temperatures 
because the contact time of ball and surface is extremely short and negligible 
heating of the indenter occurs, making it easier to apply theoretical analysis 
to the process. Two values of hardness, height of rebound and area of 
indentation, can be found but it is the rebound height that is most easily 
determined as a function of temperature and is used for temperature versus 
hardness studies. Measurement of indent size at high temperature is greatly 
affected by indentation creep which will be discussed in Chapter 4. 

1.4.4. Erosion Tests 

Hardness is one parameter in erosion and cavitation behavior of solid 
surfaces and therefore can be extracted from the data such tests provide. 
However, it is more common to use hardness measurements as determined 
by the other methods to predict erosion behavior. 

Erosion is a process frequently used to shape ceramics; consequently, 
it has often been investigated technologically rather than theoretically. It 
is the multiparticle impact of a brittle solid, and essentially two types of 
model have been researched, as will be shown in Figure 5.19. 

The first of these considers elastic interactions only between the target 
and the streams of particles which produce ring cracks on the surface of 
the target. The ring cracks eventually intersect, and material is removed. 
This model does most closely suit the impingement of low velocity spherical 
particles. Clearly the Brinell static indentation test is most closely similar 
because overloaded Brinell spheres produce this type of damage (see 5.2.2). 

The second model improves on the first one in the way that static 
indentation hardness test theory has advanced by introducing plastic defor­
mation into this dynamic system as a parameter. Plastic deformation of the 
contact area between the particles and the target surface causes radial cracks 
to propagate outwards from the contact zone and subsurface lateral cracks 
to move outwards on planes nearly parallel to the surface. Here the parallel 
with overloaded Vickers static indent tests, which are discussed in detail in 
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Chapter 5, is obvious. Visual evidence for this being the dominant mechan­
ism in erosion is frequently found when the impacting particles are angular 
and are harder than the target surface. 

Attempts to calculate the erosion volume loss per impact for isotropic 
materials under highly idealized conditions involve the toughness parameter 
Kc and Vickers hardness Hv. A surprisingly wide divergence in the hardness 
dependence is predicted: 

ex: (ppPt GpGt)2/3 

V [(p G )1/2 + (p G )1/2]8/3 -19/12 R-ll /3 V- 19/ 6 K 4/ 3 Hl/4 p p t t Pp p p c v 

(1.49) 

or 

(1.50) 

Here V is the erosion volume loss per impact, Pp and Pt are particle and 
target densities, respectively, Gp and Gt are particle and target shear moduli, 
respectively, Rp is the particle radius, Vp is the particle velocity, Kc is the 
target fracture toughness, and Hv is the target hardness. 

Equations (1.49) and (1.50) can be used to define erosion hardness but 
such values are clearly heavily dependent on the model chosen. In general 
hardness is expressed as volume removed or mass removed and detailed 
calculations are not often attempted. 

7.4.5. Ploughing Tests 

There is another form of dynamic test quite well suited to studies of 
anisotropy in ceramic hardness values-see Section 3.5.4-but the extraction 
of absolute hardness values is complicated by frictional dependence as well 
as pin shape such that only simple comparisons are attempted. As long ago 
as 1690 Huygens developed a scratch hardness technique and noted 
anisotropy for scratches in different directions. Mohs developed this in 1822 
and showed the material property of hardness by demonstrating that the 
same mineral from different sources had the same hardness. Scratch hardness 
was developed using steel or diamond styli and· hardness was expressed 
as the minimum weight required to produce a visible scratch. Mohs's 
minerals, beginning with gypsum and ending with corundum and diamond, 
enabled him to establish a linear scale between 1 and 10 with which to 
compare hardness. The scale, indicated in Figure 1.8, has continued in 
general acceptance except for the suggestion that the mineral chosen as 
Mohs's number 5, apatite, should be omitted because of the very obvious 
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Figure 1.8. Relationships between (a) hardness of Mohs minerals and pendulum hardness 
and (b) Knoop micro hardness and pendulum hardness. 

anisotropy in its behavior. Apatite seems better placed at 4.5 on the linear 
scale. 

More quantitative hardness scales have been sought for this method 
and expressions for hardness then reflect the shape of the slider; for example, 
using a square-based pyramidal slider with edge leading, the hardness is 
defined as 

4P 
H=-

s w2 
(1.51) 

where P is the normal load and w is the width of the groove. The units are 
kg mm -2 to match the indentation method. If a conical slider is used, then 

2.55P 
H=--

s w2 
(1.52) 

The diameter of wear particles formed by sliding methods have been 
related to hardness through equation (1.53): 

d = 60,000 Wab 

Hv 
(1.53) 

Here d is the wear particle diameter, Hv is the Vickers hardness of the 
mechanically weaker material, and Wab is the work of adhesion that is 
found from a knowledge of specific surface work y" and interfacial energy 
between surface a and slider b, a yb : 

(1.54) 
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Thus a knowledge of hardness and tabulated values of surface energy make 
it possible to predict powder particle sizes from some milling processes. 

The scratch hardness parabolic relationship between load and track 
width as predicted by equation (1.51) is seen in Figure 1.9 to be a reasonable 
approximation for polycrystalline samples of Al20 3 , Si3N4 , and zr02 • 

A variety of modem designs exist for measurement of scratch hardness, 
all involving the movement of a loaded stylus over a brittle surface. Such 
devices produce wear tracks that are informative about the material and 
the processes leading to its deformation. Because of indentation plasticity 
the track is expected to show plastic grooving behind the stylus while 
indentation fracture may produce an array of median and lateral cracks 
(see Chapter 5) about the track. Interaction of the crack systems can result 
in debris from material removed as either whole grains or sub grain frag­
ments, depending on the importance of intergranular strength. In the wake 
of the stylus tensile stress may be generated capable of producing cracks 
across the track width. A general ploughing action may produce very fine 
debris at the stylus tip which may be pushed out or further crushed by the 
stylus. Thus microscopic examination may be worthwhile and give some 
indication about deformation mechanisms and the importance of micro­
structure, or both. Ploughing or scratch hardness measurements have an 
advantage over indentation methods in that the direction of sliding uniquely 
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Figure 1.9. Scratch parameters-see equation (1.51)-for polycrystalline ceramics after single 
pass of 120· conical diamond. 
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defines the crystallographic direction of the measurements. To balance this 
advantage is the necessity of measuring the frictional forces set up by the 
process; Chapter 3 develops a model which attempts to do this. 

1.5. AIMS 

The methods outlined in Section 1.4 and in some cases described and 
discussed in more detail in the following chapters are the principal methods 
from which usable data can be extracted. Where available, results for the 
ceramic systems listed in Section 1.2 will be given in subsequent chapters 
of this book together with relevant bonding and structural information that 
may influence the hardness values of individual systems. 

The remainder of the book will then concern the application of hardness 
methods to determine the following information on ceramic systems: 

1. Flow properties and slip systems operating at different temperature 
ranges, including anisotropy of these systems and its effect on creep 
behavior. 

2. Mechanical properties of ceramic systems which include yield stress, 
Young's and shear moduli, fracture toughness parameters, and 
determination of compressive zones at surfaces. 

3. Definition and determination of a brittleness index. 
4. Crack initiation and propagation. 
5. Chemical effects present at ceramic surfaces and stress-corrosion 

susceptibility. 
6. Erosion susceptibility and general ceramic grindability. 
7. Critical flaw size analysis at ceramic surfaces. 
8. Discussion of a number of ceramic systems in terms of preparation, 

structure, microstructure, and the hardness of such systems. 
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Chapter 2 

Some Aspects of Method 

2.1. INDENTATION HARDNESS 

From the introductory review in Chapter 1 and from the great prepon­
derance of data to be reported in Chapters 3 to 6, it can be seen that for 
ceramic hardness studies the vastly dominant technique is that of static 
indentation. Now some practical aspects of indentation hardness measure­
ments will be considered. Figure 1.3 shows that in a seemingly arbitrary 
way indentation hardness values and measurements have been determined 
by the range of the applied load. However, the ranges are not altogether 
arbitrary because the apparatus needed to make the measurements is charac­
teristic of each of these three zones. Since many of the scientific uses of 
this technique lie in the micro hardness regime 0.0098 N to 1.96 N and the 
low-load regime 1.96 N to 9.81 N, it is worthwhile concentrating on equip­
ment and techniques necessary for measurement in these ranges. The gen­
erally high hardness values of ceramics and the complexity of equipment 
and technique needed to obtain and measure very small indents means that, 
in general, low-load hardness work is encountered rather than the micro­
hardness ranges, although the distinction will always remain arbitrary, 
depending upon the materials under examination, which can lead to indents 
of greatly different size with a given load. It is after all the difficulties 
associated with measuring the size of the resultant indent trace and any 
cracks that may be present that determine to a large extent whether the 
equipment needed is for micro-, low-load, or macrohardness. In general 
we can make the following broad classifications among loads, equipment 
and expertise. 

2.1.1. Loads 

2.1.1.1. Microhardness 

Loads 0.0098 N to 1.96 N characterize this domain, but most work 
concentrates in the range 0.049 N to 0.49 N where characteristic Vickers 
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diamond imprint diameters are in the range 3 x 10-6 to 50 X 10-6 m. This 
implies that satisfactory apparatus must include a high-quality microscope 
with numerical apertures better than 0.6 and magnification better than 500x. 
This in turn necessitates the employment of highly skilled workers who 
have learned microscope techniques in such a way that they are well versed 
in the causes of errors and are able to minimize them. In fact practitioners 
must be able to make a full appraisal of all sources of error in the technique 
from sample to sample; they must also be able to prepare specimens to 
high metallographic and mineralogical standards. Thus for routine work 
this range of hardness measurements, which is intended to probe in a 
scientific way the nature and behavior of ceramic systems, is not recom­
mended. 

Equipment and technique for this range of hardness study tend to be 
purpose-built with workers in different laboratories developing their own. 
However, all must have in common a first-class commercial microscope as 
part of the apparatus. 

2.1.1.2. Low-Load Hardness 

This domain is characterized by a load range from 1.96 N to 98.1 N 
with most work being accomplished up to 9.8 N. The higher loads are used 
in the now important work of developing cracked indents which is the 
substance of Chapter 5. Vickers diamond impressions in this range are from 
50 x 10-6 to 200 X 10-6 m in diameter. This reduces the demands on the 
microscope quality, and commonly magnifications in the range 100x to 
500x and numerical apertures from 0.2 to 0.6 are sufficient. A good technical 
staff in the habit of making careful measurements is able to do these tests, 
making this a very useful nondestructive testing method capable of yielding 
a great range of scientific and technical data on ceramic systems. 

2.1.2. Equipment 

2.1.2.1. Load Application 

All indentation equipment contains some mechanism for applying the 
load to the surface. For the commonest technique, the static hardness test, 
it is inherent in the apparatus that the load be applied incrementally and 
not instantaneously. These two methods of load application produce funda­
mentally different values for the hardness of any sample. When the load is 
applied incrementally, then the indentation is in equilibrium with the load 
throughout the test. 
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An estimate of the difference caused by measuring hardness at instan­
taneous load application and at infinitely slow application of load can be 
made as follows for the commonly encountered Vickers indenter. From 
equation (1.6) the Vickers hardness is defined as Hy = 0.4636 PI d 2 where 
P is the final load in newtons, or 

Hy 0.4636 
(2.1) 

and the indent diagonal will be 

d 2 = 0.4636PI H y (2.2) 

If the final load is applied instantaneously the force opposing the penetration 
will rise from zero at the surface to a maximum sufficient to stop the 
downward motion at dJ = 2aJ> where dJ is the final indentation diagonal 
length. The rest position will be at a depth h below the surface when the 
work done by the load P is equal to that necessary to form the pyramidal 
hole. For a ceramic system several components of this work may be impor­
tant, but for the sake of simplicity assume that it is the plastic work done 
by P; this will be Hy times the indentation volume 

work done = Hv~d}h (2.3) 

where h is the height of the pyramid-i.e., the depth travelled by the 
penetrator-and dJ is the indentation diagonal. Since h is the distance 
moved by the load P, the work done can be put as hP and 

Hence 

or 

6P _ d 2 
- J Hy 

(2.4) 

(2.5) 

Hence from equations (2.2) and (2.5) the indentation diagonal will be 12.9 
times as long as in the static loading case, implying a much lower hardness 
than the accepted static value. 
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These two cases are extremes, and since the load has a finite rate of 
application to the surface and below, there will be a variable error in the 
hardness value obtained depending upon load, sample hardness, and rate 
of application of the load. For the Vickers method an expression relating 
these variables can be obtained that enables the order of the errors to be 
assessed and so to see how important load application really is in a hardness 
determination. 

First an empirical expression between the load P and the depth of 
penetration h is assumed 

P = Kh" (2.6) 

In equation (2.6) K and n are constants characteristic of the ceramic under 
study. Now if ho is the correct depth with no loading time effects, then the 
work done to achieve this depth is 

(2.7) 

Substituting equation (2.6) and integrating gives 

W =~h"+1 
o n + 1 0 

(2.8) 

Now the depth measured, hI, will be greater than ho and so we can write 

(2.9) 

Two terms can be seen to make the difference in work done from Wo 
to WI: work done by the final load Po and the kinetic energy of the indenter, 
respectively 

(2.10) 

(2.11) 

In equation (2.11) m is the mass of the indenter and v is the velocity it was 
given. 

The work done is the sum of these, and so WI in equation (2.9) equals 
the sum of the work found in equations (2.8), (2.10), and (2.11): 

W K h"+1 K h"+1 P (h h) I 2 I = -- I = -- 0 + 0 I - 0 + 2mv 
n+1 n+1 

(2.12) 
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Using equation (1.6) and equation (2.4) it is possible to express equation 
(2.12) as 

2_ 2.72P~/2 [(Hvo)<n+I)/2 (H vo )1/2] V - ( ) 1/2 - (n + 1) + n 
m n + 1 H Vo H VI H VI 

(2.13) 

This final expression can be used to assess the effect a chosen load applica­
tion velocity v in ~m S-I will have on H vj H VI' the measured hardness as 
compared to the "absolute" hardness. Since the specimen hardness and 
applied load appear in the expression, a variable error is predicted. Figure 
2.1 shows that this error is serious for hard materials like ceramics in the 
microhardness range of measurement when n = 2 and an indenter mass of 
100 g is assumed. 

Figure 2.1 shows that for ceramic systems where hardness values in 
excess of 9.81 GPa are commonly encountered the apparatus for "static" 
hardness measurements in the low-load regime has only to be capable of 
applying the load to the surface at rates slower than 250 ~m S-I to introduce 
just modest errors in the determination of ceramic hardness, while load 
application rates slower than 50 ~m S-I are needed for any microhardness 
apparatus. 

Once full load application has been achieved, how long should that 
load be applied? In mainly plastic systems such as most metals this question 
is important because creep mechanisms may be triggered that lead to a 
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Figure 2.1. Error in the Vickers hardness value as a function of rate of application of load 
for a ceramic of hardness Hv = 9.81 GPa. 
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growing indent size-i.e., to a lower hardness value. By the same consider­
ation sufficient time is needed for the indent to be correctly developed by 
the flow processes in the plastic region of the sample just around the indenter 
tip. For samples as hard as the average ceramic, a dwell time from 15 to 
30 s is sufficient to produce "correct" well-developed indents with negligible 
creep effects. The size of these indents should be measured without undue 
delay after unloading because the stress generated on unloading (see Chap­
ter 5) can in some combinations of sample hardness and temperature 
produce a creep that gives an incorrect indent diameter. 

Time under load should not exceed the times recommended above 
because a more serious problem can develop if the sample or penetrator is 
subjected to vibration during load application. This is particularly true if 
really low microhardness-range loads are applied where the inclusion of 
kinetic energy from the vibrational source into the equation of penetrator 
motion, equation (2.12), leads to a deeper indent and an apparent reduction 
of the hardness value. Even for ceramic systems examined in the real 
microhardness region, great care has to be taken to isolate the apparatus 
from all sources of vibration, even in some cases from sound waves. 

This leads us to another essential requirement of the load application 
mechanism which as well as having a controlled rate of load application 
must produce no lateral component in the movement of the penetrator; all 
movement must be absolutely vertical. Thus equipment that ensures purely 
vertical motion is to be preferred. Direct vertical load application to the 
penetrator via a regulated, timed movement through an oil dashpot that 
incorporates a leaf spring to counteract any horizontal tendency has the 
advantage of maximum load control. It does require that the microscope's 
objective lens and the indenter be interchangeable parts of a rotating 
microscope head, and is of course a complication. Several good instruments 
are built to this principle; Figure 2.2 shows one such instrument. Many 
others of this type are available, all of which are preferable to the older 
machines that employ a balance beam mechanism. 

2.1.2.2. The Indenter 

For ceramic work, diamond invariably is the chosen indenter material 
because of its absence of plastic deformation, its exceptional hardness (see 
Table 6.16), and its smooth surface with low coefficient of friction and high 
modulus. Some choice is left in the shape in which the diamond is cut 
because each shape is particularly suited to some applications. 

For hardness determinations of ceramics the indenter used is always 
of the pyramid type and not the blunt spherical type. The reasons for this 
are developed in Sections 1.4.1.1 and 5.2.2 where the stresses developed 
beneath indenters of these shapes are analyzed and the crack patterns found 
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Figure 2.2. Typical Durimet micro- and low-load hardness apparatus as supplied by Leitz. 

around overloaded indents are discussed. The main reason is a practical 
one arising from the fact that ceramics are brittle and, since the surface 
stresses on the loading cycle with a spherical diamond are tensile, cracking 
can occur during this stage. With pyramid indenters, as Sections 1.4.1.1 and 
5.2.2 show, only on unloading are tensions generated at the surface. Thus 
to a large extent ring cracking and surface spalling can be avoided. Spalling 
and surface disruption occur at much smaller loads with spherical indenters. 

2.1.2.2a. Berkovich. This is a triangular pyramid with a true point 
since only three sides have to meet. The point at which the three triangular 
faces meet can be polished very fine and so made small relative to the area 
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of any indent. This last quality is important for real microindentation work 
where this diamond indenter is sometimes used. The threefold symmetry 
of the indent base is useful when indentation techniques are used to examine 
anisotropy and crystal flow systems, as in Section 3.6. The angle between 
the vertical loading direction and each of the diamond faces is 65°, and 
hardness values are calculated according to equation (1.8). Berkovich 
diamonds are cut with an angle of 142° between any two of the planes along 
the line of join so that surface areas of indents are the same as the Vickers 
indent for the same depth of penetration. This means that isotropic hardness 
values are the same for a given material when probed by the Berkovich and 
the Vickers indenter. 

2.1.2.2h. Knoop. This is a more commonly encountered indenter 
shaped to emphasize anisotropy effects and to probe the surface layers of 
ceramics. With four faces as shown in Figure 2.3 this must be a chisel type 
of indenter because four planes cannot meet at a point. Skilled cutting and 
polishing does make the chisel edge small so that the indenter can be used 
easily and accurately in low-load hardness ranges and sometimes in the 
microhardness range. Figure 2.4c emphasizes the chisel edge and shows 
how the length affects errors in hardness. Two angles are involved: 172.5° 
between the faces that form the long axis and 130° between the faces that 
form the short axis. Such a geometry of the indenter gives a long axis able 
to be measured more precisely because of its length, for very small penetra­
tion depths, as Figure 2.5 shows. This figure also contrasts the depth obtained 
by a Vickers or a Berkovich indenter with that caused by a Knoop indenter. 

Figure 2.3. The cut of a Knoop diamond indenter and the resultant indent trace. 
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Figure 2.4. (a) The cut of a Vickers diamond. (b) The shape of the surface imprint. (c) Effect 
on hardness of the chisel edge length resulting from four triangular faces being cut on the 
diamond. 
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Figure 2.5. Penetration depth achieved by various indenters. 
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2.1.2.2c. Vickers. This diamond, the indent shape it makes, and the 
effect·the unavoidable chisel edge makes on hardness values are shown in 
Figure 2.4. Cutting is done to get angles between two adjacent faces equal 
to 136° which produces an angle of 68° between any of the four facets and 
the vertical direction of the applied load. 

Any error in the cutting of the interfacet angles introduces an error 
into the measured hardness of 20 aa if equation (1.6) is used to find 
hardness, where aa is the deviation from 136°. Consequently, angle cut 
errors around 1° are not too serious, especially compared to the error 
introduced by not grinding the diamond to the smallest chisel edge possible, 
as Figure 2.5 shows. In the case of chisel edge length, /3, this is clearly a 
most serious error when micro hardness measurements are being attempted. 

2.1.3. Expertise 

2.1.3.1. The Indent 

Whichever indenter is used, the major difficulty of the method when 
applied to ceramic systems is the measurement of the indent dimensions 
because the edges of the indents are not always easy to define on surfaces 
often showing poor contrast. 

The angle of incident light, its wavelength, and the edge effects of the 
indent after removal of the indenter all conspire to introduce uncertainty 
into this measurement. An exaggerated example is shown as Figure 2.6 
where edge effects of the indent on the original flat surface produce varying 
angles of reflected light, causing an uncertainty in the observation of points 
o and 0', the distance between which is the correct indent diagonal 2a. 
Contrast is improved by increasing the numerical aperture of the objective 
lens of the optical system, and as a result the error in measurement is 
decreased as shown in Figure 2.7. 

Figure 2.6. The uncertainty in the determination of indent diagonal length caused by the 
indent edges being made to deviate from 180°, causing variation in the angles ofreftected light. 
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Figure 2.7. Errors in diagonal length resulting from the use of objective lens of small numerical 
aperture. 

Another uncertainty entering the measurement of diagonal length is 
anisotropic elastic recovery of the indent leading to curved edges, barrelling, 
and pincushioning. While being often evident in single-crystal work (Chapter 
3) these effects can also be seen in micro- and low-load hardness of 
polycrystalline samples. Figure 2.8 sketches these effects for indents made 
on a (100) plane of a cubic crystal showing slip lines on the crystal face. 
The two shapes in Figure 2.8 are extreme cases and all intermediate shapes 
can occur depending on the indenter's orientation and the individual crystal 
orientation in a polycrystalline sample. 

Grain boundaries can contribute to poor shape along with poorly pre­
pared sample surfaces, as emphasized in Figure 2.9. While misshaping from 
surface polishing and grain boundary interference can be corrected and 
allowed for, the errors arising from pincushioning and barrelling may be 
fundamental. The effect of elastic retraction on the measured length of the 
diagonals and thus on the hardness has not been clearly resolved. Empirical 
corrections have been proposed in order to obtain the true value of the 
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Figure 2.8. Pincushion and barrel indents caused by anisotropic recovery when indenter 
diagonals are (a) at 90° to the slip lines and (b) at 45° to the slip lines. 

diagonals by adding on a constant distance c regardless of the load used 
to obtain an indent 

Hence 

P=a(d+c)2 

H _ 2 cos 22°P 
v- (d+C)2 

(2.14) 

(2.15) 

The importance of this correction diminishes in the low-load and 
macro hardness regions, as Figure 2.10 indicates. 

indent shape 

a 

~ 
b 

~ 
Figure 2.9. Influence of surface slope on indent shape. 
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Figure 2.10. Vickers hardness as a function of applied load when calculated from measured 
diagonals (solid curve) and when 1.2 ILm is added to the measured diagonal (dotted curve). 

2.1.3.2. Sample Preparation 

The sketches in Figure 2.9 emphasize the care that has to be taken 
once a route is decided upon by which to prepare the surface of the sample. 
Mechanical polishing is inevitable and can have a pronounced effect not 
only on surface shape but on surface properties. This latter aspect is covered 
more fully in parts of Chapters 3, 4, and 5. 

Polishing to an optical finish is usually necessary, especially if crack 
types and lengths are to be studied. Obtaining this type of finish does have 
implications with respect to obtaining a hardness value from indent diagonal 
lengths; without such a polish indent edges are indistinct and hard to resolve, 
introducing real experimental difficulties and errors. But when obtained by 
purely mechanical means surfaces stresses do introduce errors, particularly 
in the micro hardness regime. Figure 2.11 emphasizes the polishing effect 
on hardness because it shows a series of experimental Vickers hardness 
curves obtained for a soft metal, aluminum, using the same indenter and 
each time indenting the same grain of metal. Clearly the more mechanically 
violent the treatment from the polishing agent-i.e., emery> alumina or 
magnesia> electrolysis-the harder the sample appears to be even when 
indent depths of 10 JLm are achieved. Work hardening is involved because 
the curve of hardness against depth of penetration from a sample that is 
re-annealed after the normal mechanical polish and then finally electro­
polished has only a small slope, as Figure 2.11 shows. 

This effect of work-hardened layers is not very serious as far as hard 
ceramic systems are concerned unless the crystal structure of the ceramic 
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Figure 2.11. The effect of surface preparation on the measured Vickers hardness of aluminum 
metal as a function of indent depth. (a) Emery paper polish. (b) Fine emery, 10 minutes. (c) 
Fine alumina polishing cloth. (d) Electropolished. (e) Annealed after polish. 

does lend itself to a degree of work hardening. It is therefore most in 
evidence for rock salt halides, and cubic materials like magnesia. The depth 
to which the effect can be found is, however, nowhere as great as in the 
metal surfaces because the microcrystals produced by the mechanical work­
ing of the ceramic surface are brittle compared to metal microcrystals and 
they are lifted by the polishing agent. Strong washing of the surface com­
pletes the removal of much of these submicroscopic crystals. Chemical 
attack in the multitude of grain boundaries introduced by the formation of 
the submicron crystals also aids their removal from ceramic systems when 
carefully washed with solvent spray. This process also reduces the depth 
of the work-hardened layers. 

2.2. HARDNESS FROM PENETRATION DEPTHS 

Depth of penetration has been used to assess the hardness of ceramic 
materials used for medical and dental work. Wallace hardness numbers 
quoted for dental cements based on gypsum (CaS04.!H20) are penetration 
depths expressed in multiples of 10-5 inches when a 136° pyramid diamond 
penetrates under loads up to 300 g. An obvious reason for this change in 
technique is that the surface cannot be mirror polished if "real" situations 
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are of interest. For typical gypsum-based dental cements allowed to set 
against a glass slide, values in the range 7.0 to 9.2 X 10-5 inches-i.e., 7.0 
to 9.2 Wallace hardness-are reported.(t) In fact the long-established Rock­
well indentation hardness is a depth of penetration value. First a light load 
is applied to the indenter and then, without removing this minor load, a 
heavy load is applied at a controlled rate. The Rockwell hardness number 
obtained is related to the additional depth to which the large load drove 
the indenter into the sample. The higher the number the shallower the 
indentation and so the harder the material is. Typically the small load is 
10 N with a 60-to-150 N major load, but if near surface hardness is of 
importance these are changed to 3 Nand 15-to-45 N. One scale point on a 
Rockwell hardness scale corresponds to an incremental increase in penetra­
tion depth of 2.03 ~m. Depending upon the size of the indenter ball or 
cone and the major load applied, a series of scales is used designated 
Rockwell A through Rockwell V. The method is widely used in metallurgical 
laboratories but, with the exception of cemented carbides, is not often 
encountered in ceramics. 

It is from these developments that a renewed interest in using penetra­
tion depths, as opposed to indent trace diagonal length with all the problems 
set out in Sections 2.1.3.1 and 2.1.3.2, has arisen.(2,3) Another reason for 
this renewed interest is the prospect of following the indentation process 
throughout the loading and unloading stages(4) in order to test the models 
proposed for the process. Some of these models are discussed in Chapter 5. 

For conical smooth indenters the depth of penetration and the applied 
load are related by equations that pertain to different descriptions of material 
behavior, for example: 

For elastic materials: 

(2.16) 

For rigid-plastic materials: 

P = K h 2 
p (2.17) 

In these equations Kp is a function of mechanical properties of the 
material and the indenter geometry, E is Young's modulus for the material, 
v is its Poisson's ratio, and () is the indenter cone angle. 

Equations (2.16) and (2.17) can be combined as 

(2.18) 
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In equation (2.18) we acknowledge the fact that most materials behave as 
though each was a combination of elastic and plastic extremes. Figure 2.12 
is a series of sketches of the curves expected from equations (2.16), (2.17), 
and (2.18) and it permits the definition of some important points: 

• Point 0 
• Point A 
• Point B 

is the surface of the specimen. 
is where maximum load and penetration are achieved. 
is where contact between indenter and top surface is 
lost. 

Thus OC is the maximum penetration depth of the indenter while OB, 
in Figure 2.12(c), is the residual depth of the indent after elastic recovery. 
The areas enclosed by the curves are the work done in loading and recovery. 
This means from Figure 2.12 that 

• OACO = work W needed to create the indent. 

• ACBA 
·OABO 

= elastic work on recovery WE' 
= final work invested in the indent volume WI' 

(2.19) 

For ceramic systems the ratio WI j W is indicative of the elastoplastic 
nature of the solid and has been reported by Loubet(5) for magnesia and 
alumina as a function of the distances OBjOC-i.e., maximum and residual 
penetration depths. 

Data for the two ceramics mentioned are shown in Figure 2.13. 
In order to use this method to study ceramics, the equipment usually 

has to be of a self-made, one-off type, involving displacement and load 
transducers connected to recording equipment.(5) A simple outline sketch 
of the principles involved is shown in Figure 2.14. 

The technique shown in Fig. 2.14 has been developed recently(4) for 
making extremely fine-scale hardness measurements on a quantitatively 
comparative basis. Instead of measuring the diameter of the indent the 
apparatus plots a continuous graph of the distance moved by the diamond 

A A 

z unloading 
unload 

." 

.3 
load 

o B 
Penetration depth (~m( 

Figure 2.12. Indentation curves of (a) elastic materials, from equation (2.16), (b) rigid-plastic 
materials, from equation (2.17), and (c) experimentally determined curve, from equation (2.18). 
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Figure 2.13. Elastoplastic behavior data taken from Loubet.(S) 
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Figure 2.14. Sketch of equipment needed to monitor indentation depth and applied load 
simultaneously. 



50 

.c 

1 
c 
o 

200 

! 100 
c 
CD 

~ 

o 

Chapter 2 

o 3 6 9 12 

Load Ix 10-3 NI 

Figure 2.1S. Loading and unloading curves for a Lancaster micro·indentation test of a 2-,..m­
thick film of TiN.(4) 

into the specimen as the load is increased. Because changes in distance as 
small as 1 nanometer can be detected, it is possible to use the equipment 
for detailed investigation of surface films as thin as 50 nm. The depth is 
measured during the complete loading-and-unloading cycle to give data on 
the elastic recovery of such surfaces. Figure 2.15 is an example of a loading­
and-unloading cycle on penetrating into a 2-JLm-thick layer of TiN, and it 
shows that a considerable proportion of the deformation should be ignored 
when calculating the hardness. The recoverable, elastic portion, 0.34 in the 
case shown, can b~ used to calculate Young's modulus for the film material. 
Calibration is achieved with a standard silicon sample. 

Further development of the indentation depth measurement method 
seems to be imminent when semiconducting diamonds are cut to the Vickers 
geometry and used to indent conducting specimens.(6) At the moment the 
samples tested have been metals, but many special ceramics like TiC, TiN, 
SiC, and MW03 are electrically conducting and could be investigated. The 
method involves sensitive measurement of electrical resistance as a function 
of indenter load. 

2.3. PENDULUM HARDNESS 

This method of hardness measurement goes back to 1923 when a 
commercial pendulum hardness sclerometer was first marketed by E. G. 
Herbert(7); the technique was further developed by Kuznetsov in 1929.(8) 
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The apparatus consists of a pendulum supported on a diamond or hardened 
ceramic tip. The center of gravity of the pendulum is arranged so that it is 
below the point of support, and the pendulum is in a state of equilibrium. 
When the pendulum is displaced from equilibrium it performs a damped 
oscillatory motion that decays back to equilibrium at a rate related to the 
hardness of the surface. What contributes to the rate of decay we shall 
discuss further below. At this point it is possible to see the versatility of 
the technique when chemically reactive species need to be studied because 
it is possible to immerse the pendulum fulcrum to a 1-2 cm depth in inert 
fluid as long as the same fluid and the same depth are used in the study of 
successive samples. A recent study of the hardness of some reactive ceramic 
carbides shows an example of this versatility.(9,tO) The equipment, as 
described by Westwood,(1l) is on the whole simple and inexpensive to 
construct, worthwhile therefore having in a laboratory interested in ceramic 
hardness. This is particularly true when it is realized that the experimental 
arrangement lends itself to studying the effect of chemical additives on the 
apparent hardness and drilling capability of surfaces. (Later chapters give 
some examples.) It could well be used to quickly determine the long-term 
corrosive effects of liquid environments on ceramics, ceramic alloys, and 
ceramic composites. 

The energy U of the oscillatory motion was found by Kuznetsov to be 
proportional to the square of the amplitude a as well as to the mass of the 
pendulum. If the amplitude at of the initial oscillation of the pendulum 
decreases to a2 after time t or after n oscillations the energy 

U = A(ai - a~) (2.20) 

is transferred to the solid. 
The pendulum is positioned at a different spot on the surface on each 

occasion and given an initial displacement to an amplitude at ; in each case 
the test is concluded when the amplitude decreases to a2' In this way the 
period t or the number of oscillations is related to the energy-absorbing 
processes beneath the pendulum point. In the early development of the 
technique, these processes were believed to involve the production of new 
surface energy on the material as new surface was constantly produced by 
comminution. This is once again, as shown in Chapter 1, the problem 
inherent in hardness determination: What are we measuring? More recently 
consideration(12) has been given to analyzing the energetics of the process, 
and we will discuss these below,. but in the meantime it is sufficient to see 
that hardness is being measured and to consider a little further the quan­
tification of the process. From the values of the successive amplitudes it is 
possible to calculate the logarithmic decrement A which can be used to 
determine the damping: 
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A =In(~) 
an + 1 

(2.21) 

where an is the amplitude of the nth oscillation. 
It is possible to express the oscillation amplitude a by the formula 

(2.22) 

where n is the number of oscillations and x and yare constants for any 
given crystal. However for the practical purpose of relative hardness 
measurement it is sufficient to plot curves showing the amplitude as a 
function of the number of oscillations or to determine the value of the 
amplitude for any chosen nth oscillation. The correct design of a pendulum 
such that the center of gravity is only slightly lower than the point of support 
on the surface enables a user to read the size of the amplitude of oscillation 
directly from a suitable scale. 

Rebinder(l3) proposed that hardness Hp should be expressed by a 
quantity inversely proportional to the relative initial attenuation of the 
amplitude of oscillation A in time t: 

-A 
(2.23) 

Figure 2.16 shows how the amplitude decreases with time. The elapsed time 
at point C, expressed in seconds, is obtained by drawing the tangent to the 
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Time t (5) 

Figure 2.16. Curve of amplitude decrease with time showing hardness in seconds at point C. 
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curve at t = 0; hardness is determined by Equation (2.23). In the simplest 
case of damping with a constant logarithmic decrement, Hp does not depend 
on the units used for measuring A and can be regarded as a constant during 
the period of the damped oscillation process 

dH 1 dA 1 
--p= 0 or --=--
dt A dt Hp 

and dA/ A = - dt/ Hp which on integration gives 

or 

and 

fA dA= __ 1 rt dt 
Ao A Hp Jo 

-t 
InA -lnAo =­

Hp 

At = Ao exp (~;) 
Thus from equation (2.24) we arrive at 

t 
H=-------

p 2.303(log Ao -log At) 

(2.24) 

(2.25) 

(2.26) 

which expresses the hardness in units of seconds. Hardness determined in 
this manner should be a constant along the entire curve. 

In reality the reduction in amplitude A towards the end of damped 
oscillations is slower than calculated from equation (2.25). In practice 
hardness is found to be independent of the initial amplitude Ao within the 
range 25-50 mm of displacement. Hence Hp is an arbitrary measure of the 
rate of pendulum damping which is in turn related to the energy absorbing 
processes beneath the fulcrum. 

A typical pendulum sclerometer consists of a horizontal metal beam 
with a long, very light aluminum wire pointer abov'! the fulcrum which 
serves as a Vickers diamond pyramid with a 136° angle. Stabilizing weights 
are suspended rigidly below the ends of the horizontal beam. The total 
weight is adjustable so that the diamond can be made to clearly indent the 
surface and not just rest on it, as in Figure 2.17. Only when a clear indent 
like that shown as Figure 2.18 can be obtained will the results become 
reproducible. The period of oscillation is about 1 second and the amplitude 
is measured after 60 seconds. It is best to enclose the whole in a transparent 
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Figure 2.17. Pendulum sclerometer. 

plastic box to minimize the effects of air currents. A centimeter scale fixed 
near the top of the box can be used to record the amplitudes Ao and At so 
that hardness can be found from equation (2.26). 

The units of hardness obtained by this method are clearly those of time 
but are often expressed as arbitrary and therefore mask what the process 
is actually measuring. Since Herbert's early work, where the depth of 
penetration and degree of disintegration were seen to increase with the 
decreasing surface energy of the material, it has been tacitly assumed that 
the process is measuring the surface energy of the solid and that therefore 
hardness and surface energy are synonymous in this context. The appearance 
of the area tested is dominated by the powdered debris and looks like a 
brittle surface after it has been drilled; therefore it is not surprising to find 

Figure 2.IS. Indented and comminuted 
surface beneath pendulum fulcrum on a 
surface of Hoo.9 Lllo.1C2 • 
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that wear and fracture behavior have been assumed to dominate the hardness 
function. It was not until 1979,(12) when the process was analyzed with a 
view to determining the importance of different energy-absorbing processes 
in the determination of hardness by this method, that it was revealed how 
similar the Vickers hardness method and the pendulum hardness method 
are. Previously a simple numerical relationship between pendulum hardness 
and Vickers hardness had been claimed but not justified. The 1979 work is 
interesting in that it presents a numerical analysis of experimental data as 
justification for the conclusion that despite appearances the method is able 
to give little direct information on fracture processes; rather it shows that 
such processes are related to plastic or viscous flow in the solid. This 
conclusion may seem surprising at first, particularly since it was reached 
by making a detailed analysis of the pendulum hardness of soda-lime-silica 
glass samples; Marsh much earlier worked hard to justify the concept of 
plastic flow in glasses subjected to indentation by the Vickers method. 

It is possible to list mechanisms for energy dissipation in the pendulum 
test and then through a series of assumptions and measurements calculate 
the energy absorbed by each process and compare it to the energy dissipated 
in a test, typically in the range 10-3_10-2 J. The following have been 
considered by Fox(12) 

1. Fracture and production of new surface. 
2. Plastic flow under the pendulum pivot. 
3. Energy absorbed moving and distorting the product debris around 

the pivot. 
4. Effect of surface electric charge on the viscous flow of liquid through 

the debris. 
5. Catalytic activity of freshly generated fracture surfaces. 

In this list, (4) and (5) apply only to pendulum tests conducted on surfaces 
covered by liquid, protective or otherwise; (3) is probably a serious problem 
only when the debris is mixed with a liquid. 

Considering the mechanisms listed above it is perhaps easiest to visual­
ize (1) if we are dealing with an ideally brittle solid, for then the energy 
consumed is equal to total new surface area produced multiplied by the 
specific surface energy. Three components are present in this assessment. 
First, as Figure 2.18 shows, the pivot makes an indent similar to a Vickers 
diamond. Therefore there is the same projected area. Second, depending 
upon the load, there will be production of the median vent crack into the 
solid whereas the lateral vent cracks are not produced until the load is 
removed. Therefore, rocking the pendulum produces only one set of cracks 
which produce new surface. And, finally, as the pivot rocks and to some 
extent precesses, crushed debris is produced. 
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Lateral vent cracking, estimated in Ref. 12, seems unusual since it 
occurs only on removal of the pendulum and therefore does not contribute 
to the absorption of energy. However, the median and lateral vents are 
related as shown in Figure 5.5; thus the estimate obtained by Fox and 
Freeman and shown in Table 2.1 can be used. 

Crushed debris was estimated by scanning electron microscope 
examination as 20% of the 5 x 10-14 m3 of damaged volume. Depending on 
the geometrical shape assumed for each particle-and on the surface energy, 
which for glass can be taken as 4.0 J m -2 -a limit for the energy absorption 
is given as 1 x 10-7_3 X 10-7 J. 

Hence the total energy absorption attributed to these processes is 
around 3 x 10-7 J, which is surprisingly low since this has always been 
assumed to be the major factor in pendulum amplitude attenuation and the 
reason the process has been thought to be analogous to drilling ceramics. 

Do mechanisms (3) plus (4), both of which involve debris, make up 
for the lack of energy absorption in (I)? Apparently not, since analyzing 
the process shows that energy would be absorbed by the viscous flow of 
any liquid-debris slurry between the pendulum pivQt and the sample surface 
in a way directly related to the liquid's viscosity. The routine calculation 
of increased viscosity of a liquid with suspended solids shows that the 
viscosity would increase by no more than a maximum of 3.5 times but more 
likely about two times. Thus the buildup of energy absorption by this process 
would only double the viscous drag that the liquid exerts from the outset, 
and this is very small. It is feasible that the broken debris will possess a 
surface charge and the flow of liquid through such a charged bed of solid 
may be significantly impeded by what is known as the electrokinetic effect. 
Calculations based on debris particles of diameter 100 nm show this effect 
to be such as to change liquid viscosities by less than 2%. Thus this effect 
too can be neglected completely. 

The cutting action of the pendulum pivot does produce new surface, 
and it is possible that this freshly generated surface may absorb energy to 
act as a catalyst for chemical processes taking place at its surface, mechanism 

Table 2.1. Energy Absorption Processes in Pendulum Attenuation When 
Energy Lost Is Around 4 x 10-3 J 

Mechanism 

Fracture and surface production 
Plastic flow beneath fulcrum 
Movement of debris 
Viscous flow of liquid 
Catalytic activity of new surfaces 

Energy absorption (J) 

Up to 3 X 10-7 

2.5 X 10-4 

Negligible 
Negligible 
Values around those for plastic flow 
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(5) in the above list. Mechanical energy transferred this way could be 
thought of as lowering the activation energy barrier for appropriate reac­
tions. Clearly the nature of the ceramic will determine any reaction, but for 
a glass surface the hydrolysis of the Si -O-Si network(14) and hydroxylation 
of bonds already broken by the pendulum in the tip of cracks and affecting 
their advance has been shown to be a very important chemical reaction. It 
is difficult to see how the energy consumed by such processes can be 
estimated, but Fox assumes it will be equal only to that absorbed when 
freely available water reduces the viscosity of the glass and so increases the 
pendulum damping as the fulcrum has to move in a high-viscosity, liquid-like 
layer instead of rocking on an elastic surface. One approach to quantification 
is to assume that the hydrolysis at the crack tip makes it possible for the 
pendulum to drive the crack forward. This is equivalent to saying that the 
energy absorbed will be a fraction of the activation energy for crack propaga­
tion, and we can try to estimate it in this way. This is the least satisfactory 
area of current analyses, but it has the advantage of allowing correlations 
to be made between pendulum hardness and the chemical nature of the 
environment. For example, peak hardness is found for surface covered in 
alcohols of different carbon-chain lengths, peaking at C6-C7, but this factor 
was also related to the partial pressure of water above the alcohol. The 
particular dependence on chain length has no obvious explanation but 
shows that changes in crack propagation behavior as suggested above cannot 
explain the observed maximum in hardness but indicates that friction may 
be important. 

In the original list of energy absorbing processes contributing to pen­
dulum damping there remains only (2) to consider; hopefully it will account 
for the bulk of the energy adsorbed. It is relatively easy, having chosen 
glass for the analysis, to base the consideration on material movement by 
viscous flow under the rocking action of the pivot. The schematic geometry 
is shown in Figure 2.19. 

Assume that the average velocity of the material movement = ~ the 
maximum velocity, which occurs when (J = o. Also assume that the average 
velocity over the area of contact of indenter and sheared layer can be used 
in the calculation. At the point of contact of specimen and indenter the 
velocity is zero and has a maximum in the direction cp/2 when (J = o. This 
later value is given by 

v. = ri6max 

, sin cp (2.27) 

where cp is determined by the geometry of the diamond. If it is a Vickers 
diamond and if rj = 25 x 10-6 m with (J max = 1.1 rad s-\ the energy 
absorbed per swing can be estimated as 
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Figure 2.19. Schematic representation of diamond rocking into sample surface. 

U = f X 1ri<P = hi ~ X area per swing (2.28) 

In equation (2.28) the area is easy to estimate; ~ can be found from 
equation (2.27) and the dimensions given. However, the value of TJ is not 
so easy to substitute because typical values of TJ for dry glasses at room 
temperature are in excess of 1020 nm- I s-\ which would imply a far too 
large absorption, giving damping in one swing. Viscosities drop considerably 
in the presence of sufficient water but taking the somewhat unrealistic value 
of 108 nm- I S-I used by Fox from the values found for Na2Si03· 3H20 
surfaces saturated with water gives a value of 2.5 X 10-4 J for a hardness 
test of 100 swings; this will be a low estimate but is closer to the energy 
absorbed by the sample from the pendulum than that estimated for purely 
brittle failure of an elastic solid as in mechanism (1) above. 

Accepting the assumptions of this analysis leads to the results in Table 
2.1 and a view that pendulum hardness is mostly a function of plastic or 
viscous flow and stress-aided corrosion processes. Hence the method can 
be used to study the interaction of these two processes. It clearly shows 
that once again an apparently simple technique must be carefully controlled 
to get usable and comparable data and that apart from comparisons within 
one study careful specification of conditions, etc., must be given to make 
interwork comparisons strictly valid. 

2.4. SCRATCH HARDNESS TESTS 

Section 1.4.5 describes the early ongms of this test and contains 
equations that can be used to quantify it more usefully than the early scratch 
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hardness (Mohs) numbers. In practice, for scratch tests two types of loading 
condition can be applied, fixed load and fixed depth. 

For single-phase ceramics or a pseudohomogeneous specimen where 
second-phase crystallites have small dimensions compared to the size of 
the groove produced by the stylus, both loading conditions are equivalent. 
However, they must be distinguished when the material contains large grains 
of a hard second phase because the load must be increased to prevent the 
stylus point from rising over the hard particles. 

Prasad and Kosel(15) have described a fixed-depth scratch tester; Figure 
2.20 is a diagram of such an apparatus taken from their paper. In such an 
apparatus the specimen is moved by hand horizontally relative to the stylus 
and care is taken in constructing the specimen mounting block to ensure 
that it maintains the specimen surface parallel to the direction of movement 
and at an angle of 90° to the stylus tip. Constant-depth conditions are 
achieved by using the two outer load arms to carry most of the applied 
load. Thus if the stylus encounters a hard second-phase particle and tries 
to rise over it, the outer frame is lifted which causes the normal load on 
the stylus to increase sharply. 

In a scratch test the loaded stylus applies a compressive stress to the 
surface beneath the stylus if it is a cone, which is a common configuration, 
and a tensile stress at the free surface adjacent to the indentation caused 
by the stylus; these aspects are enlarged upon in Sections 1.4.1.1 and 5.2.2. 

When a hard sphere is pressed on a flat surface, deformation of the 
surface occurs which is initially purely elastic. But as the load increases a 
critical point is reached where the elastic limit of the softer material is 
exceeded and plastic deformation begins. As the load continues to increase 
the mean pressure over the contact area increases up to the limit, where 
the material around the hard sphere is totally plastic and any further increase 
in load increases the dimensions of the indentation but produces no change 
in the mean pressure. By deforming the ceramic as it advances, the stylus 
develops a shearing force to break bonds between upper and lower layers 
of material to produce debris. The shearing force has a maximum value at 
the lip of the indentation. If a stylus of end radius R indents a distance h 
into a ceramic of hardness Hs for a stylus load L, then the shearing force 
F per unit area due to the deformation can be determined from the triangle 
of forces abc in Figure 2.21. The critical shearing force Fc at which debris 
is evident is the measure of the material's strength. Thus 

F=HstanfJ (2.29) 

and 

L L 
H =--=-

s 21TRh 1TA 
(2.30) 
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b 

Figure 2.21. Scratch-test forces. 

so that 

(2.31) 

and if R » A, then 

(2.32) 

Thus 

2KLc 
u ---

A - 7TbR (2.33) 

where b is the scratch width that produces visible debris. A coefficient K 
is commonly included with a value between 0.2 and 1.0 to allow for 
assumptions in the derivation relating Fe with strength U A' 

Because ceramics are generally hard, plastic deformation is relatively 
limited and a Griffith type elastic energy balance may be applicable. If a 
balance between bond energy AE and stored elastic energy is assumed, then 

(2.34) 
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where h is the penetration depth, E is Young's modulus, and u is the 
compressive stress in the top layers of material ahead of the indenter. The 
total stress will be the sum of the applied stress and the intrinsic stress. The 
applied stress U a can be written 

U = (lOlL - 1) L1/3 [ 3Es ] 

a 417' 4KR 
(2.35) 

where IL is the coefficient of friction between stylus and surface, R is stylus 
radius, K is a parameter determined by Hertzian theory which equals 0.84 
for a hard ceramic and a diamond stylus, and Es = 600 GPa • 

Equation (1.52) can be used to predict the size of debris particles 
formed in scratch hardness testing. Figure 1.9 contains some typical scratch 
widths obtained at different loads for three important ceramics. 

Extension of scratch hardness technique to include scratching velocity 
and temperature control can allow conclusions to be drawn about the 
mechanism of the scratching process. The typical range over which the 
scratching velocity must be varied to extract new data is 1 x 10-8 to 1 X 

10-3 ms-1• In general, increasing the velocity results in a decrease in the 
scratch width which from equation (1.52) indicates a parabolic increase in 
H., the scratch hardness. The time t* needed for the indenter to move a 
distance equal to track width d can be used as a kinetic parameter 

d 
t* =-

V 
(2.36) 

where V is the scratch velocity and d the track width. One can obtain t* 
as a function of load P or Hs and temperature. From equations (1.51) and 
(2.36) we can write 

(2.37) 

The dependence of In t* on Hs and on 1/ T leads to linear expressions such 
as 

t* = to exp (:;) (2.38) 

where E* is the scratching activation energy as defined by a slope of the 
plot of In t* versus 1/ T. Values of E* have been compared to energies 



Some Aspects of Method 63 

obtained by studying the penetration velocity of a standard Vickers hardness 
diamond over a range of temperatures: 

dh = dho exp (-Eo) 
dt dt RT 

(2.39) 

and close agreement of values Eo and E* can be taken as evidence for the 
same mechanisms being operative in indentation hardness and in scratch 
hardness. 
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Chapter 3 

Hardness of Ceramic 
Single Crystals 

3.1. INTRODUCTION 

The outstanding achievements of dislocation theory when applied to 
the mechanical properties of materials make it the natural source for workers 
in the materials hardness area to turn to when seeking to rationalize collected 
data. This has been particularly true when hardness anisotropy has been 
observed and then considered theoretically. 

Anisotropy in general is defined as the variation in the properties of a 
crystal as its orientation is changed with respect to the sensing (or measuring) 
device. 

The degree of anisotropy of a property may be negligible, but this is 
not usually the case in indentation hardness measurements on ceramic 
crystals. Later we will consider the phenomenological aspect of hardness 
anisotropy to demonstrate that, whatever the ramifications of the theoretical 
models, the nature of anisotropy is consistent and reproducible for a wide 
range of ceramics. Then we shall consider the models based on a resolved 
shear stress analysis and discuss their implications in terms of the role of 
plastic deformation and indentification of active dislocation slip systems. 

Theoretical and experimental properties of dislocations are well under­
stood for well-defined states of stress and simple deformations,(I) and so 
basic groundstates are available. However, the complex stress states present 
within the small volumes beneath indenters and scratch hardness and 
pendulum hardness testers are far from well understood. What then is the 
chance of applying dislocation theory to the understanding of the hardness 
behavior of ceramic single crystals, or rather, one might ask, why has its 
application been so successful and so dominant? The reason is that even 
for complex stress states the positions of dislocations and the ways they 
interact can be observed using a combination of techniques on single-crystal 

65 
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samples. Using hardness indentation methods together with dislocation etch 
pit observation, X-ray diffraction topography, and scanning electron micro­
scopy, all of which give distributions of dislocations around an indent on 
a cleared surface of a single crystal, it is possible to obtain a semiquantitative 
understanding of hardness. Dislocation distributions revealed by the above 
techniques do then offer some explanation of the anisotropy of hardness, 
the extent of plastic flow, and the onset of cracking. 

Models with varying degrees of sophistication have been developed 
from combinations of these techniques over the past 30 years. One ceramic 
in particular, single-crystal MgO, has been intensively studied by these 
techniques throughout this time, and as a result good descriptions of 
cracking, hardness anisotropy, elastic recovery, and load hardness depen­
dence exist. (2-4) Aspects of this and other work are the substance of this 
chapter, while MgO is specifically dealt with in Section 6.2.2. 

3.2. INDENTATIONS AND DISLOCATIONS 

Typically around indents in single-crystal faces series of slip lines are 
visible as shown in Figure 3.1 and Figure 6.23. These are sketched on Figures 
2.8 and 3.4. Such glide bands contain systems of loops lying in several 

Figure 3.1. Cracked Vickers indent on a (001) plane of the perovskite NlIo.15W03 showing 
slip lines parallel to the indent edges. After McColm and WilsonY> 
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Figure 3.2. Dislocation rosette pattern around etched indent. 

closely spaced parallel slip planes. Where they emerge at surfaces they must 
have edge or screw dislocation character as Figure 3.3 shows and can be 
revealed by etching as shown in Figure 3.2. 

In Figure 3.3 the motion of the slipped area is such that at point C it 
is perpendicular to the Burgers vector (that is, the distance AB) and this 
part of the dislocation loop is of purely edge character. At point E the loop 
is parallel to AB in the sense of its movement and is therefore purely screw 
in character. At other points, such as D, the dislocation is of mixed character. 
Figure 3.3 contains the conventional symbol J.. at the point C where the 

Figure 3.3 .. A dislocation loop CDE on a (101) slip 
plane showing edge dislocation at C, screw disloca­
tion at E, and mixed character dislocation at D. 
AB is the slip step or Burgers vector. 

Force 

Force 
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edge dislocation is shown emerging at the surface. This denotes an arrange­
ment in the crystal such that the horizontal line represents the slip plane 
and the vertical line the position of an incomplete plane of atoms known 
as the half-plane. Clearly then a symbol T denotes a dislocation with the 
extra half-plane below the slip plane; this dislocation is of opposite sign 
to .1 (negative and positive, respectively). They will move in opposite 
directions in response to a stress, and will if they meet on a given slip plane 
cancel each other out. Both have been formed by extra material, the result 
being that they contain misorientation-producing compressive and tensile 
forces around them. Because etching is a chemical reaction and is therefore 
activated, this "extra energy" around the dislocation helps to overcome 
activation energy and aids the corrosion process at the site of .1 or T. Thus, 
still concentrating on Figure 3.3, any etching technique that revealed the 
presence of dislocations emerging on surfaces would then indicate the type 
of dislocation. For our example in Figure 3.3, etch pits found in (110) 
directions would be edge dislocations while rows in (100) directions would 
be screw dislocations. Since the stress indicated in Figure 3.3 is compressive, 
analogous to the penetrating diamond of an indentation test, it would force 
the screw dislocation out at point x making the crystal shorter-i.e., generat­
ing a compressive strain. In fact a glide band, like those shown in Figures 
3.1 and 6.23, contains many loops like that shown in Figure 3.3 lying in 
several closely spaced parallel slip planes. These lead to the rows of disloca­
tions revealed by any suitable etching technique. In practice, when the area 
around an indent is etched the rows of dislocations that are revealed form 
patterns referred to as "rosettes." An enlarged view of one side of such a 
rosette is shown as Figure 3.2 and a sketch indicating the type of dislocation 
contributing to such patterns is given as Figure 3.4. 

The distribution of dislocations such as that in Figure 3.2 around 
low-load hardness indentations made on cleavage faces, for example, (001) 
planes of single crystal MgO, has been helpful in allowing interpretation 
of the actual fine detail of the indent shape. Figure 3.4 shows the dislocation 
distribution produced from the activity of the (101) {lOt} slip system when 
the indenting Vickers diamond has its diagonals lined up along the =F[110] 
and +[110] directions. This sketch emphasizes the troughs, equal in width 
to the indentation, formed when one might instinctively expect the displaced 
material to form a raised area around the indent. The existence of a trough 
can be understood by considering how initial dislocations on the primary 
system are forced to move by new ones following behind as the indented 
volume increases; slip on [011](011) and [011](011) systems requires that 
the downward displacement vectors are along orthogonal =F[100] directions 
in a direction parallel to the stress. That is, the system has a screw orientation. 
In Figure 3.4 the indent trace is shown as having curved sides caused by 
the greater elastic recovery at the center areas of the troughs. Such recovery 
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Figure 3.4. Indent on (001) of MgO crystal showing the troughs spreading along the 'f[loo] 
and 'f[OI0] directions. 

is small but important because it is variable depending upon the indenter 
orientation relative to active slip systems. For example, an important secon­
dary slip system in the rock salt structure is (101){10I} which is more 
interactive with the =F[1l0] and =F[110] directions than with the +[100] and 
+[010] directions, along all of which the troughs lie. Because the dislocations 
of the square array (101){10I} are interactive with those generated by the 
primary system, Palmqvist cracking along the indenter diagonal directions 
=F[1l0] and =F[110] occurs. The square array of (l01){10I} slip systems 
operates to produce outward surface displacements from the indenter and 
so material, beginning from the tips of the indent diagonals, is raised along 
the ±[1l0] and =F[110] directions, emphasizing the depths of the troughs 
along ±[100] and =F[010]. 

The discussion of dislocations so far shows that the combination of a 
ceramic single crystal, a micro- or low-load indenter, and a suitable chemical 
etchant can prove valuable in identifying operative slip systems in the 
complex stress patterns generated by the indentation process. Observation 
of hardness anisotropy on the crystal faces, allied to a satisfactory theory, 
will also aid in identification ofthe active slip systems as Section 3.6 shows. 

3.3. INDENTATION CRACKS AND DISLOCATIONS 

Overloading a pyramid indenter so that it produced cracks around the 
indent was for many years thought to be und.esirable when making hardness 
measurements. Observation and analysis of such cracks, which is the subject 
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of Chapter 5, has more recently led to much greater use of the hardness 
indentation technique in the study of ceramic materials. Hence crack pro­
duction and measurement has become important. The earliest publications 
on cracks emanating from indents on single-crystal faces attributed their 
production to the interaction of dislocations.(6,7) Towards the end of Section 
3.2 the production of troughs in (100) directions along with raised material 
in (110) directions was analyzed, but it was not emphasized that such a 
situation implies extremely large strains at the indent diagonals that have 
to be accommodated on (110) planes. Cracking on the planes depends on 
there being limited deformation systems in the structure to satisfy the strain 
fields imposed by the indenter as it pushes beneath the (001) plane. 

Analysis has to be done to come to some conclusions; pairs of adjacent 
slip systems are considered-for example, [101](101) and [011](011)-and 
the movement of half loops from the center of each plane to the line of 
intersection of the planes is considered. For (011) and (101) the direction 
of the line of intersection is given by 

hence 

u v w 
o 1 1 

1 0 1 

u = k,12 - k21, = 1 - 0 = 1 

-v = h,12 - h21, = 0 - 1 = -1 

w = h,k2 - h2k, = 0 - 1 = -1 

= [111] 

The combination of a/2[101] and a/2[011] Burgers vectors, when the 
slip planes (101) and (011) intersect, gives 

a - a - a-
- [101] + - [011] = - [110] 
222 

Thus we have an a/2[110] Burgers vector for a dislocation with line vector 
along [11 1]. Such a vector is contained within a plane given by 

h k 

1 1 0 

1 1 
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whence 

h=1-0=1 

-k=-1-0=-1 

1=1+1=2 

71 

= (112) 

Hence the (112) plane contains the dislocation which now has to be analyzed 
as to its sessile nature in terms of edge and screw components. The unit 
aj2[10I] dislocation has the partials aj3[111] + aj6[12i], of which the 
first term represents a screw component and the second an edge component. 
Similarly the unit aj2[011] has screw and edge components with the 
possibility, from their sign, of annihilation of the screw components. Thus 
annihilation of this component of the pair aj2[10I] and aj2[011] produces 
a lowering of energy for the system and subsequent dislocations following 
along meet this stabilizing effect and so pile up. Dislocation pile-up generates 
stress which can be sufficient to nucleate a crack. In this sense the merging 
of dislocations produces cracks around indents, but analysis of the slip 
directions is needed to gauge the plane of importance. 

Slip along [101] and [011] directions leads to components in the (001) 
plane that are orthogonal, which implies a tensile strain in this place. Steady 
penetration by the indenter causes the tensile strain between [010] and [100] 
on (001) to build up and so, depending on the modulus, a steadily increasing 
tensile stress can be thought of as searching for a flaw to propagate unless 
the strain is relieved. Cross-slip of the pile-up dislocations to relieve the 
strain is hindered by annihilation of the easily moved screw components, 
and slip on alternative deformation systems does not occur at strains, that 
is stresses, below those that produce the cracking on (110). 

From the above example it can be seen that a complex system needing 
careful analysis is present in each case, but the underlying fact is that the 
type of dislocation and their interactions are intimately concerned with the 
stress-strain field imposed by the geometry of the indenter. The implication 
of this is that hardness anisotropy is an obvious manifestation of dislocation 
interactions and indenter facet geometry. Simplified interpretations of this 
have been sought, of which the Brookes Resolved Shear Stress model, given 
in Section 3.6.1, is an important development. 

The second implication of the mechanism involving crack nucleation 
and propagation, as so far outlined, is that the presence of any cracks 
associated with an indent means a lowered hardness value for the material. 
Furthermore, increased {110} radial cracking that occurs with increased 
load must mean a bigger error in hardness values as indentation pressure 
is deflected into the crack nucleation and propagation mechanisms. This 
supports the intuitive position stated at the opening of this section. 
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3.4. DISLOCATIONS AND ABSOLUTE HARDNESS 

For single crystals, since slip systems are so clearly dominant in the 
way they interact with indenter facet geometry in determining the observed 
hardness, some attention should be given to the role of composition, since 
dislocation movement is sensitive to the size and type of the atoms of any 
impurities present. In general the lowest hardness for uncracked specimens 
is found in crystals of highest purity. At the limit the yield properties of a 
pure single crystal should be capable of providing values for absolute 
hardness in a way different from the analysis of this property in Section 
1.4.1.3. Such an analysis is not easily accomplished but can be simplified 
through Gerk's(8) suggestion that predictive values can be approached in 
terms of crystal work-hardening characteristics. For ceramics of rock-salt 
structure like MgO, because of slip on favorably aligned slip planes, the 
initially small value of the generated shear stress on indentation does not 
increase significantly with the increasing strain. Eventually the easy slip is 
hindered as the large strains bring into operation other slip planes by 
cross-slip or invocation of secondary systems. This leads to dislocation 
multiplication, and so the shear stress seems to be linearly dependent on 
strain: 

Gy 
7=-

125 
(3.1) 

In equation (3.1) G is the elastic shear modulus and y is one-half the 
engineering shear strain. This depicts a material for which the stress is 
proportional to the tensorial strain even though a plastic strain results in 
the vicinity of an indenter. 

For indentation into wholly elastic solids, equation (3.2), derived later 
as equation (6.9), relates the hardness to indenter face angles, Young's 
modulus, and Poisson's ratio, which analyses in Chapter 1, like that leading 
to equation (1.15), also show 

H = E cot '" 
2(1 - 1,1) 

(3.2) 

Using the general relationship that shear modulus = E12(1 + II) and the 
fact embodied in equation (3.1), that for work-hardening material the 
modulus is approximately G/125, equation (3.2) becomes 

H = G(1 + II) cot '" 
125(1 - 112) 

(3.3) 
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For ceramics, taking ." == 0.25 and a cone angle of 68° to represent the 
pyramidal angle of a Vickers diamond, the relationship between Hand G 
becomes: 

H = 4 X 10-3 G (3.4) 

and equation (3.4) allows prediction of indentation hardness. This equation 
can be compared to equation (1.46) in which the material parameters of 
molar volume, lattice energy, bond type, and structure predict theoretical 
values of hardness greater than those observed. Equation (3.4) in practice 
predicts hardness values that are considerably lower than the measured 
values because, as Figure 4.12 shows, the relationship is approximately 

H = 8 X 10-2 G (3.5) 

The fact that some correlation exists is strong evidence for the dominance 
of dislocation interaction in determining the hardness properties of single 
crystals. 

3.5. HARDNESS ANISOTROPY 

For the reasons developed in Chapters 2 and 5, we would not usually 
recommend the use of spherical or conical indenters for hardness measure­
ments in materials with a marked tendency to brittle behavior because of 
the circumferential tensile stress, or where a significant amount of pile-up, 
controlled by discrete slip planes, may cause distorted indentations. Con­
sequently, in this part of Chapter 3, we shall be concerned only with 
pyramidal indenters such as the Knoop, Vickers, and Berkovich indenters 
as well as the pentagonal indenter, which was designed with the advantages 
of the pyramidal indenters in mind but so as to offset the intrinsic anisotropy 
of crystals. Here we shall identify the orientation of a given indenter with 
respect to its facets, as sketched in Figures 2.3 and 2.5, rather than its 
diagonals. 

3.5.1. Knoop Indentations 

Most studies of anisotropy have been performed with this indenter 
since its almost two-dimensional shape and the fact that the projected area 
of the indentation is based on the measurement of the long diagonal only 
permit an unambiguous identification of its orientation. Thus the crystallo­
graphic direction of a given impression corresponds to (uvw) which is 
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parallel to the long diagonal and, in the absence of the sense effect encoun­
tered in some 111-V electroceramics as polarity and described below in 
Section 3.6, this will lead to consistency in studies of anisotropy. Ideally, 
however, the indenter should have a symmetry which reflects that of the 
indented plane, and we should bear in mind that because this indenter has 
twofold symmetry it is best suited to those planes oftwo-, four-, and sixfold 
symmetry (e.g., {OOI}; {llO}; {OOOI}, respectively) but not those with three­
fold symmetry, such as {1l1}. 

The graphs obtained in Knoop hardness anisotropy investigations are 
typically like those in Figure 3.5. They are usually obtained by taking the 
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Figure 3.5. Anisotropy of hardness on (a) (001) planes and (b) (110) planes of magnesium 
oxide as revealed by a Knoop indenter. Replotted from Brookes et aL (9) 
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mean of 20 or more readings from each mirror symmetry position on either 
side of a low index direction such as (110) at small increments of angle-e.g., 
0°,15°,30°, and so on up to 90°. This is to minimize systematic errors caused 
by deviations of the polished surface from that chosen (e.g., {100}) or the 
indenter's rotation axis not being at 90° to the polished surface. 

3.5.1.1. Cubic Crystals 

A typical plot illustrating the way in which the indentation hardness 
of a specific crystal plane varies with direction on that plane is given in 
Figure 3.5(a). These results are for a cleaved (001) plane of magnesium 
oxide indented at room temperature with a normal load of 4.9 N. Results 
for a chemically polished (110) plane, but otherwise the same experimental 
conditions, are shown in Figure 3.5(b). The nature of the anisotropy shown 
for (OO1)-Le., a maximum hardness in (110) and minimum hardness in 
(lOO)-is typical of all cubic crystals with a primary slip system of the type 
{110}(110), as Figure 3.6 confirms. However, within this class of crystals, 
the degree of anisotropy will vary significantly. For example, on the (001) 
plane of MgO results in the hardest and softest directions differ by a factor 
of two-approximately 4 GPa and 8 GPa in (100) and (110), respectively­
while the difference for these two directions in, say, lithium fluoride is only 
about 10%. 

Other examples of cubic crystals with these slip systems and, therefore, 
this characteristic of anisotropy, include nickel oxide, NiO; manganese 
oxide, MnO; Re03; bronze-type perovskites, Mx W03; and the transition 
metal carbides and nitrides. 

Figure 3.6. Knoop hardness anisotropy 
observed on the (001) plane of NIIo.69W03 
using a load of 1.96 N at room temperature. 
After McColm and Wilson.(S) 
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The anisotropic behavior of cubic crystals with {001}(110) slip systems 
is the converse ofthose in the above category. This effect is shown in Figure 
3.7 where results on a mechanically polished and chemically etched (001) 
plane of zinc blende type InP, indented at room temperature with a load 
of 0.49 N, are replotted from work reported by BrazenYO) Here the (100) 
directions are hardest and the (110) directions are softest with a degree of 
anisotropy amounting to some 15 %. Other ceramic crystals of this type 
include the fluorite structure materials 002 and CaF2 • 

Ceramics with cubic F structures and {111}( 11 0) slip systems exhibit 
the same hardness anisotropy as fluorite structure solids with {001}(110) 
slip systems in the sense that the hardest directions on {100} are (100) and 
the softest are (110). Thus in order to determine which system is operative, 
a combination of the analysis given in Section 3.6.1 and other techniques, 
such as slip line analysis, is necessary. Ceramics with the diamond cubic 
structure have this slip system, and the parallel of their hardness anisotropy 
with that of fluorites can be seen by comparing the results for cubic boron 
nitride, BN, with the InP data in Figure 3.7. 

It is interesting to note that the behavior of diamond itself is directly 
comparable with that of cubic BN, but in this case the absolute hardness 
is very dependent on the type of diamond being indented. For example, at 
room temperature Type I diamonds are softer than Type II. In this respect 
it should be noted that Type I is the more common (approximately 98% 
of all natural diamonds) and contains relatively high levels of nitrogen, as 
platelets in Type la and at substitutional sites in Type Ib, while Type II 
normally contains the greater density of dislocations. In very recent work, 

4·32 (001) 50 o!ll 1l1!l1 (Jl1<I1 
4·12 ..•. Hk •• 
3'73 ---..... . ........... 
3·53 

GPa 

V Hk 40 

GPa 3·73 
3'53 (110) 
3·34 

30 

(111) 
3-53 

20 3-34 

15 30 45 60 75 90 0 45 90 

degrees from<110> azimuthal angle 

Figure 3.7. Knoop hardness anisotropy observed on specific planes of InP and cubic BN 
crystals. Note that 45° from (110) is equivalent to [100]. Data are represented from Brazen(lO) 
and Brookes.(Il) 
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it has been shown that the degree of anisotropy in synthetic diamonds of 
Type I is reduced and eventually entirely removed with increasing concentra­
tions of nitrogen impurities. 

This somewhat esoteric example does serve to introduce the critical 
role that sample purity and previous mechanical handling can have in 
masking, or even changing, any anisotropy of hardness in a crystal. 

A clear demonstration of composition affecting the extent of anisotropy 
of hardness in a cubic system is shown in Figures 6.26 and 6.27, where 
filling of the A sites in the AB03 perovskite structure, when A is sodium 
and B is tungsten, leads to enhanced anisotropy on (001) in the (110) and 
(100) directions. Hardness increases substantially in the (110) direction as 
the sodium content increases, while the (100) hardness remains unchanged. 
Extrapolation of the data to hypothetical cubic W03 indicates that there 
would be zero anisotropy at room temperature. On the same diagram some 
results for cubic Re03 are given, and since this is equivalent to AB03 with 
completely empty A sites, the fact that this crystal does show almost zero 
anisotropy of hardness on (001) is interesting. In an electronic sense Re03 
could be regarded as Nal.O W03 but does not show the anisotropy expected 
for this, showing that the anisotropy is a structural effect involving atoms 
at the A sites. The {OIl} planes in the Nax W03 crystals show more complex 
anisotropy, with hardness increasing in the sequence (100) to (211) to (111) 
which equals (01 I), and the degree of anisotropy increasing as the sodium 
content increases from 28% for NaO.SIW03 to 38% for Nao.6W03 as more 
A sites are filled. 

Another example of composition having an influence on hardness 
anisotropy of cubic crystals is in the germanium system. This is a recent 
revelation(l2): Lack of obvious hardness anisotropy on germanium crystal 
planes was something of a puzzle since anisotropy is apparent in cubic BN 
and diamond, both of which are isostructural with germanium. Anisotropy 
in hardness on {100} was found only above a threshold temperature of 
about 100°C for n-type, 250°C for intrinsic, and 380°C for p-type crystals. 
This shows a two-parameter effect of composition and temperature; the 
n-type crystal contained 5.5 x 1018 As atoms cm-3 and the p-type contained 
2.3 x 1019 Ga atoms cm-3. The hardness anisotropy shown in Figure 3.8, 
after Roberts et al.,(I2) is the type expected, by analogy with BN, CaF2, and 
InP, to arise from {111}(lIO) slip on an {00l} plane. 

One particular type of cubic structure, the zinc bIen de structure found 
in several important compound ceramic semiconductors such as GaAs and 
InP, has been known to exhibit a particular type of composition hardness 
anisotropy first noted more than 40 years ago when it was christened hardness 
polarity. This effect is seen on (111) and (III) faces of the group III-group 
V ceramics, of which GaAs is the most investigated. The hardness difference 
is ascribed initially to the fact that these two planes are formed either by 
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Figure 3.8. Knoop hardness versus inden­
ter angle for n-type germanium at two 
temperatures. After Roberts et alY2) This 
anisotropy is like that in Figure 3.7. 

group III atoms or group V atoms, and generally it has been found that 
the planes formed by group III elements are up to 25% harder than those 
formed by group V elements.(13,14) Much more recent and detailed work(l5) 
has shown that this type of anisotropy is also composition or impurity 
dependent and can be reversed when p-type dopants are added to GaAs 
instead of the n-type. Figure 3.9, re-presented from reference (15), clearly 
demonstrates this and further shows the effect of temperature on hardness 
anisotropy, particularly for n-doped material. 

The fact that the structure formed from tetrahedral covalent atoms can 
be viewed as a three-dimensional array of puckered, six-membered rings 
easily explains why atoms of opposite types appear on (111) and (III), as 
Figure 3.10 shows, but this explanation of hardness polarity overlooks the 
fact that penetration beneath the surface requires a more complex three­
dimensional interaction between structure and penetration stress below the 
surface. On the face of it, this deeper interaction with the structure would 
be expected to obscure a purely surface polarity effect. It was this deeper 
question that recently led to a more sophisticated description of hardness 
anisotropy of the zinc blende structure by Hirsch and coworkersY5) Outlines 
of this new work are given in Section 3.6.2. 

As shown already, measuring Knoop hardness at elevated temperatures 
has been necessary to reveal anisotropy of this property in zinc blende cubic 
structures. In practice, when Knoop hardness tests are done at elevated 
temperatures on specific crystal planes over a full 360°C range more informa­
tion about ceramic slip systems can be extracted. The results presented in 
Figure 6.24 for TiC, a ceramic with the rock-salt structure, are an impressive 
demonstration of this. A change in hardness anisotropy in this material, 
with its mixed bonding involving ionic, covalent, and metallic elements as 
described in Section 6.4.1, can be understood by assuming that one or 
another of the contributions to the total binding forces predominate in 
different temperature regimes. Thus at temperatures up to 220°C the 
anisotropy shown in Figure 6.24 is consistent with slip on {110}(1 10) systems 
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Raised As layer 

/" 

layer 

Figure 3.10. Sketch of the zinc blende structure emphasizing the appearance of As or Ga 
surfaces on (111) faces. 

because the maximum hardness on {001} planes lies in [110] and minimum 
values we found in [100]; here ionic and covalent components in bonding 
predominate. As the temperature is increased, anisotropy becomes much 
less evident and, where definitely established, appears to indicate slip on 
either {110}(1 10) or {111}(1 10) systems. At sufficiently high temperatures­
that is, above 600°C-the anisotropy is completely reversed, leading to an 
expectation of slip on either (111)(110) or (001)(110) systems. Supplemen­
tary evidence from etch pit rosettes and slip step patterns on the (001) 
surface combine to suggest the {111}(1 10) assignment. Dominant in the 
bonding at higher temperatures is the metallic component, so that the change 
to anisotropy patterns associated with more plastic crystals is to be expected. 

Radiation damage can, in some samples, introduce a degree of plas­
ticity; for example, in diamond the overall hardness is reduced after irradi­
ation but there are no data showing what this does to the Knoop hardness 
anisotropy. We can, however, note that radiation damage in MgO increases 
the overall hardness but does not affect the anisotropy, a fact that seems 
to be general for the rock-salt structureY6) 

The work in reference (16), demonstrating the hardening effect of 
radiation, introduces a note of caution in ascribing the same type of hardness 
anisotropy to crystals having the same slip systems, because there is reported 
data for all, even non ceramic, rock-salt materials NaCI and KCI, which 
show the hard direction on (001) to be [100], not [110]. These anomalous 
data emerge from very soft crystals, NaCI (1.91 GPa) and KCI (0.92 GPa), 
which do have {110}(110) slip systems; some attempt at interpretation is 
made in Section 3.6.1. 

From the selection of experimental results so far presented and more 
fully collected in Table 3.1, it can be seen that rotating the long-axis direction 
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of the twofold symmetry Knoop indenter on single-crystal planes commonly 
found as facets of cubic ceramic crystals reveals limited classes of hardness 
anisotropy. Furthermore, this property is susceptible to the effects of tem­
perature, impurity, and mechanical damage from radiation in ways reminis­
cent of those changes known to occur in dislocation density and mobility 
in crystals, linking again dislocation theory and hardness variation. 

3.5.1.2. Hexagonal Crystals 

An illustration of the planes and directions of interest is given in Figure 
3.11. The anisotropy in the hardness of hexagonal ceramic crystals follows 
the pattern established for hexagonal metals in that the phenomenon is 
more pronounced on the prism planes than on the basal planes; Figure 3.12 
demonstrates this for A120 3. Again the observation of anisotropy is greatly 
influenced, as the results in Figure 6.13 and Table 3.2 show, by factors such 
as temperature that alter dislocation mobility. Composition variation within 
the same structure, as was the case for cubic crystals, can influence the 
sense of the hardness anisotropy as the (0001) results for Na+-p-Ah03 
compared to other M+-P-Ah03 crystals shown in Table 3.2. The P-Ah03 
study(l7) shows that for {OlIO} the hardness in the [1000] direction is greater 
than the hardness in all other directions, which is a pattern of behavior 
also found for a-Ah03' On the other hand, the relative hardness and the 
sense of anisotropy of hardness on (0001) depends on the composition of 
the mirror plane at 90° to the c-axis; for Na + -P-Al20Jo as Figure 3.13 shows, 
the hardness in direction [1120] is greater than all other values of hardness, 
which is again like a-Al20 3, while for Ag+, K+-P-Al20 3, etc., the hardest 
direction is [1010], as in SiC. 

Figure 3.11. Planes and directions of importance in Knoop hardness anisotropy studies of 
hexagonal crystals. 
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b 

Figure 3.12. Anisotropy of Knoop hardness observed on (a) (0001) plane and (b) (1100) plane 
of A120 3 • Redrawn from reference (9). 

Hence in broad terms, as was the case for cubic crystals, it is possible 
to divide the results in Table 3.2 into two classes and assign them to a 
probable slip system. For example, the hardness anisotropy on {OlIO} SiC 
planes is the converse of that found in Alz0 3{0IIO}-e.g., values of 20.27 
and 27.00 GPa for (0001) and (1120), respectively, compared to 17.7 and 
13.7 GPa for these directions in Alz0 3{0IIO}. More detailed work by 
Sawyer et alYS) shows, however, that not only is anisotropy most marked 
in the sequence {0001}<{1IOO}<{1120}, but a peak in hardness occurs on 
(1120) about 60° from [0001] as shown in Figure 3.14. Likewise, beryllium(19) 
shows zero anisotropy on the basal plane but 30% on {1120} where [0001] 
is the softest direction, [1120] is intermediate in hardness, and the maximum 
lies midway between these directions. The diboride crystals that have been 
examined by slip line analysis and to some extent by hardness indenta­
tion,(ZO,Zl) the detailed SiC work, and the ~-alumina crystals that have been 
examined suggest that the two classes of behavior arise to a first approxima­
tion from the operation of the two basic slip systems {0001}(1120) and 
{IIOO}(1120). 

Note the possible significance of the slip direction here, i.e., (1120) for 
both {0001} and {10IO} systems; for {0001} slip, dislocations will be moving 
parallel to the indented surface when indenting the basal plane, and for 
(1010) slip only screw dislocations will be emerging onto the indented plane. 
On the (1010) indented surface, edge dislocations will emerge for {10IO} 
slip but only screw dislocations for basal slip. 

The more detailed work and wider analysis given by Sawyer, outlined 
in Section 3.6.1, suggest that the details of a hardness orientation curve are 
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Figure 3.13. Hardness anisotropy for (a) (0001) plane of Na+-/3-Al20 3 and Ag+-/3-AI20 3 • (b) 
(1120) planes of Na+-/3-Al20 3 and K+-/3-AI20 3 • Redrawn from reference (17). 

29·6 
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27·6 

23·6 

[0001] [1100] 30' 

j1120l 

8>0011 

Figure 3.14. Knoop hardness anisotropy on three sets of planes of SiC as observed by Sawyer 
et alYS) with 4.9 N load. 

important. Hence full curves must be plotted instead of measuring hardness 
with the Knoop diamond long axis only placed along two principal direc­
tions on any given plane, as is more common. Furthermore, a greater range 
of planes should be investigated. When this is done the division into an 
a-Al20 3 and a SiC group arises because only one of the two slip systems 
operates for a-Al20 3 but a combination of both the slip systems for other 
hexagonal crystals. Adewoye and AgU(22) have taken this further and used 
the anisotropy curves they found for beryl, reproduced as Figure 3.15, to 
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Figure 3.15. Knoop hardness anisotropy on (a) (0001) and (b) {IOlO} planes of beryl, 
Be3AI2Si60'8, from reference (22). 

conclude that the SiC-like maximum in hardness at 60° from [0001] together 
with the minimum somewhat optimistically noted between 50° and 60° from 
[0001] on (1010) planes, is controlled by three slip systems: {1010}(1210), 
{0001}(1210), and {1010}(0001). 

This third class of anisotropy arises because c/ a for beryl is 0.988, 
making b = (0001) viable, along with b = (2110). Here then is a case where 
choice of slip system is important in reproducing the detail of an anisotropy 
curve and not the general pattern of such a curve as achieved in the critical 
resolved shear stress analysis (CRSS) of Section 3.6. In fact, choice of slip 
systems is not so easy with hexagonal systems; for example, in the case of 
a-A120 3 all the 17 possible slip systems listed in Table 3.3, since they have 
in varying degrees been observed experimentally, have to be considered. 
Basal slip has the lowest CRSS, but it is no easy task to rank the other slip 
systems in terms of their CRSS because, with anisotropic ionic materials 
in particular, the assumption that the self-energy of a dislocation increases 
as the square of the Burgers vector does not always hold true; Burgers 
vectors for a-A120 3 are given in Table 3.4, but as pointed out above in the 
case of beryl, the effect of the c/ a ratio must be taken into account when 
considering the differences shown in Table 3.4. 

3.5.1.3. Other Crystals 

There are few results pertaining to crystals other than cubic or 
hexagonal ones. If the marked anisotropy reported for V20 S is typical, then 
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the Knoop indentation technique is a good way to explore their slip behavior 
and indeed to orient them for other studies. As Table 3.5 shows, anisotropy 
factors up to 8.8 occur in the orthorhombic structure of V20 S • 

The order of hardness is H(ool) < H(OIO) < H ooo). Microscopic observa­
tion shows slip lines parallel to [100] on (010) planes, as is perhaps not 

Table 3.3. Experimentally Observed 
Dislocation Slip Systems in 
a-AI20 J 

Slip plane 

(0001) 
(1010) 
(1120) 

(0112) 

(1011) 
(2IT3) 
(2IT2) 
(4223) 

Slip system 

(OOO1)W 120), (0001)(1010) 
{1010}i{1210) 

{1120}t(i 101), {1120H(2201), 
{1120}(1100), {1120}i{lI02) 

{0112H(2ITO), {01 I2}i{01 II), 
{01I2}i{2021) 

{1011H(12Io), {10IIH(1I01) 
{2IT3H(1I01), {2IT3}(01Io) 
{2IT2}(01Io), {2IT2H(1oI2) 

{4223}(01Io) 

Table 3.4. Shortest Burgers 
Vectors in a-Al20 J 

b 

t(I120) 
WI01) 
!(2021) 
(1010) 
t(2131) 
WOI2) 

Size of unit b 
(nm) 

0.475 
0.512 
0.698 
0.822 
0.844 
0.908 

Table 3.5. Knoop Hardness of Orthorhombic V20 S for 
Load of 0.15 N a 

Knoop hardness (GPa) 
Anisotropy 

Plane [100] [010] [001] factor 

(100) 4.86 1.72 2.8 
(010) 0.98 3.53 3.6 
(001) 0.59 4.51 8.8 

aFrom reference (23). 
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surprising when the structure is examined: each vanadium atom is inside 
a pyramid of five oxygen atoms with V-O distances varying from 0.158 to 
0.202 nm. Edge sharing of the VOs pyramids forms zig-zag chains along the 
[001] direction. These chains are linked at an apex to form sheets parallel 
to the (010) plane. A sixth oxygen atom situated at 0.278 nm from a vanadium 
atom produces bonding between planes of the (010) type, and this is the 
weak link in the structure, permitting easy cleavage between (010) planes. 
Thus on the (010) face, for example, when the indenter is aligned along 
[001] it is parallel to the VOs chains, while the [100] direction is parallel 
to the weak oxygen bridges; hence easy cleavage and slip in this direction 
leads to the very low hardness values. Similarly on (001) the measurement 
in [100] is in effect along the cleavage direction while the hard direction 
[010] is perpendicular to it. 

Two tetragonal silicides, WSi2 (24) and MoSi2 (2S), have been shown from 
slip patterns and by the dislocation etch pit technique to have (100)[001] 
primary slip, but different secondary slip systems, and to exhibit Knoop 
hardness anisotropy with the hardest direction being along [001] on the 
(100) plane. In the case of MoSh, along [011] on the (001) plane, HK is 
12.76 GPa, falling to a minimum of 10.79 GPa along [010], giving an 
anisotropy factor of 1.18. Table 3.6 contains the observed hardness values 
for these two tetragonal ceramics. 

The difference in behavior due to having different secondary slip 
systems active in these two tetragonal silicides appears to be slight. First, 
WSi2 has a more obvious anisotropy factor, 37% on (100); second, there 
is a reversal in the order of hardness on (101) when [100] is the softest 
direction for WSi2 but hardest for MoSi2 • 

3.5.2. Vickers Indentations 

Two ambiguities concerning its orientation with respect to the indented 
crystal plane make this indenter less convenient than the Knoop. For good 
reasons, the Vickers hardness number is based on the average length of the 
two diagonals formed by the square-based indenter. If the orientation of 
the indenter is determined by the alignment of these diagonals, then both 
can lie in the same family of directions only when indenting (100) surfaces. 
For example, if one diagonal is aligned with [001] on a (110) surface, then 
the other is parallel to the [110] direction. Furthermore, it is only on (001) 
planes that the symmetry of the indenter matches that of the indented 
surface so that the resultant indentations will be square. On other planes, 
indentations tend to be distorted as the result of pile-up due to emerging 
dislocations and slip steps. Mainly for this reason, anisotropy in Vickers 
hardness measurements on planes other than (001) is rarely reported. 
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Figure 3.16. Anisotropy of Vickers hardness for (a) (001) plane of NbCo.8 and (b) (111) plane 
of VCO.088 ' After Kumashiro and Sakuma. (26) 

Likewise there are few, if any, studies of anisotropy using the Vickers 
diamond on noncubic crystals. 

Figure 3.16 and Tables 3.7 and 3.8 show that the anisotropy is of the 
same nature as that observed for Knoop indentation hardness measurements 
in that (110) and (100) are the hard and soft directions, respectively, for 
crystals which slip on {110}(110), and similar behavior is exhibited by those 
cubic crystals with {1l0}(1l1), {1l2}(1l1), and {123}(111) systems. Again, 
analogously to the Knoop measurements, the converse is found for 
{100}(0I1) and {111}(110) systems. 

Generally, Vickers hardness anisotropy on planes other than (001) is 
less evident, while hardness values on all planes have higher values than 
those obtained when using a Knoop indenter on the same material. As a 
result of the somewhat uncertain revelation of hardness anisotropy charac­
teristics by the Vickers diamond, some investigations have been made 
quoting average Hv values for given planes and comparing these values 
with anion and cation distribution and packing densities. For example, 
some inverse spinels(27)-synthetic magnetite and synthetic Mn-Zn ferrite, 
Fe3+(tet)(Fe2+Fe3+)2(oct)04-have been reported to show H(1l1) > H ooo) > 
H OIO) in the range 5.28, 5.14, and 4.95 GPa, respectively, while 
Fe3+(tet)(Mn2+, Fe2+, Zn2+, Fe3+)2(Oct)04 reverses the hardness order; i.e., 
H OIO) > H ooo) > H Oll ) in the range 6.33, 6.18, and 5.79 GPa, respectively. 
Anion and cation packing densities are the same in both cases, and so the 
increased hardness and the change in planar order arise from composition 
variation in the octahedral sites. For some noncubic crystals, ranges of 
hardness value for (001) planes that imply a hardness anisotropy have been 
quoted, but they have not been substantiated by listing any specific direc-
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Table 3.7. Oriented Vickers Hardness Measurements on Some Perovskite 
Single-Crystal Planes 

Vickers hardness (GPa) 

Load (N) {001} 

Composition NIlo.7sW03 NIlo.601 W03 NIlo.S1S W03 

Diagonals 
along (100) (110) (100) (110) (100) (110) 

0.49 10.80 7.84 12.05 9.10 8.61 7.38 

0.98 9.56 7.11 10.60 6.93 8.19 7.11 

1.96 7.25 6.11 7.59 6.26 5.87 

2.94 7.02 5.64 5.95 6.07 

4.90 5.74 5.28 6.02 

Vickers hardness (GPa) 

Load (N) {OIl} 

Composition NIlo.7sW03 NIlo.601 W03 NIlo.S1S W03 

Diagonals [100] [111] [100] [111] [100] [111] 

along and and and and and and 
[011] [211J [011] [211] [011] [211] 

0.49 10.49 9.19 9.36 7.20 8.34 8.43 

0.98 8.77 7.38 8.54 7.11 7.04 6.27 

1.96 8.18 6.37 7.32 6.21 6.98 5.89 

2.94 6.91 5.83 6.72 5.99 6.11 5.50 

4.90 6.44 5.59 6.10 5.95 

Table 3.8. Vickers Hardness on (001) Plane of Some Cubic Crystals and 
Slip Systems Independently Identified 

Vickers hardness (GPa) 
Temperature 

Crystal Slip system (DC) [100] [110] 

NiO {110}(110) 25 5.18 6.25 
TiC {1l0}(1l0) 25 25.48 34.30 
VC {111}(110) 350 18.03 16.61 
(MnZnFe)Fe204 20 6.18 6.18 

tional hardness values.(28) Thus for MoB2, WB2, and CrB2 maximum and 
minimum hardness values on (001) are 24.24-21.30 GPa, 22.18-20.51 GPa, 
and 22.47-20.37 GPa, respectively. These hardness values are very similar 
even though MoB2 , being hexagonal, has a different crystal structure from 
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that ofWB2 and CrB2 • Some ranges of hardness values that imply anisotropy 
on (001) and {OlO} planes in hexagonal, tetragonal, and orthorhombic 
borides are given in Table 6.24. In the case of the different boron units, see 
Table 6.23; the mean Hy values are surprisingly similar. 

3.5.3. Berkovich Indentations 

From what has been observed in previous sections, it is obvious that 
the Berkovich indenter is suited to indenting only planes of three- and 
sixfold symmetry-i.e., the {1l1} planes of cubic crystals and the (0001) 
planes of hexagonal crystals. Nevertheless, its use is favored for indentations 
in these planes of the ultrahard ceramic solids, such as diamond and cubic 
boron nitride, since it is easier to avoid a chisel tip on repolishing a blunted 
indenter with three facets than one which has four facets and a natural 
chisel edge. Because it has no chisel tip, the Berkovich indenter is favored 
for measurements using very low loads when indent diagonals will be small 
and the errors, shown in Figure 2.4(b), that arise from the presence of a 
chisel edge do not then occur. 

Because this is not a commonly encountered indenter and because of 
the restricted type of plane that it can usefully investigate, there are very 
few results from which to draw conclusions. However, for cubic crystals 
the difference between those having {001}(01l) slip systems and the other 
types is evident in the symmetry of the hardness anisotropy curves as it was 
in the case of the Knoop indenter and the Vickers diamond. 

It is interesting to observe that indentations of similar orientation but 
opposite sense-e.g., [Il2] and [112]-yield different hardness values and 
have different fracture characteristics, as Figure 3.17 shows. Such observa­
tions serve to emphasize the fact that hardness measurements reflect bulk 
and not surface properties even though this whole area of work emphasizes 

Figure 3.17. Berkovich indentations on (Ill) plane of CaF2 which has an {OOl}(IlO) slip 
system. Scale bar: lO ILm. From reference (29). 
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planes of indentation and hardness in directions along such planes. In 
Figure 3.17 the orientation of the facets of this indenter with respect to the 
(11 1) plane indented is the same for both indentations. However, there is 
a difference in orientation when compared to the resolved shear stresses 
developed on the active slip systems in the bulk of the solid. Such an effect 
clearly leads to crack formation in the soft directions while no radial cracks 
form for the harder orientation. 

3.5.4. Scratch Hardness Anisotropy 

Because the direction of sliding uniquely defines the crystallographic 
direction of measurement on a crystal plane, and since Section 2.4 concludes 
that the same mechanisms are operative in scratch hardness as in indentation 
hardness, it is surprising to see that the scratch method is so little used in 
hardness anisotropy investigations. Furthermore, one would expect a greater 
anisotropy factor to emerge from the different method of calculating hard­
ness; see, for example, equation (1.51), where just the groove width is used 
for calculating hardness and not the total or projected area as in indentation 
hardness. An important reason for this lack of use is that the frictional 
forces must also be measured. This is particularly true if resolved shear 
stress calculations are to be made in order to predict the shape of the 
hardness anisotropy curve for any plane on which sliding occurs, in terms 
of possible slip systems that could operate. Thus the resultant stress axis 
has an angle of inclination determined by the coefficient of friction through 
equation (3.6) 

f.L = tan (J (3.6) 

The effect this has on developing predictive equations is discussed in Section 
3.6.1 where resolved shear stress models are considered. 

That the method can reveal hardness anisotropy in nonmetallic 
materials, even if neither example might be considered to be a ceramic in 
the accepted sense, is shown in Figure 3.18. In order to achieve these results 
the temperature had to be elevated so that untom grooves were produced.(30) 
The two materials used, LiF and CaF2 , are examples of the two types of 
slip system mainly encountered in cubic ceramics, as Table 3.1 shows, and 
clearly they are the converse of each other, as Fig. 3.18 clearly shows. This 
method is worthy of development. 

3.5.5. Avoiding Directional Hardness Anisotropy 

In routine hardness measurements, the phenomenon of anisotropy is 
irksome and there would seem to be a need for an indenter which overcomes 
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this effect so that a single representative hardness value may be determined 
for a specific plane of a given crystal. This could be particularly useful for 
measurements on ceramic crystals, where the degree of anisotropy is most 
marked, and therefore of greatest interest to mineralogists and gemologists. 
In this way the convenient technique of indentation hardness could help 
to identify crystal faces before subsequent experiments were conducted 
involving single crystals. 

A conical or spherical indenter would seem to solve the problem in 
the first place, but as the analysis in Section 5.2.2 in particular shows, 
these geometries, when used on brittle crystal faces, readily produce ring 
cracks at the loads required to make an indentation, and they are therefore 
not suitable. Given the disadvantages of indenters based on cones and 
spheres the intrinsic anisotropic properties of crystalline solids may be 
overcome by using a fivefold symmetrical indenter (i.e., an inverted pyramid 
having a regular pentagonal base) since this represents the smallest number 
of facets with a symmetry not shared by crystal structures. 

Because this is a very uncommon indenter there exist very few results 
relevant to ceramic systems; Ni0(100) planes indented with this diamond 
at a load of 4.9 N show an absence of anisotropy in contrast to both the 
Knoop and Vickers diamond indenters. 

3.6. THEORETICAL MODELS FOR HARDNESS ANISOTROPY 

The most striking feature of the collected data in the tables in this 
chapter and in Chapter 6 on anisotropic indentation hardness values for 
crystalline ceramics is its dependence on the relevant active slip systems. 
This has been extended by observation to encompass materials beyond 
ceramics. Thus, the nature of anisotropy for a soft, face-centered cubic 
metal may be the same as for hard, covalent cubic crystals like diamond, 
since they both have {111}(1 10) slip systems. Consequently it is natural that, 
in order to develop a universal model, we should first look for explanations 
based on mechanisms of plastic deformation. 

3.6.1. Resolved Shear Stress Models 

3.6.1.1. The Brookes-O'Neill-Redfern Model 

The most consistently successful models for explaining and predicting 
the nature of anisotropy in indentation hardness have been those based on 
adaptations of the Schmid-Boas resolved shear stress criteria. Thus slip is 
initiated when the critical resolved shear stress (Te) is reached for the most 
favorably oriented slip system. Then: 
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Te = P / A cos 4> cos A (3.7) 

where P is the load applied along the axis of a cylindrical element of 
cross-sectional area A, A is the angle between the slip direction and the 
stress axis, and 4> is the angle between the stress axis and the normal to 
the slip plane (SN) as defined in Figure 3.19. As plastic deformation takes 
place, the slip plane will usually rotate about an axis (AR) which lies in 
the slip plane and is normal to the operating slip direction. Under uniaxial 
stress conditions, and for certain crystallographic directions of the stress 
axis, it is possible that the resolved shear stress is zero on all the operative 
slip systems. Such conditions obtain when the stress axis lies in a (111) 
direction of a crystal with {nO}O 10) slip systems. Then, even though 
subjected to a compressive load, the material is incapable of plastic deforma­
tion. The following considerations show that these conditions will never 
obtain during indentations since the direction of the stress axis will vary 
from one position beneath the indenter to another. Nevertheless, the 
Schmid-Boas equation can form the basis for an analysis of anisotropy in 
the hardness of crystals when two further points have been accepted. First, 
the angle between the axis of the stress responsible for deforming the crystal 
and the surface of indentation must be determined. Values of A and 4>, for 
a given orientation, can then be calculated. Secondly, it must be recognized 
that the available slip planes, unlike those submitted to a unidirectional 
stress, are not free to rotate about a number of axes governed only by the 
slip directions in those planes. The indenter facets and the hinterland of 
material, which is only elastically deformed, will both influence the choice 
of active slip system. However, there will generally be a tendency for material 
between these two regions to be displaced, during the indentation process, 
from within the bulk onto the surface of the crystal, as sketched, for example, 
in Figure 3.4. Consequently, a slip system which allows rotation about an 
axis parallel to an indenter facet will be more favorably oriented for slip 
than one whose axis of rotation is normal to that facet. 

F 

~-

Figure 3.19. Representation of a cylin­
drical element of material adjoining an 
indenter facet, in this case ABC. HH' is 
an axis drawn parallel to the facet ABC. 
The direction SN is a slip-plane normal. 
SD is the slip direction and SR is the 
axis of rotation. FF' is the tensile axis. 
</>, A, .p, and 'Yare angles determined by 
the indenter-to-specimen orientation, 
which in this case is governed by facet 
ABC. 
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Daniels and Dunn in 1949 first proposed a model developed for the 
Knoop indenter along these principles. They chose a tensile stress axis, FF 
in Figure 3.19, parallel to the steepest slope of each indenter facet, and 
then modified equation (3.7) by including a constraint term, cos "', to allow 
for the restricted rotation of slip planes during indentation. The diagram 
in Figure 3.19 shows the angles A, cP, and", for one cylindrical element 
adjoining a given indenter facet. Initial slip on the primary slip plane-i.e., 
that subjected to the maximum resolved shear stress-causes that plane to 
rotate about an axis AR. Daniels and Dunn concluded that the constraint 
is- minimal when the axis of rotation is parallel to the indenter facet-i.e., 
along the direction HH' in Figure 3.19. In this case, the angle", = 0 and 
the constraint term is unity. They further suggested that the constraint is a 
maximum when '" = 90° and that there is no slip because rotation of the 
slip planes cannot occur. Thus, their equation for effective resolved shear 
stress Te was developed: 

Te = F / A cos A cos cP cos '" (3.8) 

Clearly, values of F and A cannot be unambiguously defined in a 
hardness test. Nevertheless, the product of the cosine factors may be used 
to demonstrate the relative magnitude of resolved shear stresses for indenta­
tions in various crystallographic directions on a given crystal plane. An 
averaging method, described later, was used to obtain mean values T~ for 
the calculations based on the product of the geometric terms in equation 
(3.8). In essence, the hardness should be inversely proportional to the mean 
effective resolved shear stress. The correlation between T~ and Knoop 
hardness, for (001), (110), (111) surfaces of iron-3%-silicon-alloy single 
crystals assuming {112}(111) slip systems, was good. 

Later, anomalous results were obtained by Daniels and Dunn for the 
hexagonal crystal zinc. Modifications to this model were suggested by Feng 
and Elbaum (31) and Garfinkle and Garlick. (32) Instead of considering a 
tensile force parallel to the indenter facets as the effective deformation 
force, these authors preferred to use a compressive force normal to the 
facets. However, their analysis gave little agreement with experimentally 
established anisotropy in the hardness of crystals. Furthermore, dislocation 
etch-pit studies on MgO later demonstrated that slip was obtained under 
conditions where", = 90°, which is in direct contradiction to the constraint 
term in the model. 

By developing the constraint term, with particular respect to the dis­
placement of material in the slip direction, Brookes, O'Neill, and Redfem(9) 
improved the correlation between hardness values and the resolved shear 
stress calculation. Moreover, they extended the applicability of this 
approach to the complete range of crystalline solids. They proposed that 
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the minimum constraint is obtained only where the slip direction and HH' 
in Figure 3.19 are coincident and l/I is automatically 90°. If the angle between 
the slip direction and HH', designated as 'Y, exceeds zero degrees, then the 
slip plane can rotate even though l/I is 90°. On the other hand, the minimum 
constraint is obtained when the axis of rotation SR and HH' are coincident; 
i.e., when 'Y must always be 90°. Thus the modifying function which 
reduces the effective resolved shear stress, due to rotational constraint, is 
!( cosl/l + sin 'Y). The complete form of the effective resolved shear stress 
equation is then 

T~ = !(F/ A) cos'\ cos 4> (cos l/I + sin 'Y) (3.9) 

A computer program can be used to calculate complete resolved shear stress 
curves, based on equation (3.9), for cubic and hexagonal crystals having 
the common sets of slip systems noted in Tables 3.1, 3.2, and 3.8. Each 
facet of the Knoop indenter has to be dealt with separately and complete 
sets of curves calculated. The mean T~ curve is obtained from the mean 
values of the envelopes (maximum T~ values) at each indenter orientation. 
The inverted form of this curve is shown in Figure 3.20 because those 
directions having the lowest effective resolved shear stress will be the hardest. 
Because F and A cannot be unambiguously defined, the product of the 
cosine factors and the rotational constraint term is used to demonstrate the 
probable hardness anisotropy of crystals. As was quickly seen, this method, 
despite its first-order nature, was very good at predicting the form of 
hardness anisotropy of ionic and covalent ceramic materials as well as 
metals and alloys. The extent of anisotropy-i.e., the anisotropy factor-was 
not approachable in this theory. 

6·0 

3·0 

TENSION 

2·0 !:-"*+-..i~"""'-rl..-~ o 40, 10 

(001) Dfl) OfCU 
azimuthal angle 

Figure 3.20. Reciprocal of the cosine and 
rotational constraint terms of equation 
(3.9}-that is, the effective resolved shear 
stress-on (110) plane of MgO using 
either compressive or tensile forces with 
the slip system {110}(1 10). 
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Figure 3.21. Reciprocal mean effective resolved shear stress curves for Knoop indentation 
calculated for (001) planes of a rock-salt cubic crystal using (a) {llO}(110), (b) {OOl}(110), (c) 
{l11}(l10) slip systems. 

Comparison of Figure 3.20 with Figure 3.5(b), where hardness 
anisotropy on a (110) plane of MgO is recorded, verifies that the tensile 
model reflects the measured anisotropy more closely than the compressive 
model. However, it should be pointed out that it is generally the case that 
there is no significant difference in the nature of anisotropy as predicted 
after choosing either one of these two axes. 

The inverse mean effective resolved shear stress curves for a Knoop 
indenter for common slip systems on low index planes of cubic and 
hexagonal systems are sketched in Figures 3.21 to 3.27. 

Because these curves closely parallel the results obtained in real systems, 
as shown in Figures 3.5, 3.6, 3.7, 3.8, 3.12, 3.13, 3.14, and 3.15, the types 
of observed anisotropy in Knoop hardness have been used to study plastic 
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Figure 3.22. Reciprocal mean effective resolved shear stress curves for Knoop indentation 
calculated for (001) planes of a fluorite cubic crystal for (a) {OOl}(110) and (b) {llO}(l10) slip 
systems. 
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Figure 3.23. Reciprocal mean effective 
resolved shear stress curves for Knoop 
indentation calculated for (111) planes of 
a fluorite cubic crystal for the {110}(110) 
slip system. 
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Figure 3.24. Reciprocal mean effective resolved shear stress curves for Knoop indentation 
calculated for (001) planes of diamond cubic crystals for the {11l}(110) slip systems. 
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Figure 3.25. Reciprocal mean effective resolved shear stress curves for Knoop indentation 
calculated for (001) planes of cubic I crystals for {llO}(IIl) slip systems. 

flow and identify operative slip systems in what are largely regarded as 
brittle materials-i.e., the ceramics. Despite the fact that the mean effective 
resolved shear stress model makes no attempt to consider anything other 
than equal resolved shear stresses on different planes, considers only one 
(i.e., the primary slip system), and ignores work-hardening effects, all the 
categories of crystal examined by the technique show easily recognizable 
hardness anisotropy behavior that can be interpreted simply. These observa­
tions are responsible for the universal belief that anisotropy in hardness is 
controlled by mechanisms of bulk plastic deformation in the small volume 
of subsurface layers between indenter facets and the large mass of elastic 
material. 

The major anomaly occurs not in hard ceramic systems, like those of 
interest in this book, but within the soft rock-salt halides with {110}(110) 
primary slip. Examination of the anomaly, which makes HK along [100] 
greater than HK along [110] for NaCI and KCI, compared to the expected 
converse for MgO and LiF, etc., has led to a series of different explanations: 
for example, indentation creep-i.e., a time effect when the indenter is left 
too long in contact with the surface-or the use of more sophisticated 
models, involving several slip systems operating simultaneously with 
extension to include work-hardening effects. However, when this is done 
the great benefit of simplicity inherent in the ERSS model is lost. 

Examination of Figure 3.21 shows that one of the three slip systems 
can be easily identified from Knoop hardness measurements, namely, the 
{1l0}(110) system, but because in actual practice the anisotropy factors can 



[1
1

2
0

] 
[1

1
2

0
] 

... g 
15

-1
 

a 
15
1 

b 

(0
0

0
1

) 
(0

0
0

1
) 

1 -re
' 

{
0

0
0

1
 ~ 

<
11

20
>

 

10
-1

 
[2

11
0]

 
1

0
 

5 
I 

, 
5

1
 

, 
[1

12
0]

 
e 

i 
, 

0 
[1

01
0]

 
6

0
· 

0 
[1

01
0]

 
6

0
· 

10
~ 

(0
0

0
1

) 

[1
12

0J
 

[1
12

0J
 

1 
11

21
0 

~ <
10

10
>

 

1
5
1 

15
1 

"'T
.i 

[2
11

0J
 

e 
1 .....
t 

1 t:
i 

1
\ 

1
\ 

e 
d 

[1
0

1
0

] 
(0

0
0

1
) 

10
-1

 
I 

v 
\ 

'°1 
5 

,(
"
 

11
10

1~
<1

12
0>

 
0 

6
0

· 

0
0

1
) 

A
 

"-
[2

11
0]

 

13
30

1 
~ (

1
1

2
0

>
 

5
r
 

-,
 

5 
I 

, 
, 

0 

[1
01

0J
 

6
0

· 
, 

0 
0 

[1
01

 O
J 

6
0

· 
':I

' 
il
l ~
 

F
ig

ur
e 

3,
26

, 
R

ec
ip

ro
ca

l 
m

ea
n 

ef
fe

ct
iv

e 
re

so
lv

ed
 s

he
ar

 s
tr

es
s 

cu
rv

es
 f

or
 K

no
op

 i
nd

en
ta

ti
on

 c
al

cu
la

te
d 

fo
r 

(a
) 

{0
00

1}
(1

12
0)

, 
!!l 

(b
) 

{I
IO

O
}(

1l
20

),
 (

c)
 {

33
01

}(
1l

20
),

 (
d)

 {
II

01
}(

1l
20

),
 (

e)
 {

12
10

}(
1o

IO
) 

sl
ip

 s
ys

te
m

s 
on

 (
00

01
) 

pl
an

es
 o

f 
he

xa
go

na
l 

cr
ys

ta
ls

, 
w

 



Hardness of Ceramic Single Crystals 

1 

T.' • 

fj12Q] a 
(0001) <1120> 

on 
(1100) 

24 

22 

20 

18 [ooo!] 
I 16 I 

12 

10 

8 

2 90 
O~~~u-~~-.~ 

40 80 120 160' 

~120J 

24 

b 
/1210J <1010> 

on 
(1100) 

Ibooa 

[H20] 
... 

40 80 120 160" 

105 

Figure 3.27. Reciprocal mean effective resolved shear stress curves for Knoop indentation 
calculated for (a) (0001)(1120) and (b) {1210}(1010) slip systems on the prismatic (1100) plane 
of hexagonal crystals. 

be quite small and experimental variation large, it may not be possible to 
distinguish between the {OOl}(110) and {111}(110) systems shown in that 
figure. This emphasizes the statement made at the opening of this chapter, 
that other techniques used in conjunction with hardness greatly help with 
slip system analysis. Scratch hardness when analyzed by the mean resolved 
shear stress method is one helpful method, as the anisotropy predictions 
in Figure 3.28 show. 

3.6.1.2. Resolved Shear Stress and Scratch Hardness 

Here again, after making very similar sweeping simplifications to those 
used for the indentation model, it is possible to produce a powerful tool 
in the analysis of hardness anisotropy and slip-system identification. The 
following assumptions and simplifications can be compared to those in 
Section 3.6.1.1. 

1. Anisotropy is determined only by the primary slip system. 
2. The absolute magnitude of the effective resolved shear stresses 

need not be known. This is occasioned by the fact that the actual 
area supporting the applied load cannot be determined unam­
biguously. 
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Figure 3.28. Reciprocal mean effective resolved shear stress curves for scratch hardness on a 
(001) plane of a cubic crystal calculated for (a) {llO}(lIO), (b) {ool}(lIO), and (c) {111}(lIO). 

3. The interaction of displaced material and slider shape is ignored. 
4. Work hardening is ignored. 
5. The Schmid-Boas equation will give the distribution of the resolved 

shear stresses as a function of sliding direction. 
6. The frictional force F and normal load P can be resolved into a 

resultant pi inclined at an angle 0 to the vertical axis of the slider. 
7. Angle 0 is related to the coefficient of friction J.t through equation 

(3.6). 
8. The axis pi represents the principal compressive axis of stress. 
9. Only the resolved shear stresses in a small element of the ceramic 

in front of the slider and at 90° to the pi axis are considered. This 
produces a reasonably uniform tensile stress at right angles to the 
pi axis and lying in the plane of pi, P, and F. 

10. As slip occurs on the primary system, rotation of the slip plane 
occurs about an axis at 90° to the slip direction as contained in 
that plane. Thus it can be seen that the axis of rotation might be 
parallel to, or at right angles to, the direction of sliding. When the 
rotation axis is normal to the sliding direction and parallel to the 
deformed surface, then slip will result in slip steps at right angles 
to the sliding direction, causing material pile-up in front of the 
slider. This makes sliding harder and results in a thinner groove, 
producing a greater measured hardness. Conversely, if the axis of 
rotation is still parallel to the deformed surface, but now also 
parallel to the sliding direction, the pile-up of material will be 
parallel to the groove, making sliding easier and producing a softer 
direction with respect to hardness. In this way the geometry of the 



Hardness of Ceramic Single Crystals 107 

slip system, the crystallographic plane, and the direction of slip 
combine to produce a modification in a resolved shear stress. 

11. To generalize this situation it is necessary to define an angle w 
between the axis of rotation for the slip system of interest and an 
axis lying in the surface being investigated and normal to the sliding 
direction on that surface, say, XY. 

This leads to an expression for the effective resolved shear stress Te: 

p" 
Te = }lcos cf> cos A!(1 + sin w) (3.10) 

In equation (3.10), P" is the force at 90° to the P' axis, which, as point 
9 above states, is tensile; A is the area supporting the force; cf> is the angle 
between the direction of P" and the slip-plane normal; A is the angle between 
the P" direction and the slip direction; and w is defined above in point 11. 

According to equation (3.10), when the axis of rotation of the slip 
system is parallel to the axis drawn at 90° to the sliding direction that lies 
in the plane of sliding, i.e., XY, then sin w = O. This produces a decreased 
penetration and therefore an increased hardness. At w = 90° to XY, the slip 
system rotation axis will be normal to the surface axis XY, the effective 
resolved shear stress is maximized, leading to a maximum penetration, and 
this direction will be the softest. 

For each angle of sliding relative to XY a value for Te from equation 
(3.10) is calculated for a given slip system, and then the mean effective 
resolved shear stress T~ is found. The reciprocal of T~ is a measure of the 
relative hardness in that particular direction and can be used to model 
scratch hardness anisotropy. Figure 3.28 compares the mean resolved shear 
stress curves for three slip systems operating when a (001) plane of a cubic 
crystal is scratch tested; clearly plastic deformation due to the {100}(011) 
system can be separated from others by scratch testing in the way that 
{110}(110) is recognizable in Figure 3.21 by indentation testing. 

It is obvious by now that the mismatch of symmetry between the Knoop 
indenter and {Ill} planes is a weakness when exploring hardness anisotropy 
of such planes. However, since scratch hardness does not suffer from such 
a mismatch, the resolved shear stress curves for the (111) plane in cubic 
crystals with the three commonly found slip systems shown in Figure 3.29 
may be useful in anisotropy and slip system investigations. Clearly more 
detailed anisotropy is predicted but the small anisotropy factors implied in 
the scale of Figure 3.29 must be remembered. Generally speaking, only the 
main features of the predicted curves have ever been established and 
experimental uncertainty makes it unlikely that the fine detail will be found. 
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Figure 3.29. Reciprocal mean effective resolved shear stress curves for scratch hardness of a 
cubic crystal (111) plane calculated for (a) {I 11}(110), (b) {OOI}(110), and (c) {110}(110) slip 
systems. 

3.6.1.3. The Effect of Multiple-Slip Systems 

The effect ascribed to more than one slip system operating has already 
been recorded in Table 3.2 where results for TiB2, ZrB2' and HfB2 are 
listed. In fact the slip systems listed in Table 3.2 for these three borides 
were derived from a resolved shear stress model analysis by Nakano et 
al.(33) which may of course be making a somewhat circular argument. Using 
the Brookes equation, (3.9), Nakano et al. were able to calculate, as the 
reciprocal of the angular functions, the values given in Table 3.9, which 
can be used to establish expected Knoop hardness inequalities such as these 
for the (0001)(1120) slip system operating: 

• (0001) plane H[1120] > H[1010] 
• (0001) plane H[1120] ~ H[1210] on (1010) plane 
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Table 3.9. Reciprocal T~ Values for Two Hexagonal Slip Systems 

Plane indented 

(0001) (l010) (1120) 

Knoop long-axis direction 

Slip system [1010] [1120] [0001] [1210] [0001] [1100] 

(0001 )(1120) 
{1010}(121O) 

• (1010) plane 

2.65 
18.07 

• (1010) plane 
• (1120) plane 
• (1120) plane 

3.02 17.39 2.99 15.42 
6.39 2.19 44.18 2.63 

H[0001] > H[1210] 
H[0001] > H[0001] on (1120) plane 
H[0001] > H[1100] 
H[1100] > H[1010] on (0001) plane 

and these for the {l010}(1210) slip system operating: 

• (0001) plane 
• (1010) plane 
• (1010) plane 
• (1120) plane 
• (1120) plane 

H[1010] > H[1120] 
H[1210] > H[0001] 
H[1210] > H[1100] on (1120) plane 
H[1100] > H[0001] 
H[0001] > H[0001] on (1010) plane. 

2.69 
31.06 

Because the observed hardness values for TiB2 are in accord with the 
inequalities of the first group and the hardness values of ZrB2 are in accord 
with the inequalities of the second group, the hardness was assumed to be 
dominated by the slip system causing such inequalities. HfB2 was not clearly 
covered by either set of inequalities, leading to the prediction that both sets 
of slip systems could act in HfB2 depending on the orientation of the long 
axis of the Knoop diamond. 

A closer look at the simple model by which SiC was examined has 
shown that even though the Brookes model is surprisingly good, it can be 
tested, and even when it is found satisfactory more than one operating slip 
system can be detected.(18) Sawyer noted that the rotational constraint term 
in equation (3.9) is not unique and is one of the simplest that can be chosen 
to fulfill the requirements that CF = 1 when", = 0 and CF = 0 when y = o. 
Thus the suggestion was made that a variety of constraint terms should be 
used in equation (3.9) and the anisotropy predictions compared. If the 
model is unstable in its prediction of anisotropy as the constraint factor 
changes, it should be applied with caution. Using the constraint factors 
given in equations (3.11)-{3.13) for some of the possible slip systems in 
hexagonal crystals operating on a (0001) plane, the stability of the model 
was shown for basal, {0001}(1120) slip and prismatic, {1100}(1120) slip but 
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not for pyramidal, {I tOl}(1120) slip; this is shown in Figure 3.30 where 
some of Sawyer's calculations are given. 

Rotational constraint factor (2) = 0.5[COSO.25 '" + sino.25 'Y] (3.11) 

Rotational constraint factor (3) = 0.5[cos4 '" + sin4 'Y] (3.12) 

Rotational constraint factor (4) = 0.5[cos4 '" sino.25 'Y] (3.13) 

The important point that can now be made is that if a variety of constraint 
factors show stable predictions, then any observed experimental deviation 
in anisotropy pattern can be taken as real and mechanisms to account for 
the difference can be sought after. In seeking explanations of the deviations 
already shown in Figure 3.14 it was noted that on prism planes {I tOO} and 
{1120}, while the lowest hardness was found with the indenter's long axis 
parallel to [0001], the maximum hardness was found at some 60° from 
[0001]. This could not be simulated by any slip system acting in isolation. 
However, when the two most probable slip systems, {1 tOO}(1120) and 
{0001}(1120), were considered jointly, an approach to the observed 
anisotropy could be made. The {1 tOO} was used as an example which showed 
that when the indenter was along [0001] the reciprocal f value for 
{ltOO}(1120) slip is low and the value for {0001}(1l20) is slightly higher. 
Thus {1 tOO}(1120) appears to be preferred. Since the 1/7: values are nearly 
equal, the critical resolved shear stress for {I tOO} slip is less than that for 

15 15 100 

3 

4 

5.~=-~~:-__ ~ 5~~ __ ~~ __ ~ O~ ____ ~ ____ ~. 
[HiQl 1l01Q1 I2HID [11~ID D01Ql ~HQI [11 ~O] [1010] ~HO] 

a b c 

Figure 3.30. 1/ T~ plot for the (001) plane for the slip systems (a) {OOOI}(l120), (b) {I lOO}(1120), 
(c) {IIOI}(l120). Lines labelled B, 2, 3, or 4 correspond to the use of constraint factors 
according to Brookes, equation (3.11), equation (3.12), or equation (3.13), respectively, in 
equation (3.9) for the calculation of T~. Note the larger scale for (c). The plots in (a) and (b) 
show the consistency of prediction for (0001) Knoop hardness anisotropy while plots in (c) 
show inherent instability in the model. 
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{0001} slip. If this continued to be the case hardness would increase until 
the indenter lay 80° from [0001]. Thus the decrease in hardness that is 
observed between 60° and 90° from [0001] implies, since the constraint-factor 
test is good, that another system must be activated. 

Further calculation shows that, for indenter orientations in the neigh­
borhood of [1120], the {0001}(1120) slip system has a 1/ T~ factor around 
10 while the 1/ T~ factor for {IIOO}(1120) slip is about 30; and, since the 
effective resolved shear stress is proportional to the inverse of these numbers, 
the {0001}(1120) system feels a much higher stress, which presumably is 
sufficient to activate it. In this way the controlling slip system changes from 
{IIOO}(1120) to {0001}(1120) on {lIOO} planes as the indenter is rotated, 
the changeover occurring around 60° from [0001]. A natural implication of 
two systems becoming possible around the changeover point is that both 
will act, and work hardening due to multiple slip may then be responsible 
for the observed hardness peak, such as that in Figure 3.14(b). Because the 
two slip systems discussed so far have no intersecting reactions, new glissile 
dislocations satisfying relationships implicit in equations like those in Sec­
tion 3.3 have to be formed. Even more recently, as already discussed in 
Section 3.5.1.2, the hardness data for beryl(22) have been used to postulate 
tranfer of slip control to three systems consecutively as the indenter orienta­
tion from [0001] increases. 

These methods are now strongly suggesting a work-hardening function 
to account for anisotropy peaks as dislocations lock; this feature becomes 
the dominant one in the most recent developments of hardness anisotropy 
theory that finally move away from the resolved shear stress models. 

3.6.2. Plastic Zone Modeling 

The benefits of simplicity inherent in the resolved shear stress models 
were lost when Hirsch and co-workers,(15) examining the plastic zone 
beneath (111) and (III) faces of GaAs indented by a Vickers diamond, 
carefully sectioned the crystals and found that hemispherical symmetry of 
the plastic zone is not evident. Hagan has shown the hemispherical symmetry 
but only for noncrystalline solids. This demonstration pointed to the fact 
that the plastic zone is anisotropic and the realization that a new model 
must be developed based on the stresses caused by a straight punch. From 
such an analysis the hardness is seen to be related to the degree of work 
hardening in different regions of the plastic zone, in turn leading to an 
explanation of hardness anisotropy and plastic recovery after indenter 
withdrawal. At least it does this for diamond-type cubic crystals; other, 
more complex systems have yet to be tackled. 

In choosing GaAs for the original work an extra complication is 
introduced because it is known that dislocations in 111-V compounds have 
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different mobilities depending on whether the extra half-planes end on rows 
of group III or group V atoms. Both polarity of hardness and hardness 
anisotropy are likely to be related to this difference in dislocation velocity 
and how it is linked to the stress field under the indenter through the possible 
slip systems. Looking for these links does produce a newer theory of hardness 
and hardness anisotropy. Thus, by introducing an apparent complication, 
in the end more experimental confirmation of the model was forthcoming 
than would have been found had a simpler system been chosen. 

The two types of dislocations in GaAs, which are believed to exist and 
move in the glide configuration, are denoted as follows: 

• As(g), when the extra half-plane ends with arsenic atoms on the 
glide plane . 

• Ga(g), when the extra half-plane ends with gallium atoms on the 
glide plane. 

For the family of planes {Ill}, each of the above dislocations having Burgers 
vector 10 10) has been shown to be dissociated and to glide between the 
narrowly spaced planes of the volume formed by the {Ill} family in the 
zinc blende structure. 

Thus it is possible to define with respect to a (111) surface a polyhedron 
described by the {Ill} family. It is, in effect, a tetrahedron. However, closer 
inspection requires the definition of two tetrahedra relative to a direction 
normal to, say, the (111) plane, which of course would be the direction of 
indentation if a (111) surface or a (III) surface was indented. The slip 
plane tetrahedra are mirror images; i.e., the triangular base of the tetrahedron 
lies on (111) or (III) and the apex is then below the surface, or of course 
the apex can be a (111) or (III) atom with the triangular base lying beneath 
the surface. These two glide polyhedra are sketched in Figure 3.31. 

In relation to Figure 3.31, the extra half-planes of the dislocations 
As(g) and Ga(g) can be inside or outside the tetrahedron depending on 
which tetrahedron they glide on. If the (111) surface, because of the kinked 
ring structure shown in Figure 3.10, is made up of As atoms, the Ga(g) 

(J III or (TTT)surface 

- -Polyhedron of 111.sUp planes 
beneath the III surface 

Figure 3.31. Sketch from a (I 11) surface showing the opposite sense of the two {1I1} slip 
tetrahedra. A denotes an internal apex tetrahedron and B an external apex tetrahedron. 
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dislocations glide on the tetrahedron with the internal apex, A in Figure 
3.31, and the extra half plane will be inside tetrahedron A. Conversely, 
As(g) dislocations will have their extra half plane outside as they glide on 
tetrahedron B. The argument is reversed if the (HI) surface is considered, 
which must now be a face composed of Ga atoms. 

The significance of these two tetrahedra of slip planes, as shown in 
Figure 3.31, is that relative to an indenter penetrating a {Ill} face, disloca­
tions can move on slip planes that are converging (tetrahedron A) or 
diverging (tetrahedron B), or in fact parallel to the surface being indented, 
since each tetrahedron has a face parallel to that surface. Immediately 
Hirsch et al. were able to suggest tests that might confirm such a situation 
because Ga and As {lII} faces can be detected by their selective etching 
behavior towards bromine in methanol. Furthermore, a solution of HF and 
H20 2 in water is able to reveal etch-pit rosettes and slip lines in the region 
of a Vickers indent. Then, by polishing to greater depths below the original 
surface and re-etching, it was possible to observe all three expected effects: 

1. When slip occurred on the internal apex tetrahedron, the successive 
depths showed a slip line equilateral triangle around the Vickers 
indent that became smaller. 

2. When slip occurred on the diverging tetrahedron, B, the slip line 
triangle became larger. 

3. On the surface, dislocation rosettes appear along (110) directions, 
which indicates that they are traces of {Ill} planes. 

With such clear evidence of anisotropic behavior within the plastic zone, 
it was natural to search for a new model that would predict correctly the 
pattern of slip. Three components in the model are necessary: knowledge 
of the slip system combinations enabling the indenter to penetrate the 
surface by plastic flow, knowledge of the shear stresses acting under the 
indenter, and dislocation mobilities. 

Considering the first of these points a little further, the slip systems 
have to be ones that carry material into the crystal, not up to the surface, 
and so must have Burgers vectors inclined and parallel to the indentation 
surface. 

The new theory makes use of old established work(34) by ignoring 
plasticity and modeling elastic stress fields around a long, flat punch of 
finite width subjected to a uniform pressure. Stresses are calculated with 
the variables shown in Figure 3.32 and the following equations: 

(3.14) 
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p 

x 
-z 

Figure 3.32. Coordinate system for calculation of a stress field from a long fiat punch. Mter 
Nadai.(34) 

{3.15} 

{3.16} 

{3.17} 

Equations {3.14}-{3.17} enable the principal stresses in the XZ plane 
to be found, and these can then be used to calculate the resolved shear 
stresses along slip planes and Burgers vectors of interest; these are the 12 
{111}(110) types. Clearly, the calculation has to be done for various orienta­
tions of surface and indenter at a range of depths below the surface. A 
computer program is essential, and the results appear as a map of systems 
with the highest resolved shear stresses and contours of these maximum 
values. A small portion of the mass of work necessary is shown in Figure 
3.33 which is taken from one of the papers by Hirsch and his co-workers. 
General analysis of Figure 3.33 shows that, for a long punch indenter, which 

p 

III 

Figure 3.33. Part of a map showing the most 
highly stressed slip systems beneath and to 
the sides of a long punch indenter oriented 
along [110]. The filled faces on the poly­
hedra are the most highly stressed slip sys­
tems in the three regions I, II, and III separ­
ated by the solid lines. The arrows indicate 
the direction of slip showing convergence 
in III, rosette in II, and divergence in I. 
Dotted lines with numbers are contours of 
maximum resolved shear stress. Mter.o2) 
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approximates to a Knoop diamond, aligned with its long and short directions 
along two of the (110) directions on a (001) plane, three distinct areas are 
denoted: 

1. Directly beneath the indenter, slip polyhedra shown as type A in 
Figure 3.31 are active and slip is converging. 

2. Outside the volume covered by the indenter, the slip is diverging 
with the extra half-planes above the slip plane. It should be noted 
here that the diagram shown in Figure 3.33 is for an indentation 
into a (001) plane, not a (111) plane as shown in Figure 3.31, and 
so the inverted slip tetrahedron, B, is not obvious. To make the 
point more clearly, the diagram of indentation of a (111) surface is 
shown as Figure 3.34. 

3. In a narrow zone separating 1 and 2 above, slip parallel to the 
surface is favored; this is known as rosette slip. 

It can be seen that these predictions are in accord with the observations 
of the slip lines and are therefore encouraging. However, when the relative 
values of the resolved shear stress contour lines are considered as a function 
of azimuthal angle there appears to be only a slight dependence on orienta­
tion and so no reason to distinguish between, say, [010] and [110]. Thus, 
to explain hardness anisotropy on this model, the work-hardening behavior 
of the slip patterns rather than the stresses on the slip system have to be 
invoked. This is where the model is substantially different, because up to 
this point resolved shear stress considerations and calculations have been 
used. As Figure 3.33 shows, the near surface slip away from the indenter 
is divergent and into the crystal, while the slip beneath the indenter is into 
the crystal and convergent. A diagram for the [010] orientation would show 
the same convergent slip beneath the indenter, but slip away from the 
indenter is all of the parallel rosette type. Thus anisotropy between these 

(1Il)plane 

B-type tetrahedron 

A"-../A 
type tetrahedron 

Figure 3.34. Sketch map of slip systems under and around a long punch indenter on a (111) 
plane aligned along the [211] direction. In region I the slip planes and directions are (111)[101], 
(111)[IIO]; in region II (111)[0H], (111)[OII]; in region III (111)[101], (111)[110]; and in 
region IV (111)[110], (111)[101]. 
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Figure 3.35. Simplified model showing dis­
locations moving on diverging and converg­
ing slip planes beneath an indenter. 

two directions must arise from the slip outside the indenter volume. When 
the indenter is along the (110) directions, the hardness is lower, at least 
when the temperature is raised sufficiently to reveal the anisotropy, because 
of the greater slip activity on the low work-hardening diverging slip systems. 

The dominant role in anisotropy played by the divergent slip systems 
in the near-punch regions is supported by the fact that there is a predictable 
[110]: [110] asymmetry of hardness in GaAs. Using the simplified model 
of flow shown in Figure 3.35 and the fact that As(g) and Ga(g) dislocations 
have different velocities, the following interpretation arises. The dislocations 
along the intersecting, converging slip planes are of opposite type to those 
on the diverging planes. Thus the orientation where the faster dislocation 
type moves on the diverging planes will move material more effectively, 
and so the Knoop hardness will be low. When the indenter is now put at 
90° to this orientation the fast type of dislocation will move on the converging 
planes, leading to greater dislocation interaction, and the slower dislocations 
will not move material so efficiently on the diverging planes. Hence in this 
orientation both mechanisms will lead to high Knoop hardness. 

So far all experimental observations on the diamond cubic solids GaAs, 
Ge, and Si are in agreement with the predictions of this model. 
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Chapter 4 

Applied Load, Environment, and 
Time as External Determinants of 
Ceramic Hardness 

4.1. INDENTATION SIZE EFFECT 

In Chapter 1 applied load and sample grain size were highlighted as 
two variables affecting the determination of "absolute" hardness values for 
ceramic materials; Figures 1.2 and 1.3 emphasize the point. The load 
variation of hardness is better called the indentation size effect, ISE, because 
this emphasizes the volume dependence of hardness when this property is 
determined by a pyramidal indenter. 

Clearly all indents made with a pyramidal indenter should have the 
same shape regardless of their size. Thus, since we take pressure used to 
make this shape to be a measure of hardness-see equations (1.6) and 
O.7)-we would expect hardness to be the same and there to be no load 
effect. Therefore when hardness increases as the applied load decreases, as 
shown in Figure 1.3, it must be because the volume of material used to 
yield is smaller and the mechanism for yielding is dependent on a volume 
term which becomes more significant as the indent size decreases. The most 
obvious development of this idea is that the shallow near-surface volume 
of the deformation zone can become a significant fraction of the total 
affected volume when a very small load is used to make the indent. Thus, 
work hardened layers, surface compressed layers, ion-implanted layers, and 
the possibility of chemical reactions between the atmosphere and the surface 
can dominate the yielding mechanism to produce nonstandard hardness 
values. Conversely we can say that these phenomena could be studied by 
measuring the ISE of a ceramic. 

However, it is not simple to use ISE as a probe, unless large single­
crystal material is available, because microstructure, and in particular grain-
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size effects, can overlay and produce a multivariable dependence. Several 
investigations have shown a dependence of hardness on grain size like that 
shown in equation (4.1) when grains are very large compared to indent size 

(4.1) 

In equation (4.1) K is a constant and d is the grain diameter. 
The relationship in equation (4.1) has a familiar form, being the same 

as the Hall-Petch relationship for fracture stress or yield stress-grain size 
dependence. Through this connection the dominance of flow mechanisms 
in establishing hardness values is once again emphasized. 

However, not all work shows the simple relationship of equation (4.1), 
but when examined more closely, those investigations that do not follow 
equation (4.1) usually involve tests where the indent size and the grain size 
are comparable, and grain boundaries may then be important. Since the 
ISE exists in correctly chosen grain-size-indent-size regimes, we can accept 
that hardness increases as the load decreases, which means that from 
equations (1.6) and (1.7) there will be more complex relationships among 
applied load, hardness, and grain size. 

As yet the real origins of the ISE have not been quantitatively modelled, 
but a general power law, like that in equation (4.2), is used to 
express the relationship between applied load and indentation diagonal 

(4.2) 

Equation (4.2) is sometimes called Meyer's law or the log-index relationship. 
The material constant KL is the load required to make an indentation of 
1 x 10-6 m. Since all sensible hardness determinations involve indentations 
larger than 1 JLm, then KL is usually an extrapolated material parameter, 
useful for comparisons but having only limited physical significance. 

It is the value of n in equation (4.2) that is used to express a measure 
of the ISE of a material. Equation (1.6) gives the relationship of Vickers 
hardness to load, and for there to be no dependence of hardness on 
indentation size, n in equation (4.2) must equal 2. When hardness changes 
as the half diagonal a decreases, then clearly the relationship between P 
and a is not simple and n will not equal 2. Deviations from n = 2.0 are 
then a measure of the ISE effect and for a given ceramic, variations in n 
will be a measure of microstructural variations, surface layers, surface 
chemistry, or mechanochemical effects. 

It is not easy to examine equation (4.2) numerically, so it is usually 
expressed as equation (4.3) 
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In P = In KL + n In Q (4.3) 

Thus corresponding values of In P and In Q are plotted and a straight line 
is fitted to the data from the slope of which n can be found. 

If a single crystal or a polycrystalline sample with large grain sizes 
such that indent sizes are always small relative to the grain size, is used to 
determine n from equation (4.3), a straight line will result in a plot of In P 
versus In Q. When a microstructure exists with grain sizes smaller than the 
indent impressions, so that the yielded volume sweeps through several 
boundaries, a second line will be apparent in the plot which will produce 
a different intercept value, that is a different K L , because the grain boundaries 
are influencing the yield stresses. The slopes can be so similar for these two 
lines that experimental methods do not easily reveal the difference. However, 
between two particular load values there will be a nonlinear transformation, 
as Figure 4.1 shows. It is the transition effect and the different KL values 
so produced that highlight a microstructural and, in particular, a grain-size 
effect in ceramic micro hardness measurements. 

Careful plots of the type shown in Figure 4.1 can be used to estimate 
grain sizes in ceramic samples as well as make investigators aware of when 
microstructure is playing a dominant role in determining hardness values. 

An early study(l) involving MgO showed how important it is to establish 
good statistical procedures in this work so that the ISE effect can be properly 
unraveled from microstructural effects; the analyses developed allow n 
versus In KL plots to be made. Such plots can be used diagnostically to 
compare different forms of ceramic materials, and therefore the concepts 
leading to their development are outlined here. 

Using one load, Pi, to make n indentations on the same sample, it is 
possible to look at the distribution of the measured indentation diagonals 
Qi. Experience shows that the experimental variation is close to a Gaussian 
distribution. This fact justifies the use of a least-squares fit for In Q versus 
In P data and equation (4.4) will be a minimum for the best fit line. 

Figure 4.1. Plot of In a versus In P show· 
ing transition zone B where grain size and 
indent size are comparable. 
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s' = I [In ai - In a;] 
i=1 

In equation (4.4) ai is the mean of the indent half diagonal sizes. 
From equation (4.3) we can write 

In KL In Pi 
lnai = ---+--

n n 

which is written in a shorter form as 

In ai = A + B In Pi 

Chapter 4 

(4.4) 

(4.5) 

Now s' in equation (4.4) is minimized with respect to A and B by differentiat­
ing and setting equal to zero 

as' 
-=0 
aA 

(4.6) 

and 

as' 
-=0 
aB 

(4.7) 

The solution of the simultaneous equations (4.6) and (4.7) provides 
the best-fit values of -In Kd nand 1/ n. Variances and covariances can also 
be calculated which set the shape and inclination of the confidence ellipses 
drawn in Figure 4.2. Ellipse size is taken to include two standard deviations. 

-LnK L 
A=­n 

Figure4.2. Variance, covariance, and confidence ellipse for an [A], [B] value of equation (4.5). 
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Because A and B are, respectively, -In Kd nand 1/ n, the ellipses can 
be transformed into ellipsoids by plotting n against In KL and when this is 
done a feature of the plots is the wide separation of the ellipsoids for 
different materials, while for anyone material, microstructural variations 
show up as smaller separations. These trends are demonstrated in Figure 
4.3, taken from reference (1), where it can be seen that such plots are useful 
for characterizing unknown samples of ceramics by using the hardness 
indentation technique alone. 

The ellipsoids in Figure 4.3 show the effect of bonding on strength 
because In KL can be taken as a relative measure of absolute hardness and 
lower values are found in the order SiC, Si3N4 , MgO, and LiF. These 
features are discussed under the relevant section dealing with these materials 
in Chapter 6. 

It is particularly noticeable that when indents are made that are approxi­
mately the same size as the grain size in a ceramic such as MgO, then the 
material hardens as the grain size is increased. This is in contrast to the 
trend for metallic systems, from which equation (4.1) was obtained. The 
probable explanation for this weakening effect of the grain boundaries in 
ionic ceramic oxides is the sharp contrast between ionic bond strength and 
grain-boundary cohesive forces compared to the similarity between weak 
metallic bonds and metal grain-boundary forces. Thus in ceramics the yielded 
volume sweeping through several grain boundaries encounters less resist­
ance relative to the situation in metallic systems. 

It is this example, taken from magnesia, and the way it contrasts with 
the general behavior of metallic systems in its ISE properties, that shows 

2.21'1 

-30() -1·0 -0·5 0·5 1·0 1·5 

GM90 (102 11m) 

Figure 4.3. Confidence ellipsoids for some ceramics. The grain size effect is shown for MgO 
where the MgO becomes softer with decreasing grain size, shown in brackets in I'm alongside 
the ellipses. 
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us that microstructural effects must be removed or standardized before using 
a simple comparison of ISE indices to draw conclusions about ceramic 
systems. However, the following general relationships hold for the low-load 
hardness region, as defined in Figure 1.3: 

en<2 the measured hardness will increase as the applied load 
is decreased; 
hardness is constant with load; en=2 

en>2 measured hardness decreases as the load decreases. 

4.1.1. Indentation Size Effect and Surface Layers 

Since 1973 evidence has been accumulating for machining-associated 
plastic flow in ceramics which can result in work-hardened surface layers. 
Such layers decrease in depth with increasing bulk hardness of the ceramic 
and so small loads will be necessary to reveal their presence by the hardness 
technique. Table 4.1 gives early data underlining this effect in rutile and 
Table 6.18 contains K 1C values measured by the hardness method using 
equation (5.48) as a function of depth below the surface by using a range 
of loads with a Vickers indenter in conjunction with a careful polishing 
technique. 

The depth of material removed from a surface is obtained from the 
geometry of a Vickers indent via equation (4.8) 

(4.8) 

In equation (4.8), d is the depth of surface removed by a polishing operation 
and a) and a2 are the Vickers indent impression half diagonals before and 
after polishing the surface. Data in Table 6.10 are very recent and suggest 
that toughness can be four times greater at the surface of sialon after it is 
bombarded with fine-grained Al20 3 particles. 

Table 4.1. Surface Hardening of Rutile Caused by Machining and 
Revealed through the Hardness TechniqueQ 

Knoop hardness (GN m-2 ) 

Treatment of Load Load Load 
{100} surface 0.98 N 1.96 N 4.90N 

Diamond ground 12.66 ± 0.59 9.32 ± 0.39 9.41 ± 0.29 
Sanded (240 SiC grit) 11.38 ± 0.29 8.92 ± 0.20 9.61 ± 0.25 
Gas polished 8.83 ± 0.29 8.83 ± 0.34 8.53 ± 0.20 

a After Becher. (2) 
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It follows from this that there will be a need to consider theoretically 
how a composite effect of surface layer with hardness HI on a substrate 
with hardness H2 will affect the ISE and in particular the exponent n. A 
simple approach is developed later in this chapter. 

Surface alloying can be effected in glasses and ceramics which, if the 
general picture seen for most materials and particularly for metals is fol­
lowed, will result in increases in hardness as solute solid is added to solvent 
solid. However, there is evidence being accumulated even in the field of 
metals that alloying additions can cause softening. The explanation of these 
contrasting effects is a source of controversy and two kinds of explanation 
dominate. In one kind, extrinsic explanations, attempts are made to adhere 
to wholly dislocation-based mechanisms where the scavenging effect of the 
solute are said to alter the number, strength, and distribution of obstacles 
to dislocation movement. In the other kind, intrinsic explanations, the 
phenomenon is related to the intrinsic property of electronic structure, 
changes in which lead to electronic band structure changes which strengthen 
or diminish the filled bonding levels. This represents an alternative to the 
dominant dislocation theories and should be considered further, not least 
for the relatively simple picture that is presented. Because such a range of 
bond types is encountered in ceramics, particularly in the area of special 
ceramics, the intrinsic explanation is developed in the relevant results 
sections where some Vickers and some pendulum hardness results for 
carbides do show a solid solution softening effect, and an electronic bond 
structure explanation seems simple and adequate. In approaches like those 
referred to above hardness is plotted against a function containing a state­
ment of electron orbitals such as equation (4.9) 

(4.9) 

In equation (4.9) C = concentration of the alloying material in mol% and 
t;. V = difference in numbers of outer sand d electrons between solute and 
solvent. 

As Figure 4.4 shows, a hardness minimum occurs at a critical electron 
concentration in those cases where solid solution softening occurs, and 
simple relationships can be developed to predict the softening effect 

(4.10) 

In equation (4.10) 

{} _ CIt;. VI + C2t;. V2 
t - (CI + C2)1/2 
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o 
Figure 4.4. Schematic representation of solid solution softening versus an intrinsic electronic 
effect. After Gypen and Deruyttere. (3) 

b-Hv is the softening decrement and s) is the slope of the line. By using 
the ideas inherent in equations (4.9) and (4.10) one is applying the hardness 
technique to investigate chemical bonding of ceramic systems and the ISE 
to probe the nature of alloyed and enameled surfaces. 

In more recent times, with the use of ion beams to clean the surfaces 
of ceramic substrates, implantation of ions into the surfaces has been brought 
about with consequent changes in the mechanical properties of such sur­
faces, and this can be probed in a nondestructive way by using the ISE 
following the development of a model such as that which follows. 

Ceramics such as silicon and a-A120 3 have been examined in recent 
studies because of their application as semiconductor and substrate 
materials and the fact that ion beam thinning and surface cleaning is often 
used. Ion beams consisting of y+ and N; have been used to change the 
surface properties.(4) In such an operation the sequence shown in Figure 
4.5 occurs as the positive ion content builds up. 

As the scheme in Figure 4.5 shows, contrasting effects are simul­
taneously produced. The induced stress is a biaxial compression which 
obviously works against the "pop-in" of lateral cracks, as described in 
Section 5.2(a), and diminishes the radial crack traces, Section 5.2.1. Both 
these events imply an increased K 1C value for the surface layer. 

Immediately on bombardment, hardness will rise as a result of the 
compressive stress; simultaneously, an amorphous state begins to form and 
grow inwards from the surface. As the amorphous layer begins to predomi­
nate, a decrease in hardness occurs and barreling, Figure 2.8, around the 
indent begins to appear due to material pile-up. The change from hardening 
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Ions (y+, Ni) + Substrate surface 

Amo,eT' la,,, 

la) Decreased hardness (changed IS E ) 

Ib) Increased surface plasticity 

la) K IC changes 

Ib) Fracture pattern around 

indent changes 

Figure 4.5. Sequence of events in ion-bombarded ceramic surfaces. 
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to softening is time dependent and can be affected by solid solution forma­
tion when metal cations are used for bombardment. As already stated, solid 
solution formation can promote hardening or softening depending upon 
the electronic structure of the substrate. Changes in toughness are shown 
in the results in Table 4.2, which were obtained using equation (5.40) to 
determine toughness. Toughness increases and the magnitude of the effect 
increases at lower loads as less of the unaffected substrate is involved in 
the indentation process. Results such as these show that the low-load 
hardness of the ion-implanted material is less than the low-load hardness 
of the conventionally prepared material with the hardness values converging 
at higher loads. Silicon, for example, has a strong ISE with n = 1.7, and 
the presence of a softer surface layer will produce a smaller increase in 
hardness as the load decreases until eventually specimens with thicker 

Table 4.2. Toughness of Silicon and a-A120 3 Before and After 
Ion-Beam Treatmenta 

Material 

Si 
Si (Al+ bombardment) 

Al20 3 

Al20 3 (y+ bombardment) 

a After reference (4). 

1.96 N 

0.744 
0.961 

1.081 
1.451 

4.9N 

0.886 
1.041 

9.81 N 

1.696 
1.530 
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amorphous layers will show a softening in absolute terms. The implication 
is that the amorphous layer will have an ISE with n = 2, which is not 
unreasonable for a highly defective structureless layer with low yield stress. 
How the ISE index, n, varies in such a composite needs further consideration 
because the model of Mathewson(5) of composite layers of 2-mm thickness 
subjected to large loads through a spherical indenter does not provide a 
solution. Burnett and Page(6) have provided an empirical solution based on 
the simple law of mixtures because stress distributions are not known; 
Figure 4.6 shows the model used. 

From Figure 4.6 a simple law of mixture gives 

* __ H_V.:...J,_V--,-I_+_H_v'-"2_V.=:2 Hv -
VI + V2 

(4.11) 

where Ht is the effective hardness. Assuming H v, and H v, are constant, 
equation (4.11) is reasonable. However, as VI and V2 change with layer 
growth or with change in load on the indenter, there will be an obvious 
hardening ISE as VI decreases. 

From equations (4.2) and (1.6) we can write 

(4.12) 
HV2 = ka n '-2 

and, using these expressions in equation (4.11), 

(4.13) 

Equation (4.13) produces the observed experimental effect of Ht rising 
slightly for small indentation diagonal lengths before falling as the indent 
diagonal increases. Better agreement with observed hardness versus film 
thickness curves is achieved when H v, VI is replaced by ka n-2 vii VI + V2 
in order to emphasize the substrate hardness. 

----2a .1 + -''7'77~~77'7'?7':~ m~~77'?'7":'?"7'7 

t 
L_~~~~",,-,,-,~~ 

V1 
.... _--- -' 

I 
/ Hemisphere radially 

/ /--- compressed to produce 
no surface ridge 

Figure 4.6. Model used to determine ISE for an amorphous layer growing on a hard substrate. 
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a ~ 

0' 

Figure 4.7. (a) The two-dimensional bubble raft model of the indentation process. 
(b)Theamorphous layer disrupted and sticking to the indenter face. Taken from reference (7). 
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Assuming in the case of ion-bombarded silicon that n = 2, and for the 
substrate H = 13 GPa, and n' = 1.7, good agreement with the experimental 
curves is obtained if the hardness of the amorphous layer is taken to be 
5.89 GPa. This is an interesting application of the indentation size effect 
that will stand further development since it provides information on very 
thin surface layers on semiconductor materials. However, there may be 
adhesion problems as a fascinating model of the indentation process using 
bubble rafts shows. This model appeared in Nature,(7) and not only does 
it provide a moving picture of the indentation process but it shows that 
when a crystalline substrate is coated with a softer amorphous layer, 
adhesion of the layer to the indenter and its subsequent rupture may be a 
problem. Using soap solution and capillaries to blow bubbles, a two­
dimensional model of a crystalline indenter and substrate can be made in 
which the indenter face angle can be varied. When using a 60/40 ratio of 
the two capillaries, an amorphous layer can be produced on the substrate 
surface, as in Figure 4.7(a). Slowly moving the indenter into the substrate 
raft causes considerable plastic flow in the amorphous layer, but the substrate 
does not visibly yield until only a very small thickness of amorphous material 
lies under the tip of the indenter. It was noted that however deep the 
indentation was, the amorphous layer was never penetrated. On removal 
of the indenter raft the indenter tip has an adherent layer of the amorphous 
material, as shown in Figure 4.7(b). This is a significant demonstration. 

Table 4.3. ISE Index Values for Knoop Hardness Measurements on 
Single Crystals 

Temperature 
Crystal Plane Direction (0C) n 

Si (111) [110] 25 1.54 
100 1.73 
200 1.80 
300 1.82 
400 1.83 

MgO (001) [100] 25 1.85 
[110] 25 1.87 

(110) [001] 25 1.96 
[110] 25 1.92 
[111] 25 1.81 

Diamond (001) [110] 25 1.61 
[110] 25 1.49 

(1010) [1210] 25 1.69 
(0001) [1010] 25 1.80 
(1120) [0001] 25 1.88 
(1100) [0001] 25 1.87 
(1100) [1120] 25 1.72 
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Several experiments with this bubble model confirmed the fact that the 
constraint factor, described in Section 1.4.1.1, is dependent on the angle at 
the indenter tip. By measuring the force transmitted to the frame at the 
bottom of the substrate raft, the tensile stress generated on indenter removal, 
and the rate at which these stresses decayed, were monitored and were 
shown to follow the theoretical paths calculated for the indentation process 
in Section 5.2. 

4.1.2. Indentation Size Effect and Temperature and Orientation 

In the case of ceramic materials, because they are generally hard, when 
single crystals are investigated with a Knoop indenter which, because of 
its shallow penetration, emphasizes the effects in the near surface layers 
and therefore may be reflecting the points made below, it is possible to 
discern a temperature and an orientation effect on the ISE. From the limited 
amount of data available a summary is made in Table 4.3. It appears that 
increasing the temperature raises the n index closer to the expected value 
of 2 while indenter orientation reveals the harder directions. 

4.2. SURFACE ENVIRONMENT, CRACK-TIP 
CHEMISTRY, AND HARDNESS 

Every ceramic has a "space-charge" region in the vicinity of the surface 
caused by the existence of surface defects. When the ceramic has ionic 
bonds, vacancies and interstitials are charged: The effective charge of a 
vacancy is opposite to that of the lattice ion in whose sublattice it is formed. 
For charge neutralization in the bulk, defects of opposite charge occur in 
compensating concentration. For example, MgO has as intrinsic defects 
equal numbers of cation and anion vacancies: that is Schottky defects. At 
a surface there is no such constraint because an excess of one type of 
vacancy may occur, producing a surface charge, while an excess of the 
opposite vacancy in the immediate subsurface layers maintains bulk 
behavior with respect to neutrality. That is, the surface is a dipolar space­
charge region. This dipole produces an electrostatic potential in the bulk 
able to equalize the difference in vacancy formation energy for cations and 
anions sufficiently to ensure overall charge neutrality. It also produces a 
potential at the surface that can influence the energy required to move a 
dislocation, which itself has regions of charge imbalance, and in this way 
affect the apparent hardness. It is not a large step now to see that surface 
environment in terms of liquids, solutions, or gases can then affect the value 
of the surface potential and with it the hardness of the ceramic as measured 
by the methods discussed so far. Studies in this area rarely measure the 
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surface potential, but instead a related potential known as the zeta potential 
which is the potential at the slipping plane in a liquid double layer covering 
the solid. (8) 

Added to a consideration of how surface chemistry affects dislocation 
energy, which is discussed below, must be questions concerning the 
processes occurring at the moment when mechanical treatment of solids 
causes flow or cracking. The process of bond breaking or decomposition 
of ceramics and inorganic compounds is a sequence of excitation processes 
summarized by the following three stages: 

Ceramic bonds + energy ~ excited states 
(transform) 

----) excited state products 
~ 

relaxation of the excited states 

This model can be expressed as equation (4.14) 

k k 
A~A*~B 

k2 
(4.14) 

From equation (4.14) the rate can be written as 

(4.15) 

Two cases can be discerned. First, when k2« k3, equation (4.15) becomes 

(4.16) 

Second, when k3« k2' equation (4.15) becomes 

(4.17) 

Equation (4.16) corresponds to limitation of the decomposition by the 
excitation step, while equation (4.17) corresponds to limitation by transfor­
mations in the excited state. Thermal decomposition is an example of the 
first case while photolysis is an example of the second. 
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Mechanochemical decomposition, which is of interest in the indenta­
tion or comminution of a surface in a chemical environment-i.e., the 
process of hardness determination-occurs via excitation of vibrational 
levels like thermal decomposition but, unlike what happens in thermolysis, 
during mechanolysis high-energy phonon states are excited first, as is not 
possible by thermal excitation alone. However, since the rate is limited by 
transformations in the excited state, the mechanochemical stability decreases 
with increasing cation radius because its probability depends on the free 
volume. Thus physical situations where better conditions exist for the 
removal of fragments produced by bond rupture, so that fractured bonds 
cannot recombine, lead to lower hardness; and in a series of similar ceramics 
the mechanochemical stability decreases as the molecular volume of the 
components increases, and hardness will be more influenced by atmosphere 
effects. According to the theoretical hardness equation, equation (1.46), the 
hardness itself is inversely proportional to the molar volume, indicating 
that softer ceramics are more susceptible to mechanochemical effects than 
hard ones. Vibration mill, rotating mill, and shock wave experiments, as 
well as environmentally sensitive hardness tests, show that mechanochemical 
stability coincides with the second above, in which k3« k2 • Thus the 
following broad generalizations apply: Predictions based on thermal equili­
brium data may be of little use, the hardness of some ceramics may be 
affected by high-energy photons, such as those provided by light, and the 
mechanochemical effect will be more marked for softer ceramics containing 
larger-sized atoms. 

Hardness determinations are often associated with crack production, 
and certainly when ceramic toughness is to be determined by the hardness 
technique cracks must be generated, so processes occurring at the moment 
of fracture of a solid at a crack tip are of interest. In brittle solids crack-tip 
velocity in the range of 1-3 km S-1 is common and therefore very high energy 
is involved along with excited states of very short life. This inevitably leads 
to nonequilibrium chemical consequences which will also be unpredictable 
from thermal equilibrium data. For example, thermolysis of nitrates pro­
duces oxygen through the activity of low-energy photons, while oxides of 
nitrogen are produced as cracks are made to propagate under an indenter 
on single-crystal nitrate samples; such a mode of decomposition requires 
higher-energy photons which must therefore be available at crack-tip 
energies. 

Summarizing the above, it can be said that there are three ways the 
environment can be important in determining the observed hardness of a 
ceramic: first, through zeta potential, and hence surface potential control, 
by adsorption and chemisorption and hence affecting the energy required 
for slip through dislocation movement. This will be most obvious with ionic 
ceramics. Second, through mechanochemical processes as the combined 
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effect of stress and environment work to cause bond rupture leading to 
shear. The covalent ceramics may be more susceptible to this effect especially 
if high-energy photons are also available. Third, through crack propagation 
and changes in the growth rate of cracks during and after testing. 

From an early stage in these studies a fourth, purely physical effect 
was also considered, namely, the change in friction coefficient caused by 
chemical lubrication between an indenter face and the surface as it is 
penetrated. Brookes and Atkins(9) showed in 1964 that the coefficient of 
friction #L can be altered by adsorption and that such a change could then 
alter the distribution of stress around an indenter. In this way many of the 
observed environmental effects on hardness could be explained. A gradual 
build-up of results from hardness, drilling, and wear experiments involving 
glasses and ceramics show, however, that friction may playa part, but only 
a part, with the first of the above processes providing the most comprehensive 
and predictive interpretation. 

Some of the earliest data shown in Table 4.4 clearly demonstrate the 
softening effect of water. A consideration of results such as those in Table 
4.4 led at an early stage of this work to two important conclusions: One 
was that dislocation motion in nonmetals is more obviously affected by 
electronic and strain interactions with point defects than by Peierls resist­
ance. Chemisorption causes energy-band bending in the surface region, and 
this can alter the electronic core structure of dislocations or the state of 
ionization of point defects or both. The other was that direct comparisons 
of hardness values from one study to another should not be made unless 
specimen preparation, history, and measurement technique and conditions 
are known. 

The two conclusions stated above have received little contradiction, 
only more detailed consideration, in the past 15 years. 

Table 4.4. Knoop Hardness of Some Ceramics When Wet and Drya 

Hardness (GN m-z) 

Wet Dry 
Ceramic A Faceh B Face A+ B Faces 

BeO 11.9 10.8 13.7 
SiC 30.4 27.8 36.5 
Ge 5.89 7.45 
Si 8.14 11.0 
Alz0 3 24.0 26.5 
SiOz quartz 11.5 10.1 12.2 
Silica fused 5.39 7.11 

a After Hanneman and Westbrook.(IO) 

b An A face terminates in the electropositive element; a B face terminates in the electronegative 
element: This is the hardness polarity effect encountered in Section 3.5 and shown in Figure 3.10. 
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For example, the way the hardness of a ZnO surface changes with 
surface potential has been examined by Westwood's group, who have been 
foremost in developing applications of the mechanochemical effects to the 
technology of drilling and cutting hard ceramicsY I) Zinc oxide was chosen 
as a model material because the relationships between surface potential 
and the near-surface electronic band structure are known-see Figure 4.8 
taken from Westwood's work, and the ZnO crystal can be made into a 
working electrode in an electrolytic cell. 

As the bias potential at a ZnO (1010) or (0001) surface was made to 
change from positive to negative, the hardness reached a maximum when 
the surface potential was slightly positive and not zero as the usual zeta­
potential measurements lead one to expect. This effect is shown as Figure 
4.9. From such a carefully controlled experiment it is possible to discern a 
more direct effect of chemical environment on observed hardness because 
Bv can be measured at the potential of maximum hardness while varying 
the solution pH in the range 8.5 to 12. It is then just possible to detect a 
maximum hardness at pH 9.5 which is the pH at the minimum dissolution 
rate of ZnO. The effect of strain energy around the hardness indentation 
on chemical dissolution will be a minimum at pH 9.5, and so there will be 
a smaller etching of the indent compared to say pH 8.5, which reflects as 
a measured increased hardness at pH 9.5 because the indentation diagonal 
will be smallest. However, this effect is only a small effect, hard to measure 
within normal experimental variation, compared to the surface charge effect, 
which produces a 12-15% increase in hardness. 

Because the energy levels of semiconducting ZnO are known and the 
applied potentials also known, it was possible to see that the valence band 
and dislocation band in Figure 4.8 were not able to interact to change 
electron densities at applied voltages near the flat band level. However, the 
applied voltages could make it possible for the donor band, formed from 
interstitial Zn atoms, and the conduction band at negative applied potential 
to make electron transfers, and so a hardening mechanism for this material 
has been suggested based on charge exchange and dislocation disruption 
of the band system: First, one assumes a dislocation, by virtue of one or 
more mechanisms--e.g., because it is surrounded by a cloud of conduction 
electrons or interstitial zinc ions-distorts the conduction band in an upward 
direction. For flat band conditions when the dislocation moves, it is 
necessary only to move the band distortion in the conduction band and 
relatively unimpeded movement would be possible. Under the influence of 
positive surface charge, when the bands bend downwards as shown in 
Figure 4.8, the donor band cuts the Fermi level and some Zn + interstitials 
are neutralized. Now to move the dislocation, not only must the conduction 
band's upward distortion be carried, but electrons from the now-neutral 
donors must be excited through the gap to the conduction level to allow 
ionized Zn atoms to remain as the dislocation environment. Such transfers 
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-200 o 200 

Bias voltage 

Figure 4.9. Vickers hardness of ZnO (0001) surface as a function of surface charge. Mter 
Westwood et al.ol) 

require 50 MeV per donor; as a result dislocation movement is hindered 
and so hardness increases. Further downward bending of the bands produces 
a deeper neutralized layer of Zn + to Zn from Fermi band interaction, until 
all interstitial zinc is atomic. This includes the dislocation environment, and 
so movement of the dislocation is back to just moving the upward kink in 
the conduction band with it. Hence a softening is perceived. If the energy 
bands are bent upwards a similar argument applies except that the Zn + 

ions in the atmosphere of the dislocation are neutralized as the dislocation 
band intersects the Fermi band. 

In this way the chemical effects at the surface that produce variations 
in energy band bending will produce a maximum in hardness. 

These theories will be quite applicable to all forms of hardness determi­
nation and hardness related properties since dislocation movement is impor­
tant in them all; see for example Section 2.3, where the mechanisms of 
energy absorption under a pendulum hardness diamond as it cuts into a 
ceramic surface are discussed. 

There is not much to offer at present as an alternative approach to the 
above in explaining mechanicochemical effects and environment-sensitive 
hardness, but one attempt is emerging(I2) where the zero of zeta potential 
is associated with a minimum concentration of charged species in the liquid 
at the surface as ions aggregate to form neutral species, leading to a greater 
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concentration of free hydrogen ions. It is then suggested that H+ interaction 
with surfaces and cracks allows hydrogen to diffuse into the near surface 
region and change its mechanical properties. 

A general conclusion has been reached that drilling rate is a maximum, 
wear rate a minimum, and hardness a maximum in any environment at a 
pH that produces a zeta potential equal to zero. Thus the isoelectronic point 
is important however it is achieved; Figure 4.10 is a visual demonstration 
of this viewpoint taken from the work of Swain et alY3) Chemisorbed or 
weakly physisorbed species lead to differing effects; for example, weakly 
absorbed lauric acid does not shift the zeta potential from pH = 9.0 (fixed 
by strongly adsorbed OH- and H+ that between them determine the surface 
potential) while oleic acid is strongly chemisorbed and so the isoelectronic 
point moves to pH 7.5 and drilling rates and hardness are consequently 
affected. 

From this we can see an application for Knoop or pendulum hardness 
in the practical field of cutting and drilling because they can be used as 
comparative test methods to examine surface additives. Indentation tests 
have to be conducted over time periods that are long compared to changes 
in drilling contact times, as discussed in Section 2.1.2.1. 

It should be noted here that although two seconds seems a short time 
in terms of an indentation experiment, it is an extremely long time in terms 

5 7 9 11 13 

pH 

Figure 4.10. Knoop hardness of A120 3 as a function of pH. Load = 0.98 N, t = 1000 s, long 
axis along (1210) on {0001} planes. 
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of what is happening during erosion, drilling, wear, and crack propagation. 
Does this mean that these properties are insensitive to environment? Clearly 
the answer is no, because many experiments show them to be otherwise, 
but rather indentations made at times less than two seconds relax sig­
nificantly because extended dislocations have not had time to be effectively 
pinned by mobile defects. This results in consistently high hardness as 
measured by the diagonal length. Chemical effects do occur in the short 
times available in crack-tip extension, etc., as we have already indicated. 

It is not so easy to produce visual and numerical evidence for the 
mechanism of bond rupture, but chemical etching after indentation on 
ceramics like SiC can be used to provide some evidence. Chapter 3 explains 
how dislocation etch-pitting techniques have been used in conjunction with 
hardness tests to study dislocation distributions around indentations and 
to obtain information on slip plane identities and dislocation mobilities. 
The technique is useful in softer materials where the etch-pit rosettes are 
apparent some distance from the indent, but it is almost impossible to use 
with harder materials such as NbC, SiC, and other such covalent ceramics, 
because plastic deformation is highly localized beneath the indent and 
cannot be found by etching techniques. However, since the indent area has 
stored strain energy-see Section 5.2-it will itself change shape on etching 
in a way interpretable on the resolved shear stress model given in Section 
3.6.1. The curve for Knoop hardness of single-crystal SiC on the (0001) 
plane shown as Figure 6.3 can be interpreted from the ERSS model as a 
single slip system of the {h 0 h 1}(1120) type. Adewoye and Page(14) made 
normal shaped Knoop indents with the long axis along [1120] and [1100] 
directions which puts the short axis along [1100] and [1120], respectively, 
and gave the aspect ratio 1[1120]//[1100] differences of 10.75 and 0.10. 
After etching at 400°C in molten Na202, the indents became either regular 
or elongated hexagons with aspect ratios 1.0 and 1.71, respectively. As the 
etching proceeds, material is removed parallel to the surface, and the indents 
would be expected to become steadily smaller, but due to the stored plastic 
energy around the indentation acting with the etch ant, material is removed 
preferentially, resulting in indent shape change. Thus etching examines the 
stored energy as a function of anisotropy, and conversely this visual evidence 
shows the interaction of environment and stress that might influence 
observed hardness values. 

In the example under discussion, because slip is controlled by flow in 
defined crystal planes as in Section 3.5, the new shape is quite crystallo­
graphic, and is related to the original indent, producing the quoted changes 
in aspect ratio. When the long axis was parallel to [1120], preferential flow 
occurred in the long-axis direction, and so those members of the slip system 
family containing this direction had been most active, producing the lozenge­
shaped indent after etching because most stress was stored in the slip 



140 Chapter 4 

directions. When the long axis was along [1100], all (1120) were equally 
active, so equal amounts of stored strain reacted during etching and pro­
duced the regular hexagonal shape of the indent. 

The effect of applied stress on crack tip propagation-that is, on crack 
tip chemistry-is so important in the area of fracture toughness determina­
tions from hardness that a whole section, Section 5.11, is devoted to this 
and so the discussion is not repeated here. 

4.3. ENVIRONMENTAL-TIME EFFECTS ON HARDNESS 

The results shown in Figure 4.10 give a clear indication of the soften­
ing/hardening effect promoted by chemical environments changing the pH 
at the ceramic surface, but it should be emphasized that if the hardness is 
determined after a two-second indentation period it appears to be indepen­
dent of chemicomechanical effects, so that the material appears to be harder; 
all values in the pH range 5-12 give a mean hardness for alumina of 
23.5 GN m -2 if indentation is for only two seconds. This highlights the fact 
that there is a time dependency for ceramic hardness and the elastic solution 
to models for the indentation process such as equation (4.18), which should 
be compared to equation (3.3), represent a time-independent minimum 
which a solid approaches when the yield stress is very small. 

H = _2_ta_n-,-f3_· G_ 
x A ( 4.18) 

In equation (4.18), G is the shear modulus, f3 is the angle between the 
indenter face and the surface, " in equation (3.3) is taken to be 0.5, and A 
is a dimensionless hardening constant. 

For most ceramics, the yield stress is not small, the indentation process 
is controlled by the dynamic process of the growth of a plastic zone around 
the indent, and the hardness will obviously be time dependent. In the context 
of this chapter the time dependency will be markedly influenced by 
mechanicochemical effects on the dynamic processes which involve bond 
rupture. 

With hardness tests conducted in a vacuum on the known covalent 
ceramics, the hardness is not obviously time dependent unless extremely 
long times of indentation are used. Under normal atmospheric conditions, 
and particularly when surface chemical reagents are added, it appears that 
the time dependency becomes more apparent with short time; tests lasting 
less than three seconds produce hardness figures of high value and with no 
apparent environmental effect. The environmental effect occurs in the range 
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3-1000 s when lower hardness values that show a marked pH dependency 
are obtained. 

Another way to achieve the strongly time-dependent hardness range, 
preceding the achievement ofthe constant time independent minimum value 
of hardness predicted by equation (4.18), is to make hardness tests at 
elevated temperatures. As the test temperature increases above !Tm , where 
Tm is the melting point of the sample, the hardness rapidly decreases and 
becomes time dependent until a temperature is reached where the dislocation 
mobility becomes high, the yield strength becomes very low, and hardness 
approaches the constant, time-independent value. It may not be easy with 
some ceramics to achieve the constant hardness zone because elevated 
temperature may permit diffusional creep, when once again the hardness 
will become obviously time dependent, and hardness values lower than that 
predicted by equation (4.18) will be achieved. 

In some systems, increasing the "dwell time"-that is, the time over 
which the full load is applied to the surface-results in an increase in the 
size of the indentation and hence an apparent reduction in the hardness of 
the material. This effect is called indentation creep. 

There are three types of indentation creep: 

Conventional creep. This type is observed for all crystalline materials 
when the temperature of the sample is raised above O.4Tm, where Tm is the 
melting point of the material. As the temperature increases, this form of 
creep increases, and hardness values become very sensitive to dwell time 
as equation (4.19) suggests 

1 1 ( -E) - - - = A exp -- [t 1/3 - t 1/3 ] 
H3 H3 3RT 0 

x Xo 

( 4.19) 

In equation (4.19), Hx and Hxo are the hardness values at times t and to, 
respectively; T is the absolute temperature, E is the activation energy of 
the creep process, and R is the gas constant. Linear plots of In(aH)-3 
against 1/ T at constant at l/3 have a slope from which the activation energy 
for the process can be determined. When this is done for this type of creep, 
the activation energy is frequently found to be in close agreement with that 
obtained from conventional creep and self-diffusion measurements; for 
example, that for MgO is 460 kJ mol-\ for SiC 527 kJ mol-\ and for 
WC 460 kJ mol-\ which strongly suggests that this type of indentation creep 
is controlled by a mechanism of lattice vacancy diffusion. 

Anomalous indentation creep. This has been observed at room tem­
perature in ceramic materials when light loads are used. It is called 
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anomalous indentation creep because the apparent softening on increasing 
the dwell time becomes less apparent at higher temperatures. 

Low temperature creep. By low temperature one is referring to tem­
peratures up to 0.4Tm and so we are really talking about low homologous 
temperatures because, in an absolute sense, 0.3 Tm could be quite a high 
absolute temperature for some ceramic systems. Surprisingly high rates of 
creep are observed for such low homologous temperatures as Figures 4.11 
and 6.8 show; it is clear from Figure 4.11 that the effect is anisotropic. So 
far it has not been possible to anticipate this behavior on the basis of the 
models that relate to conventional creep mechanisms. 

When the time-independent hardness range is achieved, either through 
environmental effects or by temperature increase, hardness is related directly 
to shear modulus as analysis in Section 3.4 shows, supported by the results 
shown in Figure 4.12. 

The main purpose of this section has been to emphasize the fact 
that, in ceramic systems, if it is desired that the hardness technique is to be 
used as a probe of surface environment effects, then hardness determina­
tions should extend over a suitably long period, which may be in the region 
of 15 minutes. Furthermore, for the use of hardness data in wear and 
erosion predictions, as in Section 5.7.2, it is critical that effective hardness 
values relevant to the contact conditions of environment, temperature, and 
size be used, rather than typical listed values obtained under arbitrary 
conditions. 
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Figure 4.11. Anisotropic rates of indentation creep in magnesia. Mter Brookes.oS) 
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Figure 4.12. Time-independent Vickers hardness obtained at T>! Tm for some covalent 
ceramics plotted against shear modulus. The straight line shows the predicted values using 
equatioQ (4.18) with A = 200. After Gerk.<'6) 
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Chapter 5 

Cracked Indents-Friend or Foe? 
Their Use in Toughness and Brittleness 
Characterization 

5.1. INTRODUCTION 

Inevitably ceramics will become more widely used as they are made 
tougher through the application of developments in the following areas: 

1. Achievement of zero porosity and maximum densities from the use 
of better characterized starting powders and improved sintering 
techniques. (I) 

2. Utilization of the transformation toughening process available via 
zirconia. Such processes may involve any or all of the following 
four mechanisms: 
a. Microcrack generation around transformed particles. 
b. Stress-induced compression zones. 
c. Compressive surface layer formation. 
d. Agglomerate toughening. 
Discussion of these phenomena can be found in several sources. (2,3) 

3. Development of duplex structure ceramics. 
4. Manufacture of composites containing large volumes of fibrous or 

whisker ceramic materials. 

A natural consequence of such progress will be the need to measure 
fracture toughness of ceramic materials more frequently in the routine 
characterization of products. Herein lies a major outlet for the technique 
of hardness indentation within the field of ceramic technology. The con­
venience of the micro hardness indentation method has already been 
stressed, involving as it does the use of robust conventional equipment 
acting on only a small area of polished surface of a sample from which 
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many data points can be obtained. Now, if a load is chosen that causes 
cracks to occur around the indentation shape, a new microscopic method 
of studying toughness becomes available that does not in fact destroy the 
test specimen in the way that macroscopic fracture toughness tests do. In 
Figure 1.1, this aspect of development is shown as phase four arising from 
studies of the effects of changes in applied load on hardness. 

This is an intriguing development because so far cracked indents have 
been seen to be a problem which must be avoided in precise hardness 
determinations, not because the energy used to propagate cracks is sig­
nificant compared to the energy used to produce the plastic yield in the 
volume of the indent and beyond, but because cracks profoundly alter the 
stress state in surface and subsurface regions. Perhaps the most important 
reason why cracks are considered to be unfortunate in ceramic studies is 
that substantial surface disruption makes it impossible in many cases to 
define and measure the indent diagonals. In this chapter, however, we see 
a requirement for cracks around the indented area. 

In general, for ceramic systems a load is easily found that generates a 
crack pattern around the indentation trace; see, for example, Figure 5.1. It 
was Palmqvist working with special refractory hard metal carbides and a 
Vickers diamond pyramid indenter in the period 1957-63(4) who particularly 
noted these cracks and did an empirical analysis which established the 
property of hardness as an important parameter in their formation. However, 
no great interest was aroused by them, but rather loads were recommended 
that avoided crack production, until several workers including Evans, Lawn, 
and Hagan from about 1972 began to analyze the crack formation in some 
detail. The work so far has culminated in relating crack dimensions, crack 
pattern, the load, and the toughness parameter K)c to each other by 

Fig. 5.1. Cracks developed around a Vickers indent on a scandium silicide ceramic showing 
median and lateral vent cracks. The lateral crack shows a marked anisotropy arising from the 
structure. 
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analyzing the sequence of operations occurring during an indentation load­
ing and unloading cycle. The major outcome of this analytical approach 
has been a series of semi-empirical calculations dependent on data-curve 
fitting exercises. Four material and experimental parameters are related in 
all such work: hardness, Young's modulus, crack size on the surface of the 
sample, and toughness (through K 1c ). 

As experience grows in the use of the method it is becoming more 
apparent that sample microstructure plays a major role in influencing 
toughness values obtained this way. For example, the indentation fracture 
technique cannot be used to find intrinsic toughness values when the crack 
runs between grains rather than by intragranular paths. Thus toughness 
values found by the microhardness indentation method should not be quoted 
without a clear statement of crack shape, crack path, and the general 
microstructural features of the sample. These characteristics, together with 
a clear statement of which of the several semi-empirical equations (see 
Section 5.4) are used in the calculation, should always be considered. 

Results obtained with different-shaped indenters cannot be compared 
directly; the curves relating hardness and crack length for each indenter 
shape are unique. 

5.2. CRACK TYPES AND CRACK FORMATION 

It is necessary to make a distinction based on the shape of the indenter 
used to produce the cracks because the position and pattern of cracks are 
dominated by surface flaws for blunt indenters, while such flaws are not so 
important when sharp indenters are used. Therefore to study crack gener­
ation and subsequent propagation in ceramic systems and not the distribu­
tion and behavior of pre-existing flaws, work is best restricted to sharp 
indenters of the Vickers or Knoop type. Conversely, blunt indenters such 
as the Brinell ball give some indication of flaw distribution on surfaces. 

5.2.1. Sharp Indenters 

5.2. 1.1. Median Crack 

This is a penny-shaped crack (see Figure 5.2) formed beneath the 
surface when the indenter is overloaded. Median cracks form directly below 
the apex of the indenter in an area below the heavily deformed region. 
Glasses and ceramics are classically brittle, and surprisingly low critical 
loads will form this type of crack; for example, for a typical glass estimates 
given below show this to be in the order of 0.2 N when a Vickers diamond 
is used. 
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Figure 5.2. (a) Normal form of median crack with P < critical load needed to cause "pop-in" 
and P still applied. (b) After unloading, residual tensile stress causes "pop-in" and development 
of radial crack as well as development of shallow lateral cracks on planes parallel to specimen 
surface. (c) Plan view of indented surface after indentation cracking. (d) Palmqvist crack 
formed before the median "pops in" as radial. 

The component of the stress field characterized by one approach, that 
in Section 1.4.1.1, responsible for generating median cracks is U yy and can 
be estimated using equation (1.29) and relevant equations from (1.19) to 
(1.27). Such calculations show that peak values of tension are appreciably 
smaller than tangential tensile stress on the surface. The peak load stresses 
are smaller than the residual stresses when the load is removed; thus, 
medians are generated on loading once the critical load has been reached 
or on occasions when a just subcritical load is removed. The peak tension 
is at the boundary of the elastic-plastic zones. These features are shown in 
Figure 1.5. 

5.2.1.la. Nucleation of medians. Figure 5.2(a) shows the median crack 
as being nucleated in the interface between plastically deformed material 
and material which is just elastically strained. Despite there being clear 
visual evidence for this situation (see Figure 5.3), only limited attention has 
been given to understanding or modeling the initiation stage. This is unsatis­
factory as far as the ceramics industry is concerned because all subsequent 
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Figure 5.3. Median crack in transparent ceramic. After Lawn.{S) 

erosion and degradation stem from the initial formation of the median crack 
on surface impaction. The following interesting and useful analysis of the 
nucleation stage of median crack formation is taken directly from the model 
developed by Lawn et al.(5.13) Figure 5.4 gives the characteristic dimensions 
and stress distribution used to develop the model. 

A sharp indenter of the Vickers type at load P produces a plastic 
impression with characteristic surface dimensions 2a given by equation 
(1.6), repeated as equation (5.1) in the form that has load in kilograms 

(5.1) 

It is assumed that the resulting deformation produces the simple linear 
tensile stress field shown in Figure 5.4(a). Since the hardness of the material 
determines the dimension a, it can be seen that the maximum tensile stress 
developed is related to hardness, and Urn in Figure 5.4(a) can be written 
as Urn oc H v, i.e., Urn is constant since hardness is a material property. 
Thus 

(5.2) 

where (J is a constant. 
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Figure S.4. (a) The simplified stress profile assumed to be developed below the apex of the 
sharp indenter. (b) Median crack, half length c', nucleated at region of maximum stress on 
boundary between plastic deformation and normal, elastically strained material. 

The volume over which the stress field acts is indicated in Figure 5.4 
by the dimension b which must depend on the volume of material moved 
plastically as determined by the contact dimension a. Thus b = <pa where 
<p is another proportionality constant. 

From equation (5.1), a is related to the material property of hardness, 
from which 

( 
2) 1/2 

b = 2<PH pl/2 (5.3) 

The stress field in the material below the surface can now be considered 
to be searching for a critical flaw, and the increased load needed to intensify 
the field to a level such that a penny-shaped flaw is developed can be 
examined. 

By assuming a flaw shape, the stress intensity factor for loading it 
axially can be written as equation (5.4) 

2 Ie rurdr 
K = (7TC)I/2 0 (c 2 _ r2)1/2 

(5.4) 

The simply defined stress field is now useful because the function U r 

in equation (5.4) can be inserted from Figure 5.4(a) 

when r = b 

U r = 0 when r:::; b 
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These two conditions give two solutions from equation (5.4), when 
half crack length c is greater or equal to the region under the influence of 
the tensile stress b, 

When the crack lies wholly in the tensile stress c ~ b 

For equilibrium under Griffith conditions K = Kc and, using equations 
(5.2) and (5.3) to eliminate the difficult-to-determine terms U m and b, it is 
possible to obtain two relationships concerned with crack extension for the 
two sizes of crack defined above. 

Equation (5.5) is for the crack contained within the stressed volume. When 
the crack is longer than the stressed zone a second equation is obtained: 

(5.6) 

As they stand these two equations are cumbersome and do not readily show 
a relationship between crack length and applied load. It has been possible 
to overcome this deficiency by making one substitution, equation (5.7), 
based on the relation of hardness, toughness, and crack length, and one, 
equation (5.8), based on the relation of hardness, toughness, and load: 

(5.7) 

(5.8) 
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Making these substitutions gives (5.5) and (5.6) in reduced forms: 

1 = Cl/2 1-- 1-- -- -- sin-I .--[ 1 ( P)1/2 1 ( c ) (P I/2)] 
2 c2 2 pI/2 C 

(5.9) 

and 

l=c 1---1/2( 7TC ) 
4pl/2 

(5.10) 

It is possible to plot out the reduced flaw size function C and P through 
equations (5.9) and (5.10) to obtain an equilibrium curve; Lawn and Swain(S) 
have done this, and Figure 5.5 is taken from their work. The notable feature 
of such a curve is the minimum at P = 28.11 and c = 2.25 and its usefulness 
is in visualizing the process of median crack nucleation and subsequent 
extension. For example, if all flaws are very small so that C ::5 unity, the 
asymptote in Figure 5.5, it is impossible for any line of constant reduced 
flaw size, C, to intersect the equilibrium curve-this is region I-hence the 
flaw can never expand. The hardness value is here controlling the stress 

p 

p. 

10 
c· 

o 

Figure 5.5. Equilibrium curve P versus C used to discuss the nucleation stage of median cracks. 
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distribution over the flaw length and preventing a load being achieved that 
causes the critical stress intensity factor to be achieved. 

Flaws with reduced sizes corresponding to region II in Figure 5.5 
behave such that a critical load will be achieved and spontaneously there 
is development of the median crack because intersection at increasing load 
is on the negative-slope branch of the equilibrium curve. For the large flaws, 
region III in Figure 5.5, increasing load for a given reduced flaw size leads 
to a critical reduced load that cuts the equilibrium curve on the side of 
positive slope, and stable growth occurs at increasingly reduced load, P. 

This approach emphasizes the variability of nucleation being dependent 
upon the distribution of both flaw sizes and the flaw positions. 

The approach does further highlight the fact that, because of the 
minimum shown in Figure 5.5, no flaw can extend at all to initiate the 
median crack unless a critical load p* is exceeded. It is now possible to 
estimate critical loads sufficient to cause the formation of median cracks in 
brittle solids. This is done by using equations (5.7) and (5.8) and the 
minimum point at (2.25, 28.11) on the equilibrium curve. 

C .. I I d * 34.67 K! nttca oa P = ----
cf/(}4 Ht 

C . . fl . * 1.767 K2 ntlcal aw SIze c = -2 -2 c 
(} Hy 

(5.11) 

(5.12) 

Using equations (5.11) and (5.12) with cfJ = 1 and (} = 0.2 with hardness 
and toughness values from the relevant chapters in this text gives the values 
in Table 5.1. The interesting feature of Table 5.1 is the surprisingly small 
loads required to produce median cracks within ceramics when an impinging 
object has a sharp profile like that of a Vickers diamond. The model used 

Table 5.1. Critical Loads Needed to 
Nucleate Subsurface Median 
Cracks in Some Ceramics 

Material P* (N)" C* (JLm)b 

Si 0.003 0.2 
Si02 (silica) 0.02 0.6 
MgO 0.06 0.8 
SiC 0.8 2 
Al20 3 3 5 
Si3N4 3 4 
WC-Co 96 22 

"From equation (5.11). 
bFrom equation (5.12). 
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is a simple one, but more realistic stress distribution function would alter 
the estimate of p* and C* only by an order of magnitude. Using the stress 
distribution obtained from equations (1.17) to (1.27), the threshold loads 
and crack lengths for several ceramics are given in Table 5.2 for the three 
principle crack systems. 

Equations (5.11) and (5.12) show us that to build in resistance to flaw 
generation in ceramic systems Hv must be decreased while increasing Kc. 
However, once a sample is flawed, the intrinsic toughness parameter alone 
is important. 

5.2. I. lb. Median growth. Once nucleated in the interface region 
between plastically and elastically deformed material, in the way discussed 
above, the median crack extends downwards. In terms of the three principal 
normal stresses downward is 0"33 in Figure 5.6 and is compressive 
everywhere. The crack maintains orthogonality with O"ll, which is 
everywhere tensile, and 0"22, which is a hoop stress, and is tensile in a cone 
of about 1040 from the indenter and compressive between the surface and 
the 520 cone contour. Thus the crack will also expand outward in the O"ll 

direction as it remains orthogonal to the 0"22 tensile stress. It is this orthogon­
ality that develops the median crack into the enclosed full-penny configur­
ation of Figure 5.2. 

Table 5.2. Critical Loads for Generation of the Critical Sized Cracks on 
Radial, Median, and Lateral Systems 

Prediction Observed 

Crack p" C .. p* C* 
Material type (N) (~m) (N) (~m) 

Soda-lime-silica Radial 0.4 
glass Median 0.6 1.1 5.0 17 

(3 = 2.2a Lateral 2.0 3 
Ge (crystal) Median 0.014 0.16 0.02 0.25 
{3 = 2.5 
SiC (polycrystal) Radial 5 3 
(3 = 2.8 Median 14 4 

Lateral 40 7 
Si (crystal) Median 0.05 0.36 0.03 0.65 
{3 = 2.65 
Si3N4 (polycrystal) Radial 30 7 
{3 = 2.8 Median 80 12 

Lateral 210 20 
Al20 3 Median 0.4 0.6 0.25-0.5 3 
{3 = 2.5 

"/3 defines the indent size according to equation (1.16). 
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Figure 5.6. The three principal normal stresses in the volume beneath an indenter. 

Constraint on the sideways expansion is exercised by the compressive 
volume of the U22 hoop stress at angles less than 52°. 

Depending on the symmetry of the indenter and on any anisotropy of 
the ceramic's mechanical properties, several intersecting cracks can move 
simultaneously. This fact must seem to be a major problem if crack depth 
as a function ofload is to be used to investigate ceramic toughness. However, 
experimental observation shows that crack depth, D + h in Figure 5.2.(b), 
is not sensitive to the number of cracks formed. At this stage the crack 
diameter D is a function of four parameters: the load, P; the hardness, 
Hx; Young's modulus, E; and the fracture surface energy, 1'. 

Different analyses and slight changes in the model lead to some minor 
variations being proposed for the relationship among these four parameters. 
Nevertheless, equation (5.13) is a generally accepted form of the function: 

(5.13) 
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In equation (5.13), Kf is a constant that is itself a function of experimental 
and material properties 

(5.14) 

In equation (5.14) t/J is the indenter half angle, v is Poisson's ratio, Hx and 
E have the usual meaning, and the subscript f denotes the crack formation 
stage of the process. The constant Kf is an experimentally determined 
feature that makes the overall approach semi-empirical. 

At this stage we can see a physical restriction because the penny-shaped 
median cracks are contained below the sample surface and can be measured 
only in transparent media. This would restrict the method to glasses and 
some large single crystals. Perhaps that is why at this stage the median 
crack is said to be "not well developed" since it remains within the sphere 
of influence of the nucleation zone immediately below the indenter. 

Growth of the penny crack is achieved by increasing the load, and 
experiment has shown the growth to be stable as the load increases in accord 
with equation (5.15) 

D ex: pl/6 

a 
(5.15) 

Eventually D exceeds the deformed contact zone and, spontaneously at a 
critical value of P, breaks through to the surface. At this stage it is said that 
"pop-in" has occurred and the penny median becomes "well developed," 
changing its shape to a halfpenny when D + h becomes c' in Figure 5.2(b). 

5.2.1.2. Surface Trace of Median: The Radial Cracks 

Also referred to as median vent cracks, these are caused to "pop-in" 
by exceeding a critical indenter load. It is the "pop-in" phenomenon that 
is important to the development of this subject in ceramic science because 
the halfpenny crack has the surface trace which allows opaque materials 
to be analyzed by recording the radial crack size as a function of increasing 
load. There is, however, the implication that the surface must be prepared 
carefully by polishing to an optical finish in order to see the radial cracks. 
If necessary, samples must be annealed to remove polishing stresses. Radial 
cracks are the result of surface tensile stresses, U yy in equation (1.29). Such 
stresses are at a maximum at the elastic-plastic boundary. 

Observation and analysis, as in Section 1.4.1.1, both show that "pop-in" 
can occur at loads less than the critical load on removing the indenter. This 
is the result of residual tensile stresses, equations (1.23)-(1.26), acting as 
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the indenter is released on the contained median and translating it to the 
halfpenny radial crack. Observations in transparent samples and acoustic 
emission studies have shown this to occur. Residual tensile stresses (see 
Section 5.4.1) associated with the indented area are approximately Hv/20 
in magnitude and these, especially in hard materials, are found to be 
sufficient to develop the trace system shown in Figure 5.2(c); they are larger, 
as Figure 1.5 shows, than the loading stress. 

Whether the radial cracks are "popped-in" under load (P larger than 
critical load) or after removal of the indenter (P smaller than critical load), 
some general features emerge. First, critical load diminishes as '" decreases. 
Second, indenters with small half angles (small "') produce multiple median 
formation. Finally, mutually intersecting medians may "pop-in" at different 
loads, implying that some mutual retardation can occur. Bearing these points 
in mind a wider angled indenter is preferable, which explains the general 
acceptance of the Vickers diamond for this work. 

Once a median crack escapes the nucleation zone, then it is fruitful to 
consider the model in which a component of the applied load acts to wedge 
open the mouth region to which equation (5.16) applies. From Figure 5.2(a) 

p2 _ p2 _ 2yE 

(D + h)3 - (C,)3 - Kp (5.16) 

Comparing equations (5.13) and (5.16), the change to surface trace 
size can be seen, together with the introduction of a new constant K p , 

signifying the propagation stage of the process. Kp is a function of fewer 
variables, as equation (5.17) shows: 

(5.17) 

Notably the properties of elasticity and hardness are not now involved, and 
as a result a theoretical analysis based on a center-loading, full-penny-shaped 
crack in an infinite solid has been applied to calculate Kp- The resultant 
expression is shown in equation (5.18) 

(5.18) 

A theoretical curve for Kp against indenter half angle '" is shown in 
Figure 5.7. It is possible to compare theory with observed results by using 
equation (5.16) and a material such as glass for which good values for y 

and E have been found independently. Indenters can be sintered from 
tungsten carbide powder with a range of half angles. Figure 5.7 indicates 
divergence between theory and practice. To accommodate such divergence 
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Figure 5.7. Median crack parameter Kp as a function of indenter half angle, equation (5.18) 
using v = 0.2. Glass indented with we produces points shown as e. 

it has been suggested that interfacial friction between sample and indenter 
is an important parameter with the result that equation (5.18) is changed to 

(5.19) 

where .p' = .p + tan- 1 JL and JL is the coefficient offriction between indenter 
and sample. Since the real values of JL during indentation are difficult to 
measure or even estimate, this is another reason why models, theory, and 
experimental data are closely linked in this application of hardness tech­
niques to ceramic systems. 

5.2.1.3. The Lateral Vent Crack 

These cracks are much shallower and are formed on unloading at the 
boundary between elastic, non permanently deformed material and the plas­
tically deformed material close to the indenter; the interface between these 
two regions is the source of a stress field because material that has been 
plastically strained has a different stress-strain behavior than the normal 
material. 

Analysis has shown that the component U,' of the stress field is tensile 
in character, acting parallel to the sample surface and at a maximum about 
/3/2 below the surface; /3 is defined in equation (1.16). On unloading, the 
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stress is greater than on loading; thus it is able to propagate any nucleated 
cracks along directions or planes parallel to the surface. This gives rise to 
the name lateral crack system. Clearly if a critical load is exceeded these 
shallow cracks can be made to "pop-in" and produce surface traces. So far 
little analysis has been expended on the lateral vent system despite the fact 
that it is so close to the surface and can break through to it and is therefore 
a major source of material removal from ceramic surfaces (i.e., erosion and 
wear). 

In all cases where direct observations can be made (that is, in trans­
parent or translucent samples) the lateral cracks are seen to nucleate just 
prior to complete unloading of the indenter. Nucleation is followed by an 
initial unstable propagation to a stopped stage beyond the immediate 
indentation plastic zone. Finally as the indenter unloading continues the 
laterals propagate stably. The final crack length is always larger than the 
indentation diagonal. However the lateral crack length is variable with 
respect to radial crack length, being longer in some cases and shorter in 
others as shown by the circular contours in Figure 5.8. 

Compared to the radial crack, the lateral is more susceptible to sub­
critical growth and slow growth on unloading due to atmospheric effects. 
This is to be expected from their near surface position and the fact that 
corrosive elements can penetrate down the radial traces to the laterals. 

The presence of lateral cracks causes visible raising of the sample 
surface around the impression zone. Thus they are not constrained in the 
way that median cracks are. This lack of constraint makes the modeling 
and analysis much more difficult. Notwithstanding such difficulty, a recent 
analysis has been presented.(6) The basis of this analysis is given now. 

The material above and below the lateral crack is distinguished by its 
different compliance; at depth <h in the surface zone, Figure 5.2(b), the 

+ 
a b 

Figure 5.8. (a) Lateral crack much longer than radials. (b) Lateral crack system shorter than 
radials. 
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surface allows much movement, while material at depth> h is more rigidly 
held. For this situation a linear compliance relation is assumed: 

(5.20) 

In equation (5.20) Ur is the net load-point displacement, Pr is the 
residual tensile force exerted on unloading, and A is given by equation (5.21) 
for a circular plate of material as defined by the extension of the lateral 
cracks being held rigidly at the edges. 

(5.21) 

In equation (5.21), A is a geometrical constant varying within the two 
extreme cases shown in Figure 5.8: When lateral length > radial crack length 
A = 3(1 - l/2)/47T, implying no interaction between the two systems, and 
A = ~ when lateral crack length < radial crack length. The crack extension 
force is 

P; dA 

2 dA' 
(5.22) 

A' in equation (5.22) is the crack area, 7TC2 in Figure 5.2(b). For plane strain 
fracture the crack extension force is K2(1 - l/2)/ E. 

Using this fact and equations (5.21) and (5.22), the stress intensity 
factor is then 

(5.23) 

The residual tensile force Pr has to be modeled, and a precompressed 
linear spring acting through the center of the slipped material and indenta­
tion pyramid is chosen 

(5.24) 

In equation (5.24), Pro is the force exerted by the spring in a fully compressed 
state when Ur = o. Then U ro is the displacement in the fully relaxed state 
when Pr = o. 
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Equation (5.20) can be used to replace the movement term U" which 
is otherwise not easy to determine, and use of equation (5.21) effects further 
simplification 

(5.25) 

By obtaining expressions for P '0' U '0' and h in terms of material properties 
from the model and from the geometry shown in Figure 5.2(b), it has been 
possible to express the lateral crack size as a function of applied load 

[ B (E)3/4 J1/2 [ (P)1/4J I/2 
C = -- cot5/6 ./, - K- 1 H- 1/4 pSIs 1 - -2 (526) 

(A')1/2 'I' H C v P . 

In equation (5.26), Po represents a threshold for the analysis, not to be 
confused with a threshold load necessary to initiate cracks. 

(5.27) 

In equations (5.26) and (5.27), Band D are dimensionless constants found 
from experiments using glass: B = 2.5 X 10-2, D = 1.2 X 103• 

The lateral crack length for large contact loads when P » Po is seen 
to depend on load as pSIs which is a useful approximation when considering 
the role of the lateral crack system in ceramic erosion and in making 
estimates of the effects of collisions on ceramic surfaces. Perhaps this is the 
field where this analysis will be most used in ceramic systems. 

5.2.1.4. Palmqvist Cracks 

These cracks are shown in Figure 5.2( d). They are shallow radial surface 
cracks lying within median planes (i.e., planes containing the axis of the 
indenter) extending out from the corners of an indentation. Clearly when 
the median crack "pops in," the Palmqvist cracks become part of the 
median-radial system described in Section 5.2.1.2. 

There has been some discussion as to whether these cracks always 
precede the formation of the median crack in ceramics and therefore are 
evident before the penny median can become the halfpenny radial. An 
answer to this query is important because if they do always occur first, then 
surface flaws are important in their formation and subsequently in the 
mechanical failure, erosion, and wear of ceramic materials. Furthermore, 
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equation (5.11) will need to be modified as a more complex stress-field 
function is developed to explain their existence. Such a modification will 
only affect the constant multiplying the K~/ Ht term in equation (5.11). 

A model analysis using a more complex stress distribution which 
increases the slip length along which shear stress acts from 1.4a, where a 
is half the indent diagonal length, to 1.577 a if Palmqvist cracks first form 
without a prior median crack, gives a tensile stress acting across radial 
planes greater by a factor of about 13 than the tensile stress acting in the 
median plane. Thus the near surface plastic zone makes a bigger and more 
effective search for flaws than the median stress. This puts the model more 
in accord with the practical experience that surface flaws are dominant in 
strength degradation of glasses and ceramics under impact. The increased 
tensile stress, relative to the median crack model, leads to a prediction that 
the Palmqvist radial cracks will form before the median crack. 

Acoustic emission studies and microscopy, used to examine Ah03, 
SiC, Si, and Ge, do show that for these materials the first cracks formed 
on increasing the indenter load are the Palmqvist radials; this necessitates 
a change of the constant in equation (5.11) from 867 to 700 which in turn 
leads to lower critical loads at which strength-degrading flaws are produced; 
equation (5.12) requires no alteration. 

5.2.1.5. The Effect of Temperature on Radial and Lateral Cracks 

In Chapter 4, as equation (4.19) highlights, it is demonstrated that 
hardness is not a simple function of temperature because the mechanisms 
contributing to the movement of material change; at low temperatures 
hardness is only a weak function of temperature and athermal mechanisms 
are responsible for plastic deformation. At higher temperatures hardness 
decreases strongly with temperature increase as deformation occurs through 
a combination of dislocation glide and thermally activated dislocation climb. 
The change from regime I to regime II identifies a temperature Tc which 
is a material constant. It is however not a conventional ductile-brittle 
transition temperature but, not unexpectedly, it does have an effect on the 
radial and lateral crack size. As Figure 6.11 shows, there is a dramatic 
increase in radial crack size in the case of silicon in the range 300-400°C. 
The dramatic increase is due to an increase in the residual stresses because 
the increased temperature results in greater plasticity and hence an increased 
plastic-elastic zone boundary. This in turn produces an increase in the 
(E / Hv) PI term in any of the equations developed to relate toughness, K rc, 
to applied load, hardness, Young's modulus, and crack extent in Section 
5.4.2. Thus following a temperature interval when the crack length shows 
no dependence on temperature, there is a regime in which a strong correla­
tion between crack length and temperature exists, because while E is little 
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affected by temperature the hardness decreases sharply after Tc has been 
exceeded. A further consequence of the sharp decline in hardness after Tc 
is seen in equation (5.11) which then indicates that an increased critical 
load is needed to produce cracking as crack nucleation becomes more 
difficult at high temperatures. 

Because crack lengths are used to determine K 1C , and because the 
equations are developed for crack systems of stated geometry, care is needed 
when considering individual ceramic systems tested at elevated temperature. 
For example, with GaAs low temperature cracks are deep, approximating 
to the halfpenny shape, but high temperature cracks are shallow. On the 
other hand in Ge the low temperature cracks are long and deep for a given 
load but the high temperature cracks are deep and short for the same load. 
Such differences arise from the geometry of slip as discussed in Chapter 3. 

5.2.2. Blunt Indenters 

The archetypal blunt indenter is the Brinel or Rockwell ball type (see 
Section 1.4) in which a spherical ball is centrally loaded as shown in Figure 
5.9. When the ball is loaded past a critical value, ring cracks within the 
annulus region denoted as CB-B'C' on the figure are produced. Such cracks 
have a circular trace on the surface and a conical shape within the volume 
beneath the indenter, as shown in Figure 5.10. The conical shape arises as 
the crack deviates outward to avoid the compressive field below the indenter. 

The pressure applied through the ball has three main consequences: 
It creates a depression; it produces some flatness on the ball face; and it 

p 

C C' 

Figure S.9. Spherical indenter on surface CC'. 
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Figure S.lO. A well formed cone crack 
that is developed when either a ball or 
flat cylindrical punch is pressed into a 
ceramic surface with a pressure P > Pc. 

causes tangential elastic displacements of the contact surfaces directed 
radially inwards towards the center of the contact circle. 

Analysis of these elastic displacements leads to compression of the 
surface in the center of the contact region at A and the change of compression 
to tension on moving upward to the circumference BB'. The maximum 
tension occurs at the edge of the contact circle which has the radius ao in 
Figure 5.9. The tension decreases outside the contact area toward the circle 
CC' according to the relationship 

(5.28) 

where U a = the tensile stress at radial distance a, "1 = Poisson's ratio of the 
ceramic surface, P = load, and a = the distance from A' in Figure 5.9. 

The tensile stress at a as expressed by equation (5.28) can be related 
to the radius of the indent impression ao 

(5.29) 

In equation (5.29), ao is the contact radius and Po is the maximum 
stress applied, sometimes called the Hertz pressure. 

Following the above analytical conclusions, because the maximum 
tensile stress occurs at the periphery of the indentation, circle BB', it would 
be expected that at some critical load a crack would nucleate and propagate 
around the circumference BB'. On a surface of glass or another amorphous 
material a ring crack is observed, but on highly anisotropic crystalline 
ceramics a less well traced crack is produced as the ring has a definite 
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polygonal appearance; with alumina, for example, such surface cracks are 
distinctly hexagonal. However, the position of such cracks on all types of 
material is some 20-30% further out from BB, falling within the region 
CB-B'C'. 

There is no agreed explanation for the variable radius of the ring crack 
on ceramic and glass surfaces. A common belief is that a pre-existing surface 
flaw will reach critical proportions and nucleate the crack in which case 
a > ao. To investigate this proposition the relationship between the load 
needed to cause cracking and the radius of the indenter has been examined 
by using the relationship between the radius ao of the contact circle and 
sphere radius R 

(5.30) 

In the above expression, G and l/ are shear modulus and Poisson's 
ratio, respectively, with the subscripts 1,2 being used to distinguish between 
ceramic surface and indenter material, respectively. 

Using equations (5.28) and (5.30), U a can be related to R 

3 1 - l/1 1 - l/2 U a = [( )]2/3 
21T gPR ~+o;-

or, using a more compact form, 

(5.31) 

Hence the critical load Pf to cause ring cracking is related through equation 
(5.31) to indenter radius 

(5.32) 

A square dependence such as that in equation (5.32) is found only for large 
indenters with R > 3.5 cm. 

For small-radius indenters a direct dependence is found 

(5.33) 

The relationship shown as equation (5.33) is sometimes called Auerbach's 
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law. It has been suggested that a statistical relationship between mean 
surface-flaw spacing and absolute size of stress field accounts for the change 
to Auerbach's law as R decreases. 

It is common to use a ball made from different material than the surface 
under investigation and this feature has consequences that some inves­
tigators feel are important. The most significant parameter introduced in 
this situation is friction arising from differing elastic constants for specimen 
and indenter. On contact, material is displaced radially inward a distance 
proportional to (1 - 2v)1 G. This slip is resisted by frictional traction acting 
radially outward on the more compliant surface and inwards on the surface 
showing less movement. This situation now modifies the radial tensile stress 
at points outside the contact circle by reducing it in softer material but 
increasing it in the harder less compliant material of larger modulus value. 
A steel ball indenting glass corresponds to the latter proposition, leading 
to ring cracks outside the contact zone periphery. 

When the indenter is more compliant, the maximum stress in the sample 
is increased due to the frictional forces but remains at the edge of the 
contact circle. Smaller diameter secondary cracks are sometimes produced 
as the indenter ball is unloaded in cases where Young's modulus of the ball 
exceeds that of the surface under test. If, as suggested above, friction is an 
important parameter, then on unloading there will be a reversal in the 
direction of frictional traction at the edge of the contact circle which will 
produce an increase in stress nearer to the contact radius which can, if there 
is a critical sized surface flaw in the vicinity, give rise to the secondary ring 
crack. 

A significant feature of a ball indentation test that makes ring-crack 
initiation and propagation difficult to analyze and observe is the fact that 
as the indenter is pushed into the surface it produces a contact circle of 
increasing radius. This can engulf an already formed crack, allowing the 
compressive stress field to work to close the surface trace of such a crack. 
Furthermore, the stress contours from the periphery must change and move 
as the contact radius increases. In order to counter this effect, work has 
been done using a cylindrical flat-end punch to have a constant radius of 
contact; this work has been considerably extended of late(7) by incorporating 
a stress field analysis found in earlier mathematical reports. A schematic 
representation of a well formed cone crack is given in Figure 5.10 for a 
blunt cylindrical punch. This schematic geometry is also expected for the 
more common ball indenter. 

Development of this type of crack is discussed in terms of the 
dimensions cl ao as defined in Figure 5.10. The crack is known as a shallow 
ring crack for cl ao < 10-\ and as a cone crack within the ceramic when 
cl ao > 10-1• A good analytical curve has been developed by Mouginot 
and Mangis(7) by plotting the variables Ol2y against ciao where 0 is the 
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strain energy release rate and 'Y is the specific surface energy. In order to 
do that, G is found from equation (5.34) 

(5.34) 

Depending upon Poisson's ratio, the applied load P, and the position where 
the crack nucleates on the surface, as defined by ro in Figure 5.10, the curves 
have a general shape for a blunt cylindrical punch like that sketched in 
Figure 5.11. Such curves allow a discussion of ring and cone crack develop­
ment along the following lines: equilibrium is conventionally defined as 
G = 2'Y. Thus the equilibrium criterion is the dotted line in Figure 5.11, 
which cuts the curve with two maxima for a given critical load. On a branch 
of the curve with positive slope, the equilibrium is unstable, and vice versa 
on a branch of the curve with negative slope. 

Consider a flaw existing at a position defined as cl ao in Figure 5.10. 
It will have a length of, say, cf' Let cfl ao correspond to point A il1 Figure 
5.11; as can be seen, it is on the curve of positive slope and the equilibrium 
is unstable so that G will increase at constant load by using the elastic 
strain energy to make the crack spontaneously extend. This is denoted by 

10 

....(L 1·0 
2Y 

0·1 

%0 
Figure 5.11. Strain energy release rate against cl ao curve as derived from equation (5.34) for 
fixed values of P, '01 ao • Points A-E are discussed in text. 
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an increasing c/ ao • Mter point B an increase in c/ ao is on the negative 
slope, so the crack slows down as it advances, eventually coming to rest on 
the equilibrium line at point C; now an increase in load is required to 
continue growth. Since c/ ao < 10-., a shallow surface ring has been formed. 
If P is increased, the whole of curve ABCDE is lifted to higher 0/2y values 
and so stable growth down the negative slope curve can continue. At some 
critical load P*, the minimum of the ABCDE curve will lie on the 0/2y = 
1.0 line, so an increase of c/ ao will be spontaneous and accelerating since 
the slope of the curve for increasing c/ ao is positive up to the next maximum, 
point D. Then it will decelerate in stable growth to a point like E on the 
equilibrium line again. Now c/ ao > 1 and a well developed cone has 
followed from the initial shallow surface ring crack. 

Equation (5.34) gives 0 in terms of cone edge length c and ring crack 
start radius '0' It can be re-expressed in terms of cone base diameter s 

p2 
O=D­ES 3 

(5.35) 

Here D is a constant depending upon 11 and cone angle; values from 
5.7 x 10-3 to 2.15 X 10-2 have been estimated. 

5.2.3. Indent Edge Cracks 

Porous samples that densify beneath the indenter exhibit a crack pattern 
which is characteristic of such a microstructure; Figure 6.23 is an example 
of such a crack pattern which is a network of fine cracks along the sides 
of the indent. It is clear in Figure 6.23 that porosity is considerably re­
duced within the indented area and therefore compaction has occurred. 
The compaction mechanism is one of grain-boundary fracture and grain 
rearrangement. 

A semilog plot of hardness versus the log of the pressure used to form 
the porous specimen is linear, suggesting that the hardness of a porous 
body can be estimated from a value of the compaction pressure used in 
sample forming. 

As equation (1.2) predicts, porous ceramics have low hardness and, 
because of compaction and edge crack generation, such hardness is relatively 
temperature insensitive. 

5.3. SUMMARY OF SEQUENCE OF EVENTS 
BENEATH A SHARP INDENTER 

The description of the crack types in Section 5.2 has to some extent 
dealt with this sequence, but it is worthwhile considering the model process 
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again in a stepwise fashion. This is because it is these important concepts 
that have led to a series of semi-empirical calculations linked to experimental 
data-fitting exercises that produce a universal curve relating hardness, 
Young's modulus, crack size, and the toughness parameter K 1C• 

STEP 1. 
STEP 2. 

STEP 3. 

STEP 4. 

STEP 5. 

STEP 6. 

STEP 7. 

STEP 8. 

STEP 9. 

Loading produces a stress field. 
The stress field is seen as building up from 
a. the applied load, and 
b. the stress between the bulk of the sample around the inden­
ted area, which is only moving in accord with the elastic 
modulus and material which has flowed plastically from the 
indent volume. Since this will be present when applied load 
is removed, it is called the residual stress. 
The applied load as in (a) above causes a tension in the bulk 
material which has a maximum at the interface between the 
elastic body and the plastically deformed zone, in turn causing 
microcracking dependent upon the surface flaw population 
and the nucleation mechanisms of slip. 
Microcracks nucleated in Step 3 develop into a penny-shaped 
crack below the indenter and shallow Palmqvist cracks in the 
surface region. These are the median and radial cracks. 
In the surface the indenter causes compression, not tension; 
this acts in opposition to the residual stress. 
As the indenter is withdrawn, the surface compression 
decreases to zero. 
The residual stress now acts toward the surface and on it to 
produce cracks with surface traces that can be seen in the 
microscope on suitably polished surfaces; these are radial 
cracks. 
Radials and medians have combined to give semi-elliptical 
cracks, called halfpenny cracks, whose surface diameter is 
about twice the maximum depth. 
Fully developed radials are in mechanical equilibrium and 
have crack dimensions that are determined by K 1C ; hence, 
this parameter can be measured. 

As outlined, these steps in the loading-unloading cycle lead to three main 
applications of the indentation hardness technique that will be developed 
with examples in the remainder of this chapter. 

First, there has been much analytical work on the residual stress fields, 
(see Section 1.4.1.1) in attempts to establish relationships that can be used 
to determine K 1C• 

Second, the cracks developed at Step 8 are used as controlled flaws in 
macroscopic toughness determinations. 
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Third, the whole sequence is a good analogue of the formation of 
defects in ceramics and glasses following impact. 

5.4. FRACTURE TOUGHNESS EQUATIONS 

Evans and Charies(8) introduced the first relationship based on a 
dimensional analysis backed by experimental work to measure Kc by the 
double torsion technique and hardness with a Vickers diamond in the 
standard hardness macroindentation range shown in Figure 1.3. The 
ceramics studied were WC/Co, Si3 N4 , SiC, B4C, sapphire single crystals, 
and spinel single crystals. An unfortunate choice of constraint factor for 
the diamond geometry was made which meant that this good semi-empirical 
beginning was later the source of some doubt and disagreement. 

In general terms, the analysis showed that 

(5.36) 

where tP is the constraint factor (see Section 1.4.1.1), J.L is the coefficient of 
friction between a material under test and the indenter, 11 is Poisson's ratio, 
c is the radial crack extension as defined in Figure 5.2, a is the half diagonal 
of the indent trace (see Figure 5.2b), and Ry is the radius of the plastically 
deformed zone. FI and F2 are empirically determined functions of the 
variables shown in parentheses. Experiments revealed that the c'l a function 
was more strongly related to KctPl Hyal/2 than the F2 function. 

A good fit to experimental data was found if the F2 function was 

(HV)0.4 
F- -

2 - EtP (5.37) 

and a plot of (KctPl Hyal/2)(Hv/ EtP )-0.4 against c'l a followed the experi­
mentally determined points for the range of ceramics studied. When c'l a 
was large, the slope of the function was -312 which is what would pertain 
for a penny-shaped crack wedged by a force P at its center and so at the 
large crack extensions observed it is possible to use such a model and write 
for K 

K = (1TC,)3/2 
P 

(5.38) 

Then, using equation (1.6), 

KctP (C,)-3/2 
Hv(a)I/2 = 0.15S ~ (5.39) 
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where S is a surface correction factor found experimentally to be 3.2. Using 
a constraint factor of 3.0, which has since been acknowledged as too large, 
and S = 3.2 the relationship for Kc becomes 

( ')-3/2 
Kc = 0.16Hya1/2 ; (5.40) 

For ceramics in general, where no data for Young's modulus E exists, 
equation (5.40) can be used to determine Kc values at the 20-30% confidence 
level. When values for E are known, better toughness data can be obtained 
by using the full Charles and Evans equation 

( E )0.4 ( ')-3/2 
Kc = 0.0732 Hy Hya1/2; (5.41) 

Naturally, following from the success of this original work, others have 
attempted to rationalize the approach and make it less empirical. Lawn and 
co-workers have provided justification for the approach and in the process 
found the H / E exponent in equation (5.37) by describing an approximate 
function relating plastic zone size to indent size. This approach leads to a 
dimensionless, independent constant that has to be calibrated by means of 
experimental data for chosen ceramics systems. In general, glass is chosen 
for this purpose. 

5.4.1. Residual Stress 

The residual stress in the vicinity of an indentation is complex and has 
not been modelled and computed with complete agreement, but recent 
attempts by both Chiang et al.(9) [see equation (1.17) and following] and 
Yoffe give residual stress fields near the surface of the material that have 
a compressive radial and a tangential tensile component decreasing as the 
third power of distance from the indentation center. The model applies to 
the elastic region and gives a value of the stress field at radius r 

K(r) _ B(A V)2 
U r - (r')3 (5.42) 

A V is a reference volume equal to the radius of a hemisphere whose volume 
equals that of the Vickers indent. u~(r) is the residual radial stress, and r' 
is the distance from the indent center. B is given by Chiang as 40 GPa. The 
tangential tensile stress is equal to _~u~(r) when Poisson's ratio is taken 
as 0.25. As stated in Section 5.2.1.2, the residual tensile stresses associated 
with the indented area are about H y /20 in magnitude. 
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Lawn, Marshall, and others have emphasized the fact that the residual 
stress term was not just a correction factor but played the important part 
in determining the final size of the radial crack system. However, like Evans 
and Charles, they developed the model of the plastic deformed zone acting 
to force open the penny-shaped median crack just beneath it, so that the 
basic equations to be used were still 

where a and f3 are constants; a is dependent on the indenter geometry and 
is 2.0 for the Vickers diamond, f3 is a complex geometrical constant incor­
porating interaction effects between the specimen-free surface and crack 
configurations that may not be as simple as the planar median system 
described in Section 5.2. The constant f3 has to be found by experimental 
calibration. 

When c' » a, the cracks can be considered to be center loaded and the 
driving force characterized by separating out the residual stress as contribut­
ing to a residual stress intensity factor K, for which the simple form is 
maintained 

(5.43) 

In equation (5.43), f3, is a constant that can be analyzed by modeling how 
the plastic impression is accommodated by the surrounding elastic matrix. 
All the several attempts so far show f3, cc (E / H v)"; n was equal to 0.5 in 
Lawn's original work. The implication of f3, is that ceramics with weaker 
bonding, that is ionic and mixed ionic-covalent, will have lower values of 
E than the covalent types and be softer and so experience smaller residual 
driving forces. Thus they will be less susceptible to indentation and erosion 
cracking flaw generation. 

When mechanical equilibrium has been achieved and the cracks show 
no movement either during the loading period or after the load has been 
removed, then 

(5.44) 
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Measurement of Kc by other methods gives the constant a, in equation 
(5.44) as equal to 0.016 ± 0.004 which means that equation (5.44) can be 
used, when E/ Hv and c' are determined at a known P, to obtain values 
for the fracture toughness of ceramics. Equally a plot of (C,)-3/2 against P 
has a slope a,( E / H v) 1/2/ Kc and such a plot can be made if a series of 
indents at loads in excess of the critical load are made on the same surface. 

5.4.2. Collected Equations 

Following on from the Lawn analysis, all the subsequent relationships 
have the same two features: Kc is made proportional to P( C,)-3/2 by keeping 
the model which places the cracks in a center loaded position from the 
deformed zone-elastic zone interface. The ratio E/ Hv appears in them all 
because the residual stress arises from deformation mismatch. A selection 
of these expressions is given below with a and c' defined according to 
Figure 5.2: 

1. Evans and Charles(8) equations (5.40) and (5.41): 

( ,)-3/2 
Kc = 0.16Hva l / 2 ~ 

or 

( E )° 04 ( ,)-3/2 
Kc = 0.0732 Hv Hva l / 2 ~ 

2. Lawn et alYO): 

( 
E )0.5 ( ,)-3/2 

Kc = 0.028 Hv Hva l / 2 ~ (5.45) 

(5.46) 

where 

c' (C')2 (C')3 Y = -1.59 - 0.34 log -;202 log -; + 11.23 log-; 

( C')4 (C')5 -24.97 log; + 16.32 log-; 
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4. Niihara et al.Y2) whose equation depends on the e'l a ratio; see also 
equation (5.53) for Palmqvist cracks: 

( E )0.4 ( ')-3/2 
Kc = 0.067 Hv Hyal/2 ~ (5.47) 

for e'l a > 3.0 

5. Antis et aIY3): 

( E )0.5 
Kc = 0.016 Hv P(e' )-3/2 (5.48) 

(5.49) 

for e'l a> 3 

Equation (5.49) is expressed in a form such that if P is measured in grams, 
a and e in microns, and E in N m-2, then Kc can be found directly in 
MPam l / 2 • 

7. Henshall and Brookes(I5) have derived an equation for the Berkovich 
indenter starting from equation (5.41) and using a constraint factor of 
2.57: 

( 
E )0.4 

Kc = 0.0385 HB P(e~)-3/2 (5.50) 

In equation (5.50), HB is the Berkovich hardness as defined by equation 
(1.8), P is the load in newtons, and e~ is the length in meters of the surface 
crack as measured from the center of the isosceles triangular indent. 

8. Shetty and Wright(I6) are responsible for an experimentally determined 
equation that applies only to Palmqvist cracks. Working with WCICo 
cermets that contained more than 5% by volume of cobalt, they observed 
that only Palmqvist cracks could be developed after the critical load 
P* was exceeded, and further there was a simple linear relationship 
between surface crack length l' and load: l' = (P - P*)/4 W from which 
W, the Palmqvist crack resistance constant, could be determined and 
used in equation (5.51) to determine toughness: 

(5.51) 
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In equation (5.51), f3 is a constant determined by the indenter geometry 
and material f3 = 1/3(1- p2)(21/27T tan ",)1/3. 

Thus for a Vickers indenter equation (5.51) becomes K 1C = 

0.089(HvW)0.5, which in tum is 

[ (P _ P*)]O.5 
K 1C = 0.0445 Hv I' (5.52) 

In this equation I' is the length of the Palmqvist crack. 

9. Another expression dealing with the Palmqvist crack as opposed to the 
radial crack is equation (5.53), due to Niihara et al.(l7) (for Palmqvist 
cracks only): 

( E )0.4 (/')-0.5 
K 1C = 0.018 Hy Hya l / 2 -;; (5.53) 

where I' is the measured trace of the Palmqvist surface crack. It must 
be emphasized that, since Palmqvist cracks are near surface phenomena, 
the specimen must either be very carefully and gently polished or an 
annealing procedure must be used to remove surface stress. 

10. Mirazano and Moya(l8) have produced more recent equations based on 
a more fundamental analysis involving the expansion of a spherical 
cavity modified by the creation of new surface and the shape of the 
indenter. It is an extension of Chiang's and Hill's analysis in Section 
1.4.1.1. As long as c' / a is greater than 1.3 these equations can be applied 
regardless of the crack type: 

( ')-1.08 ( E) 
K 1C = 0.09; f Hv Hyal/2 

( ,)-0.5 ( E) 
K 1C = 0.0136; f Hv Hyal/2 

c' 
for- ~ 2.8 

a 

c' 
for-::; 2.8 

a 

(5.54) 

(5.55) 

If H is expressed in GPa and a is in microns the answer will be in 
MPa ml / 2• 

In the two equations (5.54) and (5.55) the function f(E/ Hv) is 
quite complex 

(5.56) 
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where f3 exp = 1.35[E/uy(1- v)]0.155 with v = Poisson's ratio and uy 
the yield stress; ;1 = 0.66(1 + 3 In f3exp) and m is a surface correction 
factor related to f3exp as Figure 5.12 shows and to hardness via equation 
(5.57) 

Hv 
---s=l-m 

u, 
p-­

p 

where u~ is the radial stress at the expanding cavity interface. 

(5.57) 

All the equations so far listed, with the exception of equation (5.52), 
are based on analyses of wholly brittle monolithic ceramic systems. More 
recent considerations of the application of the indentation technique to the 
determination of K rc parameters for cemented carbides containing ductile 
cobalt as a binder have resulted in the following two equations, which apply 
to Palmqvist cracks. 

11. Peters(19): 

K rc = 0.0132 [1 : v2 (~, + 86,300) ] (5.58) 

In this equation v is Poisson's ratio, P is the load in newtons, and 
l' is the average length of a Palmqvist crack measured from the Vickers 
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Figure S.12. Correction factor due to free surface for equation (5.56). 
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12. 

indent corner. Put another way, 41' is the total length of the Palmqvist 
crack around the indent. 
Laugier(20): 

( E )0.6( E )-0.6 
Kc =2,150,000 Hv 1+0.012 Hv H,,1.5 (5.59) 

13. A method independent of crack type is the minimum load-crack 
nucleation method. (21) To operate this method the minimum load to 
nucleate cracks, P*, has to be determined. By its nature this is a statistical 
method whereby about 20 indentations are made per load in a range 
from, say, 0.5 to 50 N. The number of indent corners where cracks 
appear are counted and expressed as a percentage of indent corners; 
the minimum load for crack nucleation, P*, is the load of which 50% 
of corners project a crack, and then equation (5.60) can be used 

P* = 700(::f Kc (5.60) 

This selection of "universal" equations, when applied to data from 
samples of the same material and therefore constant E, give for the same 
load a 100% variation in the calculated value of Kc. Such a variation 
represents the differences made in the final expressions by the assumptions 
used in the models to get the relationships as well as the quality of the 
calibration curves used to find the experimental constant a r • 

It is possible to use any of the expressions to find Kc at different loads, 
which usually results in a Kc versus P curve as sketched in Figure 5.13. 
The shape of the curve in Figure 5.13 is mostly controlled by microstructural 
features in the ceramic under test. 

When a variety of samples are used there is some concern about the 
accuracy of the modulus value that is used in the equation chosen from 
those above. To some extent this can be overcome by using the technique 
comparatively to study, for example, the effect of a specific treatment or a 
change in microstructure, etc., on fracture toughness. 

It must be re-emphasized that surfaces should have an optical finish 
to find crack length accurately and measurements should be made as fast 
as possible after indentation because ambient conditions can lead to cor­
rosion growth of cracks and hence lower values of Kc as Section 5.11 clearly 
shows. 

Samples studied should not be too soft, cracks should not interact and 
should develop correct halfpenny geometry (unless equations for Palmqvist 
cracks are chosen). Crack length must be in excess of the indent diagonal 
length to make the assumptions of the models leading to the above equations 
operative. Spalled surfaces should not be used; this problem can be corrected 
by adjustment of the load. 
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p 

Figure 5.13. Load dependence of fracture toughness parameter. 

Any surface compressive stresses must be annealed out unless of course 
one is trying to measure such a stress (see below). Finally, for polycrystalline 
samples the grain size must be small in comparison to the indentation size 
in order to generate a uniform crack pattern. 

5.4.3. Determination of the Ratio HIE to Use in 
Toughness Determinations(22) 

All of the requirements at the end of Section 5.4.2 arise from the nature 
of the models used to obtain equations (5.40) and (5.45)-(5.60), and efforts 
have been made to minimize their restrictions. A good example of this is 
the in situ determination of H / E by first indenting with a Knoop pyramid 
indenter using a load that does not produce a cracked indent. This method 
follows from the fact that on unloading there is some elastic recovery, 
related to E / H, in the depth of the indent. In order to determine the effect, 
low loads must be used in conjunction with surface analysis in a SEM. 

The displacements of the shape when unloaded due to the elastic 
recovery in the zone immediately below the plastic zone in Figure 5.2 can 
be estimated by assuming an elliptical hole subject to a uniaxial stress 

b - b' = aXP 
E 

(5.61) 

In equation (5.61), b is the short axis dimension under load, b' is the relaxed 
dimension when the indenter is removed, x is the long axis of the indentation 
under load, P is the load, and a is a constant. 
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Since P scales as H K , 

Dividing through by x 

b - b' = a'xHK 

E 

b - b' = a'HK 

x E 
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(5.62) 

For a Knoop diamond, b/x is close to ~ and b'/x' is then close to b'/x 
and it is possible to write 

b' =!!. _ all(HK) 
x' x E 

(5.63) 

If a" is known, it is possible to find HK/ E from a measurement of the 
diagonals of a Knoop indentation. Using loads in the range 2-700 N for a 
series of materials of known E and H K , a calibration curve emerges (see 
Figure 5.14) from which the slope = a" = 0.45. 

The use of Figure 5.14 enables H/ E to be determined for a ceramic 
material with an error <10%. Then, armed with this value, a change of 

0·15 

Knoop 

indentation 

ratio 

b 
"7" 

0·1 

ZnO 

0·05 0'1 

Figure 5.14. Determination of HKI E from a noncracked indent in a Knoop hardness test. 
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diamond to Vickers geometry, and an increase in load to produce median 
trace cracks, a choice of equation from (5.40) or (5.45)-(5.60) gives rise to 
a fracture toughness value for the ceramic. 

An alternative procedure to find H / E using the degree of elastic 
recovery on removal of a Vickers diamond has also been proposed. (23) The 
method is once again based on an analysis of the indentation process and 
in particular after two consecutive indentations at the same place using two 
different loads. The indent is first made using a load PI and on removal of 
the indenter the diagonal half length a l is measured. Due to elastic recovery 
the peak of the indent rises nearer to the surface and now, if a load P2 < PI 
is used, the indenter penetrates only in an elastic manner but has to overcome 
the residual stress. Analysis of this situation with the knowledge that 
'YE == 7T/2, where 'Y is the depth of penetration, that is, depth of tip below 
the contact perimeter and subscript E stands for the elastic only, second 
loading cycle, and the assumptions that v == 0.25 and 'YH, the original Z / a 
ratio, is a linear function of H / E, leads to 

(5.64) 

Z, == depth of first indent after elastic recovery; al == half diagonal distance 
of indent after first load PI. Thus the depth and diagonal length of a Vickers 
indent can be used to find H / E. 

Finally, if a value of Young's modulus of the ceramic is needed to use 
in the toughness equations, a relationship suggested by Marshall et ai.(22) 
can be used 

E == 0.45HK 
b 
- - 0.1406 
a 

(5.65) 

where a is the measured long axis length of the Knoop indent and b is the 
short axis length of the indent. To use equation (5.65) the Knoop hardness 
value for a load of 0.98 N has to be inserted. 

5.5. ALTERNATIVE INDENTATION TECHNIQUES 
FOR FRACTURE TOUGHNESS 

5.5.1. Residual Stress Method(24) 

This approach to ceramic testing using hardness methods loses the 
advantage of the surface crack length versus load method because after 
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indentation the sample is tested to destruction in a bending mode. It can 
be argued that this approach measures the effective toughness of a ceramic 
since microscopic flaws which control the strength are frequently introduced 
by sharp contacts. 

The big step forward in this method is the realization that the flaw 
propagation analysis can be made to include the residual strength term 
discussed in Section 5.4 and, in so doing, the microcrack size is replaced 
by the easily determined parameter, the normal load on the indenter. 

In broad terms the argument is developed from Figure 5.15. In the 
arrangement shown in Figure 5.15 the lateral cracks experience no loading 
but the median or the radial cracks do, so that 

(5.66) 

In equation (5.66), n is a crack-geometry factor-that is, an experi­
mental parameter which reflects the fact that the cracks are formed close 
to a free surface, that because of the demands of crystal structure the profile 
of the radian or median cracks may be noncircular, and that there is mutual 
interaction between radials and median cracks that are simultaneously 
formed. 

The radial crack gives a surface trace, shown in Figure 5.2, equal to 
2e'. It is this flaw that now controls the strength of the indented bar, and 
failure will occur spontaneously from it at some critical experimentally 
applied stress; i.e., when aa = a o, then Ka = Kc and (5.66) becomes 

(5.67) 

Equation (5.67) is telling us that the ceramic strength is controlled by 
the indentation flaw e', but two points must be remembered. First, the size 
of the radial e' may increase due to stress corrosion to a value e before the 
sample is loaded in tension to breaking. And, second, we must consider 
the residual crack driving force, arising from the permanently deformed 

\.(~il 

Figure S.lS. Beam to be tested has been indented so that the indentation has one set of edges 
parallel to the direction of applied stress. 
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indented area, which was expressed by equation (5.44). Thus the total stress 
intensity factor is the sum of two sources 

From equations (5.66) and (5.44), this becomes 

(5.68) 

And, for growth under equilibrium conditions, K = Kc, hence 

and the relationship between applied stress and radial crack size then 
becomes 

(5.69) 

The applied stress can now reach some maximum that the sample can 
bear, and equation (5.67) has a maximum expressed as dUal dc' = 0, which 
is to say 

and 

U max = 4 r\ , 
7T~£emax 

(5.70) 

(5.71) 

These last two equations can be used to express the fracture toughness Kc 
in terms of the measured strength of the as indented, therefore flawed, 
ceramic beam 
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which rearranges to 

(5.72) 

Extensive comparisons of Kc as determined by conventional techniques 
and from equation (5.72) using glass, glass ceramics, Si3N4 , and Al20 3 

enables a value to be put on the last constant term in equation (5.72) as 
0.59 ± 0.12. Thus the important final equation is 

( E )1/8 
K = 0 59(u pl/3)3/4_ 

c • max Hy (5.73) 

The following points are worth noting 

• There is no need to know the size of the radial crack and so careful 
surface polishing is avoided. 

• U max is the measured strength of the as indented beam which will 
be less than the normal beam strength by at least a factor of two. 

• The elastic-plastic parameters must be known; that is, hardness and 
Young's modulus must be measured. This can be achieved by using 
the Knoop indent method as already described in Section 5.4.3. 
However, if they are not known it has been estimated that removal 
of the E/ Hy term and the 0.59, to be replaced by 0.88, will add only 
10% to the error of estimation. 

• A given peak load P will produce a c' value, but if there is consider­
able delay before measuring the tensile strength, extensive crack 
growth can invalidate the analysis since the experimental constants 
are determined assuming no slow crack growth. Some attempt must 
be made to restrict this by protecting the indent area with oil and 
performing the tensile test as soon as possible. 

• Samples with compressive residual stresses in the surface will not 
follow this analysis, and such samples must be annealed to remove 
the stresses. 

• In equation (5.73), since Kc and E/ Hy are material constants and 
0.59 is an experimental constant, umaxP should be constant over a 
range of indentation loads. This can be used as a test to investigate 
the applicability of this analysis to any given ceramic specimens. 

• Failure in the tensile test must be seen to come from the indentation 
cracks for this analysis to apply. 

• This equation could be useful in predicting strength degradation in 
ceramics subjected to hits by sharp particles when in normal use. 
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A recent use of equation (5.73) to determine K1C values as a function 
of grain size for alumina(25) compares results to notched beam tests. The 
broken arms of the beams were used for the indentation-strength in bending 
test (ISB). Thus a good comparative study was possible. Figure 5.16 shows 
the close correspondence between the ISB results and the earlier results of 
Rice et al. (26) using a double cantilever beam method. 

However, the notched beam results showed the opposite dependence 
on grain size for K1C• Small grain sizes produced K1C values about 
6 MPa ml/2 in the NB test. Notch radius effects and stress distribution in 
NB tests have been the subject of considerable theoretical discussion. (27) 
Thus the addition of this new technique to fracture toughness determination 
is contributing to theoretical development of the whole area. For example, 
one new suggestion is that the total stress intensity factor on an indentation 
crack of length 2c under an applied stress should not be taken as just a 
two-term expression like equation (5.68), but should have a third term 
involving the microstructure via grain size and shape, and distance between 
inclusions, all of which can contribute to crack deflections. If this suggestion 
is pursued then it has implications with respect to strength predictions for 
ceramics made from K 1C determinations that were themselves made from 
cracks of large size. Extrapolation to ceramic strengths using the large-crack 
K1C values will predict strengths that are much too high. Introducing cracks 
via indentations at varying loads enables this important point to be tested 
because beam strengths after low-load indentation will reflect the effects of 
small cracks and vice versa. 

Figure 5.17 demonstrates the effect with two regimes separated by the 
critical load P*. Above P*, the curve is a reflection of two terms in equation 

7 

KI c 
5 

~ 
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3 
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d 11m 

Figure 5.16. K1C as a function of grain size: •• ISB method; .... DeB method. After 
Rice et aL (26) 
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Figure 5.17. Plot of inert strength against indentation load for hot-pressed BaTi03 • 

(5.74) dominating; that is, the applied load driving force and the residual 
contact field. This is the normally accepted case expressed previously as 
equation (5.68). Below P*-that is, for small indentation cracks-the two 
dominant terms are the applied load driving force and microstructural stress 
intensity factor fJ-Q / (C,)3/2 in the three-term function 

_ , 1/2 (~) 1/2 ~ fJ-Q 
K - (J'a( 7TOc) + lXr Hv (C,)3/2 + (C,)1/2 (5.74) 

When controlled by the first and third terms on the right-hand side of 
equation (5.74), the beam strength will no longer depend on the applied 
indentation load, as is in accord with results like those shown in Figure 
5.17 for BaTi03 • This behavior denotes once again the dominance of 
microstructural flaws in determining the intrinsic strength characteristics of 
real ceramics and the fact that these cannot be modeled with certainty from 
macroscopic flaws. The extrapolated strength value, (J'Q, is a useful design 
parameter obtained by combining indentation hardness methods allied to 
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bend strength determinations. The microstructural effect J.LQ can be esti­
mated from 

( 
E )1/2 

a, Hv P* = J.LQ (5.75) 

when p* is determined by the extrapolation procedure shown in Figure 5.17. 

5.5.2. Hertz Fracture Method 

The Hertz method of determining Kc involves the use of an optically 
flat surface and a blunt-i.e., spherical-indenter. The sphere is pressed 
with a series of loads Px until a critical load Pf is found that gives a 50% 
chance of Hertz ring crack formation. In practice this is found by plotting 
the fracture probability against applied load for any given indenter radius; 
a typical plot would look like Figure 5.18. 

In order to establish plots like those in Figure 5.18, from which Pf can 
be found, a large number of indents must be made to measure how many 
cause ring crack formation. Indenters with radius less than 3.5 cm are chosen 
and the plots shown in Figure 5.18 are used to verify Auerbach's law, 
equation (5.33), which is assumed to apply so that the analysis developed 
by Warren(29) can be used. Such analysis gives Pf as 

9.18Ky ao ( ,,)-2 p = - ,pc 
f (1 - ,,2) c" 

(5.76) 

1·0 2·Smm Smm 8mm Radius 
indenter 

0·8 

Probability 0·6 
of 

fracture 
0·4 

0·2 

0 
0 0-2 0·4 0-6 0·8 1-0 1-2 1·4 1-6 1·8 

Load P(KN) 

Figure S.IS. Relationship between probability of Hertzian ring crack formation and load for 
different-sized steel indenters on flat surface of a brittle ceramic_ 
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In equation (5.76), K is a materials constant which can be obtained from 
the model and shown to be equal to 

where 11 is Poisson's ratio and E is Young's modulus with the subscripts 
S and I referring to surface and indenter respectively. In equation (5.76), 
'Y is the fracture surface energy and ao is the contact radius, which can be 
calculated from the applied load, the indenter radius, and the material 
parameters, by equation (5.30). Also, (q,e")-2 is an integral function over 
the crack path of the principal tensile stress perpendicular to the crack path. 
These values are given by Warren.(29) Finally, e" is the crack depth as 
measured after failure. 

Thus a knowledge of Pf allows the fracture surface energy to be found, 
and this is related to fracture toughness via equation (5.77): 

(5.77) 

This method involves critical load evaluation and crack depth measurement, 
and has been used in recent years to define fracture parameters in several 
ceramics, for example, U02, SiC, and TiC.(30.31) 

5.6. THERMAL STRESS RESISTANCE 

Traditionally, ceramics are ranked with respect to their ability to 
withstand thermal cycling and thermal shock by counting first the number 
of cycles required to produce visible surface cracks and finally the number 
required to produce fracture. However, during thermal shocking of ceramics 
such as occurs when carbide tool tips are used in cutting operations two 
processes are important: crack initiation and the propagation of pre-existing 
cracks. Thus the analyses already given in this chapter are quite relevant 
to characterizing this process more quantitatively. 

is 
For crack initiation caused by thermal shock, the appropriate parameter 

k . KUf 
crac reslstance = -­

Ea 
(5.78) 
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where K = thermal conductivity, uf = tensile fracture strength, E = 
Young's modulus, and a = coefficient of linear expansion. The larger the 
value given by equation (5.78), the less likely it is that ceramics will have 
flaws initiated. Clearly this parameter is not particularly related to hardness. 
However, damage resistance, which is the extent to which flaws propagate 
by thermal shock, is characterized by the ratio (K1C / Uf)2. Since K 1C can 
be obtained from microhardness measurements, then indirectly the tech­
nique can be used to rank ceramics with respect to thermal shock resistance. 
Undoubtedly the use of these two parameters is more analytical than the 
traditional method of ranking. 

5.7. CERAMIC GRINDABILITY AND EROSION 

5.7.1. Grindsbility 

Grindability is a property of some interest in the ceramics industry, 
for example, where hydraulic cement clinker is made. The clinker is ground 
to a fine powder using some 38 kWh tonne-1 which represents considerable 
expenditure of energy. Grinding consists of two stages: first, breaking up 
crystal aggregates and second, breaking down the individual crystal phases. 
In the second stage, hardness is less important than brittleness and the 
brittleness index defined as Bv/ Kc is a measure of ceramic grindability. 

Indentation hardness therefore can be used to grade materials with 
respect to powder production and energy expenditure. For example, as 
Table 5.3 shows, Ca3SiOs (C3S in cement notation) is the most brittle 
component in cement clinker, requiring the least energy to grind it to 
satisfactory powders. The table shows magnesia to be almost twice as brittle 
as the most brittle parts of cement while Al20 3 is comparable to an average 
cement clinker. 

Table 5.3. Brittleness Index of Cement Clinker Phases 

Phase Hy (GPa) Kc (M/Pa ml/2)a Hy / Kc x 10-3 m- I/ 2 

C3S 7.5 1.7 4.7 
C3A 9.0 3.1 2.9 
C2S 6.7 3.7 1.8 
C4AF 9.0 N.D. 2 
A120 3 12.0 4 3 
MgO 9.2 1.2 8 

"Determined by the post· indentation crack length method, equation (5.41). 
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5.7.2. Erosion Predictions 

In Section 1.4.4, the erosion test was outlined in the list of hardness 
determination methods and it was concluded that it was of minimal practical 
importance. However, solid particle erosion is a serious problem in gas 
turbine operations and in plants where powders are handled and it is of 
course used as a secondary shaping method in ceramic technology. Therefore 
it is more useful to consider how a knowledge of ceramic hardness con­
tributes to an assessment of erosion. Figure 5.19 outlines how a knowledge 
of the process has developed through models taken from the types of 
indentation test damage already discussed in this chapter. 

In the type A approach, applied force and the penetration depth is 
assessed by converting the kinetic energy of a sharp indenter (representing 
a sharp particle) into plastic work on the target. The analysis concentrates 
on the production of intersecting lateral cracks and estimates the volume 
of surface removed per impact by finding the depth of the laterals, h in 
Figure 5.2(b), and the length of the lateral crack system. We have seen in 
equation (5.26) that we can calculate the lateral crack length, and so the 
material removed can be estimated. In practice a simpler expression for 
lateral crack length is assumed, c ex: (Pmaxl Kc>2/3, and material removed is 
proportional to c2 times the depth of penetration. Depth of penetration is 
found from one of the several equations relating applied load and indenter 
geometry as outlined in Chapter 1. Differences then arise for different shaped 
particles or the corresponding indenters; for example, model Bl in Figure 
5.19 is concerned not with the lateral crack system but with the median 
crack system and model B2 with the size of the ring crack radii as given by 
equations (5.28) and (5.29). 

All models-A, Bl, B2-give, for steady state erosion, relationships 
containing the same material properties of the ceramic surface and contact­
ing particle 

(5.79) 

QUASI-STATIC ELASTIC IMPACT 

Y " SHARP SPHERICAL 

PARTICLE PARTICLE 

Figure 5.19. Schematic representation of erosion theory development. 
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Equation (5.79) has been arranged to emphasize the properties of impor­
tance in the particle (first parenthesis) and the material properties of 
importance in the surface being eroded (second parenthesis). Aw is the 
grams removed per gram of impacting particles. Particle properties are D, 
the diameter; V, the velocity; and p, the density. Target surface properties 
of importance are hardness, Hx , and fracture toughness, Kc. Each of the 
models used gives rise to some differences in the values of the exponents 
m, n, q, a, and b; equations (1.49) and (1.50) are complete expressions of 
equation (5.79) and demonstrate this point. Table 5.4 collects together the 
various exponents that can be used with equation (5.79). 

By using the same hard powder, for example, Al20 3, to erode different 
surfaces, the erosion rates can be compared via the hardness and toughness 
parameters of the surface material-that is, the second bracket only of 
equation (5.79). This is the usual way to use hardness data to make erosion 
predictions; first use the cracked indent technique (see Section 5.4) to find 
Kc and then use a Vickers indenter to find Hv. Where this has been done 
carefully, it is obvious that all the predictions are very subject to variations 
in the microstructure of the eroding surface. Data collected for Si3N4 (33) 
empha§jze that practical erosion measurements are not capable of distin­
guishing between the various exponents in equation (5.79) and in practice 
hardness measurements can be used in any of the several expressions 
obtained by using a mixture of the quoted values from Table 5.4. Thus, as 
long as the eroding particles are harder than the target material, efficient 
erosion will occur and, as shown in Figure 5.20, experimental erosion data 

Table 5.4. Exponents for Use in Equation (5.79) 

Exponent Model Value Notes 

n A and B 2.4-3.2 The value of n is an experimental one sensitive 
to particle size 

m A and B 0.66 
q A 1.06 

} Very model-dependent 8 0.39 
a A 0.11 

8(2) -0.25 Spherical particles 
8(1) -1.42 Sharp particles 

Experimental 0.48 Practical analysis of available ceramic-only 
data" 

b A -1.3 
8(2) -1.3 
8(1) 0.16 

Experimental -1.9 

"From reference (32). 
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Figure S.20. Erosion of Si3N4 by hard particles (SiC) and soft particles (Si02 ). The functions 
K\ and K2 can be derived from equations (1.49) and (1.50), respectively, where the symbols 
are described. The data are represented from reference (33). 
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fit the two types of model equally well and very well indeed and do not 
allow a distinction to be made between equation (1.49) and equation (1.50). 
When a soft particle is used to erode a hard surface, the agreement is not 
good, as Figure 5.20 clearly shows. The erosion of A120 3 surface by A120 3 
particles also follows equation (5.79) well, but modifications have to be 
made when SiC fibers are included in the A120 3 matrix.(34) The SiC imparts 
substantial erosion resistance as lateral cracks are made to supply fiber 
pull-out work. This can be modeled into the erosion process resulting in a 
change in the particle velocity exponent of either equation (1.49) or equation 
(1.50) to 1if from ¥- or ~, respectively, together with a change in the particle 
radius exponent to ~ from ¥. With these changes to equations (1.49) and 
(1.50) the erosion of the matrix material of a ceramic-ceramic composite 
can be estimated from these equations given a knowledge of relative hardness 
among other parameters. 

5.8. PREDICTION OF CRITICAL FLA W SIZE IN GLASS OR 
GLASS-CONTAINING CERAMICS CAUSED BY IMPACT 

It is known that striking a glass artifact or a ceramic that is bonded by 
a glassy phase can cause subsequent strength degradation. This is believed 
to arise because the sharp impacl nucleates flaws beneath the impacted area 
and the question is, can a knowledge of microhardness enable an estimate 
to be made of the size of flaws induced this way? 

A semi-empirical analysis by Hagan,(35) based on Stroh's hypothesis 
about dislocation pile-up in polycrystalline material collapsing and coalesc­
ing to form a crack with overall decrease in energy if the effective shear 
stress conforms to equation (5.80), can be used 

2 31T[ yG ] 
Us = 8" (1- II)L 

(5.80) 

In equation (5.80) y = fracture surface energy, G = shear modulus, II = 
Poisson's ratio, and L is the slip length along which shear acts. When radial 
cracks are formed along with median cracks, L ~ 1.4a where a is, as usual, 
the half diagonal of the indent impression. Hagan's equations for critical 
load and the critical flaw length such a load produces are 

[ K 1C]3 
Perit = 885 Hv K 1C (5.81) 

[KIC]2 
Cerit = 29.5 Hv (5.82) 
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As stated in Section 5.2.1.4, when considering Palmqvist cracks, ceramics 
can produce shallow radials without prior formation of median cracks, and 
then a new stress distribution is used to anticipate this situation such that 
L in equation (5.80) becomes ~1.577a; the result is that equation (5.81) is 
rewritten as equation (5.83) while the critical flaw size is left as equation 
(5.82) describes 

(5.83) 

Inserting values for hardness and K 1C of glass shows that typically such 
flaws have a length of about 0.5 JLm and that they are situated below the 
surface, suggesting that failure in glassy phases can result from nonsurface 
flaws. Common acceptance is that surface flaws are responsible for glass 
failure.(3) This paradox disappears if it is accepted that Palmqvist cracks 
precede the appearance of the medians during or after impact. 

Flaws of the size estimated from equation (5.82) are the median, radial, 
and lateral cracks caused by indentation, and the questions are where and 
why do they nucleate in a noncrystalline material? Examination of the 
deformed zone beneath an indent or an impact shows that a series of 
intersecting flow lines is produced. Plastic strain is concentrated on the flow 
lines while the material between them is only strained elastically. Median 
cracks arise from the need to accommodate strains at the intersections of 
flow lines in a way analogous to crack nucleation from dislocations on 
intersecting slip planes in fully crystalline materials. 

Lateral cracks are nucleated along the flow lines at the elastic-plastic 
boundary. 

The lines observed in the plastically deformed region are not cracks 
because, when two cracks meet, for further progress to occur they have to 
renucleate, and hence the subsequent paths are not predictable while cross­
ing lines can be seen to kink but still continue with the same curvature. 
Types of line intersection that have been observed are sketched in Figure 
5.21. 

a b c 

Figure S.21. Intersecting flow lines observed in the plastically deformed region of glass beneath 
an indenter with (a) no effect on each other, (b) one line kinked, and (c) both lines kinked. 
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The kinking of the flow lines can lead to a hardening effect as a radial 
flow line in its progress meets another and is caused to kink, as shown in 
Figure 5.21(b); this requires an increase in propagation energy, and before 
this is reached another flow line can be nucleated elsewhere, absorbing 
more energy in total and limiting the penetration-i.e., increasing the 
hardness. 

5.9. TECHNIQUES TO INVESTIGATE SURFACE LA YERS 

It is more common to use a hardness versus load study to investigate 
surface features of ceramic systems, and this is dealt with in Chapter 4. 
However, since hardness determinations made at loads greater than the 
critical one needed to produce cracks around the indent are made, it is 
possible by applying the foregoing analyses to gain insights into the nature 
of surface layers by studying the crack lengths and patterns. 

5.9.1. Determination of Compressive Stress in Tempered Glass 

Equation (5.38) gives the stress intensity factor for driving forward 
cracks nucleated by the indentation technique. In the case now to be 
considered where the material has a compressive stress present in the surface 
layers, the driving force, equation (5.38), will be opposed by the compression 

K measured = K extension - K compression 

Kextension is given by equation (5.38) and Kcompression is proportional to the 
mean compressive stress over the crack volume and the crack length 

( ')1/2 
Kcompression = 2Buc : (5.84) 

The constant B is a dimensionless modification factor accounting for 
free surface effects and stress gradients along the crack depth as the com­
pressive surface stress diminishes into the bulk. For the depths of compressed 
zones encountered in toughened glass, B is approximately unity, but it must 
be emphasized that this is not true for chemically tempered glass where the 
stress profile is very steep. (3) 

During growth the crack is stable if K measured is equal to Kc and is 
therefore a material constant 

( ')1/2 
Kc = Kextension - 2uc : (5.85) 
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and, writing in equation (5.38) for Kextension 

(5.86) 

In equation (5.86), a general contact constant A has been used in place of 
the specific constant 7T -3/2 shown in equation (5.38). 

From equation (5.86) we get 

(5.87) 

Since Kef A is a material-experimental constant, a plot of P f (C,?/2 against 
(c') 1/2 will be a straight line whose slope contains the ue term, and hence 
the mean compressive stress can be extracted. 

The correct A term must be found experimentally by making cracked 
indents at various loads in a piece of the glass that has been annealed to 
remove the surface compression. Extrapolation to zero crack length in 
Figure 5.22 gives a working value for Kef A, and since Ke can be calculated 

50 

-k 
MNm 2 

10 
Annealed glass 

- - - .. - -e- -.-- - • - .. - ... - - .. -

o 5 20 

Figure 5.22. Typical crack length-load relationship for Pyrex glass. 
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from any of the equations (5.40) or (5.45) to (5.60) from the hardness and 
crack length data at the various loads chosen, A can be found. For example, 
the results shown in Figure 5.22 lead to Kel A for the Pyrex glass used of 
9.8 MN m -3/2 and, since Ke is typically 0.75 MN m -3/2 for this type of glass, 
A = 0.076 and a value of iie of around 130 MPa results for the tempered glass. 

Opaque materials and not just glasses can be investigated using this 
technique. 

The results in Figure 5.22 suggest that reliable data are limited to loads 
that produce c'l a values greater than 2. It must be remembered that although 
this is a nondestructive test the sample cannot safely be used again under 
stress because the induced cracks weaken it. 

5.9.2. Estimation of Critical Load Required to Produce 
Surface Layer Flaws 

As derived, the equations in this chapter can be used to estimate the 
magnitude of the minimum load required to produce a flaw beneath the 
impact zone when a particle hits a toughened glass screen. Using equations 
(5.86) and (1.6) we can first replace the applied load P with a Vickers 
hardness term 

K = Aa2HV sin 136° _ _ (C')1 /2 
c 0.2( C,)3/2 2ue 7T 

(5.88) 

There will be a threshold load that will produce a cracked indent such that 
we can imagine the situation where this is reached and the crack is just 
equal in size to the diagonal of the impression 2a. Thus we can rewrite 
equation (5.88) using at as the threshold indent diagonal size 

K = Aa~Hv sin 136° _ 2ii (2at)1/2 
e 0.2a:/2 e 7T 

which becomes 

(5.89) 

Thus the limiting-sized indent that can be generated without producing 
the flawed specimen is, from equation (5.89), equal to 

at = [A sin 1360:: _ 2iie ]2 
0.2(2)3/2 (21 7T )1/2 



Cracked Indents-Friend or Foe? 197 

which simplifies to 

(5.90) 

Now, using equation (5.90) to find a" it is possible to use equation 
(1.6) to estimate the threshold load p* 

H _ 0.2P* 
v- a; sin 1360 

p* = Hv sin 1360 
[ Ke _ ]4 

0.2 1.22AHv - 1.6ue 
(5.91) 

As equation (5.91) shows, the threshold load can be estimated from a 
knowledge of Hv, Ke , and Ue , all of which are found by the indentation 
hardness technique. In the case just considered, with Kc = 0.75 MN m-3/ 2, 

Hv = 6 GN m-2, Uc = 130 MN m-2, and A = 0.076, an estimate for p* is 
0.43 N. This small load over the area represented by at is of course a large 
local stress, but the estimate does emphasize that small particles can generate 
critical flaws beneath the surface. The effect of the surface compression 
layer can be seen by removing the -1.6ue term from equation (5.91) when 
the critical load decreases to 0.068 N for this glass. 

These estimated values are of the same order of magnitude as those 
listed in Table 5.1 for glassy materials like silica when no surface compress­
ion exists and equal to those of MgO when one does. Equation (5.91) is in 
fact quite analogous to equation (5.11), showing a fourth-power dependence 
on the fracture toughness parameter, but the determination is somewhat 
simpler. 

5.10. PREDICTION OF FRACTURE SURFACE ENERGY 

The fracture surface energy 'Y is usually found by using the double 
cantilever beam and double torsion test methods and so fracturing the 
samples in the process. It is possible to obtain values for 'Y for ceramic 
systems that are only up to 30% in error without breaking a sample if the 
Knoop indentation method is used with a range of loads that produce 
cracked indents. Loads in the range 6-30.5 N are required for SiC and 
ShN4 , as shown in the collected results for these materials in Chapter 6. 
Table 6.7, which records crack depths, median or radial trace lengths, and 
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indent long and short axis lengths for Knoop indentations on SiC and 
Si3N4, shows that a load greater than 15.7 N is needed to cause "pop-in" 
in Si3N4 but one of less than 6 N will suffice for SiC. The results also show 
that the radials are in fact very close to the halfpenny shape assumed for 
much of the theory developed in Section 5.4. 

The relevant equation to use is 

(5.92) 

In equation (5.92), " is Poisson's ratio, P is the indenter load, E is Young's 
modulus, c' is the crack depth, z is the depth of the indentation zone where 
no tensile stress component is present, and Q is a term required to convert 
a straight edged crack to a semielliptical geometry. Q is defined by the 
expression 

Q f '7T/2 [ • 2 (crack dePth)2 2 ] J/2d = sm (J + cos (J (J 
o radial trace 

For a Knoop diamond, z can be taken as equal to the short axis length of 
the Knoop indent. 

To use equation (5.92), the crack depth must be measured, and in order 
to do this the sample must be broken in four point bend and the fracture 
surface scanned to identify and then measure crack depth. However, if c' 
is assumed to be equal to the indent trace long axis then the sample can 
be left intact and equation (5.92) gives 'Y correct to ±30%; this is sufficient 
in many cases for subsequent calculations. When fracture in three point 
bend follows Knoop indentation the relevant parameters from the fracto­
graphic analysis can be used in equation (5.92) to get good results; for 
example, SiC gave 18 J m-2 at 5.9 N load, 17 J m-2 at 2.1 N, and 25 J m-2 
at 3.0 N which compare reasonably well with the double cantilever beam 
result of 16 J m-2. A single crystal of 6H-type SiC yielded average 'Y values 
of 23 J m-2 for the (0001) surface as found by Vickers and Berkovich 
methods. (36) 

5.10.1. Prediction of Grain Boundary Fracture Surface Energy 
and Strength 

The fracture energy value that often features in theoretical discussions 
on ceramic strength for normal polycrystalline material is the specific 
fracture energy of the grain boundaries 'YSb• Unfortunately, 'Ysb is hard to 
measure directly and so almost no experimental data exist. It is common 
to see 'Ysb approximated to lattice fracture energy 'YL as a fraction ranging 
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from 0.1 to 0.33 of 'YL. An analysis of the crack path of radials and laterals 
produced by Vickers indentation(37) leads to an equation from which 'Ygb 

can be reasonably estimated. The general argument is as follows: First, the 
grain-boundary strength is determined by K'~ and the size of microflaws. 
Then, for grain boundaries perpendicular to the tension causing the radial 
cracks, propagation of the crack will be along the boundary, in (say) the x 
direction. Small kinklike displacements of grains still allow the crack to 
travel in the grain boundary at small angles from the x direction; if, however, 
the crack travels too far along a particular grain boundary of, say, a larger 
grain at an angle to the x direction, then the crack may pass through the 
next grain instead of around it because the driving force in the x direction, 
K~, would be a maximum. Whether the crack goes transgranular or con­
tinues following a boundary will depend on the direction of the next 
boundary. This is expressed as 

(5.93) 

In the above equation, K~ represents the crack driving stress intensity in 
any general direction, K; is the driving force in the x direction, and a is 
the angle of inclination of the crack direction to the x direction. 

When a is small, K~ "" K; and therefore K~ will exceed the low 
grainboundary strength at low applied load so that K; is still far below 
K ~c, the critical stress intensity for transgranular crack growth. When a is 
large the opposite result follows from equation (5.93). 

Where K~ = K'~, a o is defined as the grain-boundary orientation. 
Following from this, two cases emerge. 

For 0::::; a < ao, grain-boundary crack growth occurs since K; < K;c if 

(5.94) 

And for a o < a ::::; Tr/2, grain cleavage occurs in the next grain the crack 
encounters as K~ < K'~ if 

(5.95) 

a o can be evaluated by determining experimentally the percentage of inter­
granular fracture (PIF), given by equation (5.96) 

PIF a o ----
100 90 

(5.96) 

Combining equations (5.75), (5.94), and (5.96) leads to 

gb _ L 2 (Tr PIF) 
K[c - K[c cos 2" 100 (5.97) 
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Thus, from a knowledge of the average lattice stress intensity factor for the 
material and a measurement of PIF from an SEM micrograph, K'~ can be 
found. The specific fracture energy of the grain boundary is then given as 

"gb = (K,~)2 
2E 

(5.98) 

or if necessary the grain boundary strength may be found by measuring the 
average size boundary flaw a:;' from 

Kgb 
gb _ Ie 

Uf - 0.886 (a:;')1/2 

5.10.2. Estimation of Matrix-Fiber Frictional Stress in 
Ceramic Composites 

(5.99) 

A Vickers indenter can be used to selectively push a fiber through a 
matrix and in a sense generate a circumferential crack which can be used 
to find the frictional binding stress that contributes to increased toughness 
in fiber composites.(38) The method requires that a thin section of the 
composite be cut perpendicular to the fiber direction, polished, and mounted 
on a plasticene base. By trial a small load is selected such that when an 
indent is made on the circular cross-section of a fiber it is completely 
contained in the fiber and no depression of the fiber through the matrix is 
observed, but comers of the indent are just in the matrix. This process 
allows the hardness of the fiber to be obtained in the usual way from 
equation (1.6) and gives an apex indentation diagonal a 1 to be used in 
equation (5.100) 

(5.100) 

Equation (5.100) can be obtained from a force-balance equation of the 
situation that occurs when a large load is applied to the indenter and the 
fiber is pushed through the matrix and into the plasticene for a distance I, 
the slipping distance. In the equation T is the frictional stress, a 1 has been 
defined above, Hv is the Vickers hardness derived from a lo r is the fiber 
radius, Ef is the fiber's Young's modulus, and x is related to the slipping 
distance 1. (It is in fact the depth below the surface that the apex of the 
indenter reaches while the prism faces are supported by both the fiber and 
surrounding matrix.) For the correct load that produces an apex diamond 
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al and just causes slippage such that the pyramid just rests on the matrix; 
i.e., the secondary diamond shape has a2 = r 

(5.101) 

where '" is the usual interfacial angle of the diamond chosen. Hence the 
final equation for this method is 

(5.102) 

The model used to arrive at equation (5.102) is based on a constant 
shear stress approximation for transfer of stress across the interface between 
matrix and ceramic fiber, and this is often interpreted as the flow stress of 
the matrix or as the friction stress at the interface. Such a model leads to 
the view that the average fiber stress varies linearly as a function of distance 
along the fiber which is proportional to shear stress. Thus the shear stress 
at the interface is expected to equal the frictional stress only over a specific 
part of the fiber and then to decrease steadily with distance along the 
interface. A more detailed model concentrating on the transfer of load 
across a frictional interface between elastic solids is reported by Dollar and 
Steif,(4l) which suggests that the results obtained by using equation (5.102) 
are approximations because the constant shear stress approximation over­
estimates the extent of slip. Furthermore, the error increases as the coefficient 
of friction in the interface increases and as the load increases. Nevertheless 
this hardness indentation procedure does lend itself to obtaining much 
useful comparative data for one type of ceramic fiber say, in a series of 
matrices. Thus the technique is in line with how hardness indentation 
methods are most commonly used. 

5.11. INDENTATION MICROCRACKS AS A ROUTE TO 
STRESS-CORROSION SUSCEPTIBILITY COEFFICIENTS 

It is accepted that ceramics under load fail as a result of subcritical 
crack growth from preexisting flaws, and as shown in Sections 5.9.2 and 
5.2 and Table 5.1 these are relatively easily generated. Hence ceramic lifetime 
predictions require evaluation of crack growth rates when subjected to an 
applied stress just as much as estimations of the initial flaw sizes. 

The idea that cracks will grow longer under the influence of subcritical 
loads in particular environments is crucial to a correct use of the equations 
in Section 5.4 to estimate ceramic fracture toughness, although it was not 
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then emphasized. Clearly each toughness equation in Section 5.4 has a c' 
term and, if crack length can increase before it is measured after unloading 
because of the residual stress field, or if there is a delay in measuring c' (if, 
for example, an SEM is used), then a method of determining c~, the true 
load-determined crack length, is essential. 

The microhardness indentation method can be useful in this impqrtant 
area of ceramic science because as Section 5.2 shows it is a way to introduce 
controlled cracks by "pop-in" and then to study their growth. It is more 
common in accurate work to try to prevent crack growth by working at 
liquid nitrogen temperatures or under dry oil, but these modifications to 
the technique can make crack detection difficult. If we are prepared to let 
the cracks grow it is possible to use the growth rate to determine c~ for 
more accurate K[c determinations. 

In general, most ceramics show a slow crack growth which is dependent 
on the applied stress intensity factor K[ and the test environment. And as 
a result growth is not simple, as Figure 5.23 shows with its three distinct 
regions of behavior. Region I is generated by chemical control ofthe process, 
region II by diffusion control, and region HI is not well understood but 
may represent control by transformation in an excited state, as in Section 
4.2. In region III, K[ is rapidly approaching K)c when catastrophic 
extension will occur; hence entry into this region is undesirable. For design 
purposes region I, because it is much longer than region II, is considered 
to be most important, and for this region a simple power function can be 

Log V 

Figure 5.23. The three regions of sub critical crack growth. 
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used to relate crack velocity and stress intensity factor 

V= BK~ (5.103) 

In equation (5.103), V is the crack velocity, KI the stress intensity coefficient, 
and Band n are constants dependent on the material and its environment. 
The constant B is sometimes written as Vo to signify that it represents the 
critical velocity of crack growth at failure. The exponent n is an important 
parameter known as the stress-corrosion susceptibility coefficient of the 
ceramic. 

Thus equation (5.103) is alternatively expressed as equation (5.104), 
which involves the residual stress intensity factor K r • 

d ' [ K ]n 
V= ~ = Vo KI~ (5.104) 

We have seen in Sections 5.2-5.4 how after indentation there is a 
residual stress with a residual stress intensity factor already given in equation 
(5.44), and this can be used to substitute for Kr in equation (5.104) 

(5.105) 

Rearranging and integrating we can obtain 

(C,)(3n+2)/2 - (c~)(3n+2)/2 = Cn2+ 2) Vo [~::rt (5.106) 

Fracture toughness K 1C is given as 

and this can be substituted into equation (5.106) with some rearrangement 
to get 

~ = [1 + (3n + 2) Vot]2/(3n+2) 
c~ 2 c~ 

(5.107) 
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If slow crack growth is a serious problem with the ceramic and atmos­
pheric combination of interest, then Vot/ c~ »1 and equation (5.107) 
approximates to 

£ = [(3n + 2) Vot]2/(3n+2) 
c~ 2 c~ 

(5.108) 

Taking logs of equation (5.108) and using K 1C = /3,P/(C~)3/2 to 
replace c~ 

2 3n (/3,1')-3/2 2 Inc'=--lnt+--ln -- +--In Vo 
3n + 2 3n + 2 K 1C 3n + 2 

+--In --2 (3n + 2) 
3n + 2 2 

(5.109) 

which tells us that In c' should be linearly dependent on In t and a measure­
ment of indent crack length with time can be used to find n. Extrapolation 
to time t = 0, when the indenter diamond was lifted, enables Co to be found, 
and this can be used in more precise determinations of the fracture toughness 
coefficient. 

Returning to equation (5.107), we can see that if crack growth is very 
small then (3n + 2) VOI/2c~ » 1 and the exponent in equation (5.107) can 
be ignored to give 

Thus 

c'= c' + -- Vt ( 3n + 2) 
o 2 0 

(5.110) 

This shows that crack extension is directly proportional to time and the 
intercept is the required value of crack length for refined determinations of 
K 1C• The slope cannot be used directly to find n in this case. 

Values of n for soda-lime glass in water and air environments gave 
average n values of 15.7 and 23.3, respectively, which are typical of values 
found by less convenient methods. 
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5.12. INDENTATION MICROCRACKS AS A WAY TO 
FIND ADHESION CHARACTERISTICS OF THIN FILMS 

Industries concerned with the production of thin films on substrate 
materials have for some time sought routine methods to monitor the quality 
of adhesion between film and substrate. The characteristics of the indenta­
tion test, and in particular its ability to develop cracks beneath the surface, 
present a way to do so. 

Figure 5.2 shows the lateral cracks as nucleating near the base of the 
plastic zone and then running somewhat parallel to the surface. It is not 
necessary, as stated already, for the laterals to nucleate at the base, but to 
nucleate at an appropriate flaw. In one sense the interface between deposited 
layer and substrate is a flaw because bonding across this region cannot be 
as efficient as within the substrate or within the film. Thus the lateral crack 
may well be expected to nucleate in this interface. If it does not, the general 
path of the crack will meet the interface and then continue along it. This 
being so, some of the models and equations already developed in this 
chapter will be adaptable to find K/c . This approach has been proposed 
by Chiang et al.(39) and results in equation (5.111) from a model in which 
the stored energy of the plastic zone acts as a lateral crack opening force. 
The representation of the model is shown in Figure 5.24. 

Application of the treatment in Section 5.2.1.3 gives 

PLASTIC ZONE 

• I 
I .1 

I 
C' I 

"I 

- SUBSTRATE 

I ... , .... , .. , ... ~ 
acting as driving force 

for lateral extension 

(5.111) 

Figure 5.24. Representation of the residual stress associated with the plastic zone driving a 
lateral crack to peel off the deposited film, thickness h. 
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a 1 is a material indent coefficient obtained by calibration using glass and 
found to be 6.4 x 10-8 • The c' value is measured as the ring radius shown 
in Figure 5.2(c), film thickness is measured microscopically, p* is deter­
mined by making indents at increasing loading, and Hv by the usual 
measurement of indent diagonal. Hence the fracture toughness parameter 
of the interface can be found and this is a measure of adhesion. 

5.13. INDENTATION MICROCRACKS AS MODEL FLAWS IN 
CERAMIC SYSTEMS 

Indentation hardness testers have been used for some considerable 
time as adjuncts to conventional three and four point bend test equipment. 
Indentations have been made in specimen beams at loads greater than the 
critical load (see Section 5.8) so that median and lateral cracks have been 
developed from which subsequent failure in the macroscopic strength test 
occurs (see Section 5.5.1). Such testing procedures relate strength to crack 
dimensions but do not contribute to resolving the continuing argument 
concerning the relationships of crack geometry and ceramic strength. There 
are two schools of thought. 

First is the blunt crack school by whom the laws of stress concentration 
at the tips of rounded cracks are believed to apply. As a result, great attention 
is focused on the blunt tip radius. This model is easily used in the interpreta­
tion of increased strength on aging because corrosion effects are seen to 
increase the tip radius and so decrease the stress concentration. 

The second model assumes that cracks are atomically sharp and tip 
radius is not a variable. The driving force for fracture is expressed as an 
applied stress intensity factor proportional to cli12 . Thus crack length is 
important in controlling the strength. This theory, based as it is on the idea 
of spontaneous instability of constant radius cracks, on achieving a critical 
length seems unable to account so easily for strength increases on aging. 
However, it has recently been demonstrated(40) that observations of median 
and lateral crack lengths as a function of time can be used to provide an 
explanation for strength increases on aging in glass specimens. Such an 
explanation invokes the concept of residual stress beneath an impacted zone 
(see Section 5.4) after the indenter is removed. Clearly if the strength is 
measured soon after the indenter is removed the applied stress in the 
breaking experiment is assisted by the residual stress and an experimental 
value for stress is found. However, as the sample is aged some of the residual 
stress is used in increasing the median lengths, so that a subsequent breaking 
test requires a larger load to cause fracture. Thus a decline in the residual 
stress is responsible for antifatigue in glass and is not necessarily a crack 
blunting mechanism. Further, it was shown that annealed indented speci-
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mens, although still cracked, did not show the antifatigue effect because 
the residual stress was removed prior to fracture and could not therefore 
be diminished by postindent crack extension. 

Since most natural flaws have a contact as their cause it is thought that 
they behave like the indentation induced flaws. This reappraisal stemming 
from hardness indent crack observations is important in that it suggests 
that atomically sharp cracks are constant features in ceramics and that their 
consideration should be centered on the basic laws of crack growth as 
related to stress intensity coefficients in Section 5.11. 
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Chapter 6 

Ceramic Systems 
Bonding, Microstructures, Hardness 
Values, and Hardness-Derived Properties 

The materials of particular interest in this book have already been defined 
and listed in Section 1.2, and they are now considered in relevant detail in 
this chapter. Because ceramics encompass all main bonding types-ionic, 
covalent, and metallic-it is convenient to divide this chapter into sections 
on covalent engineering ceramics, ionic engineering ceramics, electronic 
ceramics, and special hard-metal ceramics. 

6.1. COVALENT ENGINEERING CERAMICS 

In current order of importance this heading encompasses SiC, Si3N4 , 

B4C, BN, silicon dioxide and glasses, carbon, silicon, and boron. 

6.1.1. Silicon Carbide 

Although several methods for the production of silicon carbide are 
available, there are only two main engineering grades: 

1. Artifacts obtained by reaction bonding in a process known for over 
15 years as the REFEL process, which is basically still that developed 
by British technologists. "Green" products are pressed from silicon 
carbide powders usually made by the Aecheson process from silica 
and carbon heated to in excess of 2200°C, with excess graphite 
present. Molten silicon then infiltrates the connected pores where, 
on further heat treatment, reaction with the extra graphite produces 
SiC in the interpore space. This secondary SiC is referred to as 
"reaction sintered." The final body has about 12% free unreacted 
silicon. 

209 
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2. Pressureless sintered SiC bodies made from ultrafine SiC powders 
which are themselves highly milled Aecheson powders or are made 
from vapor-phase reactions of silanes with hydrocarbons. Such 
ultrafine powders are usually mixed with carbon and boron sintering 
aids in order to achieve the necessary high densities. 

Articles made this way have high thermal conductivity and high 
hardness and are resistant to chemical corrosion. This combination 
of properties combined with high strength has already led to the 
development of heat exchangers, wear-resistant sliders, and turbo­
charger rotors. Surfaces are usually diamond ground to obtain final 
dimensions, or vapor deposits of SiC are added to produce high­
quality finishes. It is these products that require testing to provide 
hardness values and to gain insight into toughness through K1C 

measurement. 

While REFEL or conventionally sintered (CS) materials are the com­
mon forms, hot pressed material (HP) of almost theoretical density is also 
available. The HP artifacts are usually obtained at 2100°C and 50 MPa 
pressure with either aluminum or boron carbide, B4C, added as a sintering 
aid. Hot pressing with up to 1.5% aluminum produces equiaxed microstruc­
tures with grains about 2 I'm in diameter, but a different microstructure, 
with elongated grains 20-40 I'm long, is produced in the presence of B4C. 

There is also available reaction sintered (RS) material made by shaping 
a Si + C powder and heating it so that dissolution of the graphite by molten 
silicon occurs; this is then followed by precipitation of SiC in the cooler 
regions of the specimen. 

Several forms of chemically vapor deposited (CVD) SiC can be 
obtained, usually based on methylchlorosilanes heated and deposited onto 
SiC, graphite, or silicon. This produces a columnar morphology in which 
the close-packed atomic planes of the deposited grains align at 90° to the 
direction of the condensation reaction. 

Finally, single-crystal SiC has frequently been obtained for experi­
mental purposes. 

Thus there is a wide range of SiC types in existence, and hardness 
results do not always specify the type used or make clear the microstructure 
or composition of the sample. Furthermore, as Section 6.1.1.2 shows, the 
real situation in any sample can be much more complex on a microscopic 
scale. 

6.1.1.1. Bonding, Po/ytypism, and Epitaxy 

Silicon with a groundstate electron configuration Is22s22p63s23p2 and 
carbon with ls22s22p2 inevitably interact via (Sp3) hybrid orbitals to produce 
a tetrahedral arrangement of bonding orbitals. Distribution of these in three 
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dimensions gives the fourfold coordination of each component, and within 
this distribution puckered, six-membered rings formed from corner-sharing 
SiC4 and C4Si tetrahedra can be discerned, arranged as layers throughout 
the structure. These layers are not graphitic and planar, because they are 
connected by strong covalent bonds between the layers and bond angles 
are near to the ideal tetrahedral angles, but discerning them allows the 
structure to be described as a stacking sequence of such layers (see Figure 
6.0. Hexagonal or a-SiC is in the simple sequence ABAB ... , and cubic 
or ~-SiC is in the usual ABCABC ... sequence. 

The a and ~ forms are known to coexist metastably in an epitaxial 
relationship, but conventional X-ray methods do not always reveal the 
intergrowth. Thus the role that this intergrowth plays in determining hard­
ness may not be apparent but may account for some of the variation in 
reported values on otherwise well characterized samples. 

Intergrowths do give rise to a very large series of SiC polymorphs, 
each characterized by a sequence of stacking reversals. As long ago as 1951 
epitaxial coexistence of different polytypes was first observed by Baum­
hauer,(l) who noted that "single" crystals varied in structure along the c-axis. 

The stacking sequence at a coherent twin boundary in ~-SiC is 

! 
... ABC ABC ACB ACB ... 

123 456 78 

! 
The layer A is a coherent twin boundary layer with the layers on either side 
being in twin relationship to each other. 

Polytypes are identified by the sequence of repeat layers in the numbers 
shown above 

layer sequence 1-7 
layer sequence 1-6 
layer sequence 2-7 

polytype 6H = a 
polytype 15R 
polytype 15R 

c 

B 

A 

Figure 6.1. Pseudolayer representation of (a) Wurtzite form of SiC (the a-form in which 
horizontal six-membered rings have a chair configuration and vertical puckered hexagonal 
rings have a boat configuration) and (b) f3 or zinc blende structure of SiC containing all 
chair-form rings. 



212 

layer sequence 2-6 
layer sequence 1-8 
layer sequence 1-3 

polytype 4H 
polytype 21R 
polytype 3C = {3 

Chapter 6 

A coherent twin boundary in the {3-phase such as that shown above is 
by its stacking sequence an incipient a hexagonal nucleus. Because of their 
low stacking fault energy, such faults are present in abundance in the 
{3-phase. The tendency of complex epitaxial structures in SiC to persevere 
at temperatures where {3 is metastable with respect to a is attributed to the 
small free energy difference between a- and {3-SiC and the low energy of 
the epitaxial {3-a interface. 

Both these factors result in a low driving force for the elimination of 
the coherent interface. Microsyntaxy usually involves 3C, 4H, 15R, 6H, and 
21R in various admixtures and truly polytype pure crystals of a-SiC are 
extremely rare. When a regular repeat occurs, then a long-period polytype 
results. This is true for all ways that SiC is prepared and hardness can be 
affected by stress-induced polytype changes beneath an indenter. In practice 
one is often measuring the hardness ofa {3-a composite and transformation 
processes are important. 

Transformation is by a two-stage process when thermal energy alone 
is involved 

FAST 
Dense {3-SiC annealed abovAe 1800°C- Fine-grained {3 recrystallizes 

onto a-plates 
SLOW 

a-Plates grow as {3-transforms 

The simultaneous processes outlined above produce a continuous, fully 
coherent {3 envelope around each a-SiC plate. These composites change 
quite quickly as the fine {3-SiC grains are consumed by rapid growth parallel 
to the coherent boundary. Further {3 ... a transformation occurs as the 
a-plates thicken at the expense of the now large grain coherent {3 envelopes. 
Hence the nature of the {3-a interface, nucleation of a in {3, and the role 
of {3-twin boundaries are all important features of the mechanism. Combined 
effects of slip, atmosphere, and stress under an indenter can affect these 
features and lead to polytype changes during measurement of hardness. 
There seems to have been no real consideration of these possibilities in 
hardness studies even though the results in Table 6.1 do show that unusual 
reverse transformations can be affected by N2 , pressure, and stress. 

From Knoop hardness anisotropy measurements on single crystals of 
6H-SiC, discussed in Chapter 3, the following slip systems have been 
identified in experiments from ambient to 600°C: (0001)(1210), (0001)(0110), 
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Table 6.1. Phases Identified in SiC (10-15 p,m Grain Size) 
Following Annealing in N2 and Argona 

Phases (%) 
Temperature Pressure 

(0C) Atmosphere (MPa) a-SiC I3-SiC 

1800 N2 0.1 100 0 

1800 N2 3 90 10 
2000 N2 0.1 93 7 
2000 N2 3 39 61 
2250 N2 0.1 75 25 
2250 N2 3 6 94 

1800 A 1 99 
2000 A 3 97 3 
2250 A 3 100 0 

• After Jepps. (2) 

{3038}(12l0), and {10TO}(12l0). The first two are basal slip systems; the 
{toTO} are prismatic systems. 

6. 1.1.2. Microstructure 

At low preparation temperatures, cubic /3-SiC dominates in products 
but a-/3 composites occur in all preparations unless high-temperature 
annealing is used for long periods to achieve a basic a-hexagonal form. 
Thus in many specimens several boundaries exist: a-a, /3-/3 high-energy 
grain boundaries; /3-a incoherent high-energy interface boundaries; epi~ 
taxial /3-a low-energy composite grains. In general CS and HP SiC have 
similar microstructures which are quite different from RS and CVD sample 
microstructures. 

6.1.1.2a. CS and HP material. Fabricated materials contain 5-10% 
a-SiC either inherited from the starting powder or formed by the /3 ~ a 
transition during densification. The a-SiC crystals are elongated plates with 
the fiat faces of the plates parallel to (0001) basal planes. Such plates are 
surrounded by a coherent /3-SiC envelope with (OOOl)a " {111}1!' The coher­
ent /3-envelope is surrounded by a fine-grained /3-SiC matrix. Annealing 
causes the a-plates to grow in elongated fashion accompanied by simul­
taneous recrystallization of the fine-grained /3-SiC matrix onto the a-plates 
until the microstructure is one of large composite grains of a-plates in the 
middle of /3-envelopes. High aspect ratios for the hexagonal phase are 
common and all a-/3 interfaces are coherent. 
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Figure 6.2. Development of principal microstructure of RS silicon carbide. 

6. 1. l.2h. RS material. As stated above this is made by dissolving 
graphite in molten silicon followed by precipitation of SiC in cooler regions. 
In this process thick layers of epitaxial ~-SiC form on a-SiC seed grains 
while ~-SiC is deposited in the large pores of the compact. The former 
structure is the major part of the microstructure. Figure 6.2 sketches the 
way the initial microstructure changes. 

As Figure 6.2 shows, the final microstructure of RS silicon carbide is 
like the morphology ofCS and HP forms after stage 1 of their development, 
but in this case the a-plates are not so elongated in the final microstructure. 
a is seen to extend by consuming ~h and therefore ~2 gives way to the 
same polytype as the a-seed, but ~1 can become other polytypes depending 
on nucleation at the twin boundaries. 

6.1.1.2c. CVD material. In this material the microstructure is one of 
columnar grains of cubic ~-SiC composed of stacks of {11I} microtwins 
because {Ill} forms the solid-vapor interface during deposition. Each grain 
is a mosaic of sub grains with small misorientations. At 1800°C the sample 
is totally ~-SiC, but heating above this produces a series of ~-a composites. 

All of these microstructures can be prepared for hardness testing by 
using the usual polishing diamond pastes down to 1 #Lm with surface etching 
if required by using a boiling saturated solution of Murakami's reagent for 
3 to 10 minutes. 

6.1.1.3. Hardness Values and Properties Derived from Them 

The data collected in Tables 6.2-6.24 and some of the conclusions 
drawn therefrom come from many sources, most of which are collected into 
the references at the end of the chapters and are not further acknowledged. 

6.1.2. Silicon Nitride and Sialons 

To the engineer the three forms available of both silicon nitride and 
its alloys with alumina and other oxides, the sialons, are: 

1. Reaction sintered (RS) material made from silicon fired in nitrogen. 
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Method 

Vickers 

Hardness 
(GPa) 

24.5-32.4(3) 

32.4-29.43(4) 

32.43-21.10(5) 
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Table 6.S. CVD SiC 

E 
(GPa) 

450 

K1C 

(MPa m l / 2) Notes 

(I)Load used 4.91 N 
3.0-6.6(2) (2)Range of values depends on 

which of equations (5.40), 
(5.45)-(5.59) is used 

(3)When deposited at 900°C Hv = 

24.5 rising to 32.4 at 11 OO°C 
deposition temperature 

(4)Independent of load from 2.45 N 
to 9.81 N then falls to 29.43 GPa 
at 19.6 N load 

(5) Almost linear fall in this range 
from room temperature to 
1300°C 

2. Hot pressed (HP) Si3N4, preformed mixtures of a and f3 polymorphs 
sintered to high density using high pressures. 

3. Pyrolytically deposited Si3N4 formed from SiCl4 vapor and NH3. 

From an early stage in the development of these ceramics useful artifacts 
have involved the sealing of the surfaces of sintered or hot pressed articles 
with pyrolytic material to make use of its very high hardness and high 
density. The relative hardness of the three forms is shown in Figure 6.4. 

Deposition on to RS or HP silicon nitride shapes can be achieved at 
rates up to 0.25 mm h- 1 producing strong, void-free interfaces. Depending 
on the conditions of deposition and in particular the temperature of deposi­
tion, the growing layers are either amorphous or crystalline and, as later 
seen in Table 6.9, greater hardness is achieved with the crystalline deposit. 
If freestanding CVD Si3N4 articles are needed they are made by depositing 
onto carbon preforms which can then be oxidized away, but only the 
crystalline form is satisfactory for such a process. 

When Si3N4 artifacts have their surfaces sealed by the CVD method 
they are particularly suited to applications in which hot corrosive environ­
ments are encountered; one notable example of this is in gas turbine 
components where fuel absorption is eliminated and if necessary less-pure 
fuel can be used without severe chemical degradation from combustion 
products. 

As Figure 6.4 shows there is virtually no load dependence of hardness 
for all forms of silicon nitride after a load of 1.96 N. Furthermore cracked 
indentations do not become apparent until loads in excess of 9.81 N are 
applied, which is in sharp contrast to the case of SiC. Sliding hardness 
determinations with a load of 4.9 N produces only plastic grooves and small 
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Figure 6.4. Load dependence of Knoop hardness for various forms of silicon nitride. 

rounded pieces of groove debris. Once again these features are markedly 
different from the behavior of SiC (Section 6.1.1), which is frequently 
considered to be a rival to Si3N4 in areas of application. 

6. 1.2. 1. Bonding and Polymorphism 

As usual for silicon-based ceramics, the silicon in Si3N4 is seen as 
bonding via an excited electron state Sp3 configuration to produce a tetrahe­
dral array of valence orbitals. Thus, as for silicates, the structural unit is a 
tetrahedron but these are SiN4 building units in a three-dimensional network, 
each corner being shared by three other SiN4 tetrahedra in contrast to 
oxygen atoms in silicate tetrahedra which are shared between only two 
tetrahedra. Two main advantages accrue from this fact: the greater rigidity 
of the bridging atoms in silicon nitride, which gives rise to the outstanding 
properties of the material; and only limited polymorphism, as the structural 
weakness of the Si-O-Si bridge in silicates is not present. 

Two polymorphs are encountered, a and 13, of which 13 is the more 
stable and the more commonly encountered. 

While Sp3 hybridization of silicon realizes SiN4 tetrahedra to form the 
structure, nitrogen with a ground-state electron structure of ls22s22p3 must 
have a filled p orbital perpendicular to the plane of the Sp2 hybridized 
valence orbitals necessary to produce the planar Si3N groups that are the 
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second type of linking polyhedron needed to form the macro covalent 
structure. Because the p2 pair on each nitrogen atom is perpendicular to 
the Si3N group, it can with a slight tilting of the group produce some 7T 

bonding into the empty silicon 3d level, thus producing stronger bonds and 
contributing to the advantageous properties of Si3N4. The result of this is 
some puckering of the Si3N groups perpendicular to the (001) plane. In 
this way the structure can be viewed rather like that discussed for SiC in 
Section 6.1.1.2, as superimposed layers of linked, puckered rings formed 
by joining six almost unstrained SiN4 tetrahedra. 

Overall /3-Si3N4 has hexagonal symmetry with a = 0.760 nm and c = 
0.2908 nm and space group P63/m. /3-Si3N4 is more symmetrical and less 
strained than the a-polymorph and as a result is more stable. The a ~ /3 
transformation is commonly observed but the reverse /3 ~ a transformation 
has never been reported. 

The a-Si3N4 structure has been described as two distorted /3-Si3N4 
type layers rotated with respect to each other and covalently joined in the 
c-axis direction. As a result of this operation the Si3N groups are definitely 
nonplanar, having a pyramidal aspect. Like the /3-form, the overall symmetry 
is hexagonal, with a = 0.7748 nm and c = 0.5619 nm in the space group 
P31c. The distorted structure produces internal strains that make the a form 
less thermodynamically stable, but there are features in the mechanism of 
formation of Si3N4 that make a kinetically the favored species in many 
preparation conditions. Once formed it is slow to transform to the /3-
polymorph because this involves quite large reconstruction of the whole 
covalent structure. 

Two mechanisms leading to formation of both types of Si3N4 are 
postulated, depending on whether nitrogen reacts with silicon as a molecule 
or as nitrogen atoms: 

(6.1) 

(6.2) 

If equation (6.1) applies, the atomic nitrogen will be mobile and the 
more symmetrical p7T-d7T bonded /3-structure results. 

If equation (6.2) applies, then silicon diffuses via a liquid or gaseous 
state towards the N2 molecule and steric hindrance from N_N may result 
in the more strained a-form. Impurities which reduce the likelihood of 
atomic nitrogen being present-i.e., O2, H2, and H20, which scavenge N 
atoms-lead to a preponderance of a-Si3N4 in powder preparations of 
silicon nitride. 

Thus some samples of Si3N4 can be of two phases, a-/3, which may 
affect hardness determinations. However, in general when any sample of 
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Si3N4 is raised to high temperature to hot-press shapes, etc., it transforms 
to the {3-form. In general, though, it is rare to encounter a pure single-phase 
{3 -Si3N4 sample because densification aids are commonly used in the ceramic 
shaping processes. Above 1700°C the outer surface layer of silica that is 
inevitably present becomes glassy and viscous, but before its viscosity 
becomes low enough to assist the sintering process it reacts with Si3N4 to 
produce a crystalline silicon oxynitride. 

Thus even "pure" samples of {3-Si3N4 have grain-boundary phases that 
are not Si3N4. Technology has advanced by assisting the Si02 to remain 
liquid long enough for it to aid the sintering process. Densification occurs 
by three stages: 

1. Particle rearrangement. 
2. Solution of a-Si3N4 and reprecipitation of {3-Si3N4. 
3. Coalescence. 

Potential additives are assessed in terms of these three needs. 
Magnesia is a widely used additive because it reacts with Si02 to give 

a silicate liquid near the MgSiOr Si02 eutectic when amounts near to 2% 
by weight are used. The eutectic liquid dissolves Si3N4 to produce a Mg-Si­
N-O glass capable offulfilling all the three requirements listed above. From 
this it is clear that an intergranular glassy phase becomes part of the final 
microstructure and this can influence hardness measurements; some values 
of the hardness of this glass are given in Table 6.10. 

Yttria, Y20 3, is another common aid which fulfills the requirements 
but in this case produces a crystalline intergranular phase. Unfortunately 
this yttrium-containing phase is not stable in the presence of oxygen at high 
temperatures. 

Zirconia is the third common sintering aid encountered. It is used at 
the 5% by weight level to give high density products and grain-boundary 
crystals of Si2N20 and Zr02. 

Elucidation of the role of sintering aids and uncertainty about the 
existence of a-Si3N4 as a true binary ceramic has led to the development 
of ternary, quaternary, and higher-level ceramics known as the sialons, an 
acronym formed from the elements present: Si, AI, 0, and N. 

6. 1.2.2. Sia/ons 

Realization that the atomic arrangements in {3-Si3N4 are the same as 
in silicates like Zn2Si04 and Be2Si04 soon suggested that the principles of 
silicate crystal chemistry should apply. In particular, because the Al04 
tetrahedron is the same size as the Si04 tetrahedron, one can replace the 
other in silicate structures as long as valence compensation is made else­
where in the structure; the same should apply with SiN4 and AIN4 tetrahedra. 
It was soon shown to be the case that two-thirds of the silicon in {3-Si3N4 
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can be replaced by aluminum without changing the structure provided an 
equivalent amount of nitrogen is replaced by oxygen. This material became 
known as sial on for the reasons stated above. Because sialon has the same 
atomic arrangement as ~-Si3N4' its mechanical and physical properties are 
similar to those of the nitride. It has some of the advantages found for solid 
solutions; in particular, it has a lower vapor pressure and forms more liquid 
at lower temperatures with sintering additives, thus making pressureless 
sintering more feasible. Hence lower-temperature densification leads to 
finer-grained material and higher strength. The solid solutions Si3N4 + Al20 3 
carry the designation ~'-sialon, and artifacts based on these solid solutions 
are inevitably sintered with additives which produce microstructures con­
taining grain-boundary phases as was the case for ~-Si3N4 itself; these are 
either the nitrogen-oxygen glass or yttrium-aluminum garnet. 

While there are sialons based on the ~-Si3N4 structure known as the 
~'-sialons, there are others based on the a-Si3N4 structure. They usually 
contain up to two cations from Li, Ca, Y, and the lanthanides per X-ray 
unit cell. The structural principle involved in these materials is that found 
in the "stuffed" quartz silicate minerals in which Al3+ replaces Si4+ and 
compensating cations occupy appropriately sized interstitial sites in the 
structure. 

As mixtures of the a and ~ polymorphs usually arise in the preparation 
of Si3N4, in sialon preparation it is common to find mixtures of a' and ~' 
sialons. Vickers hardness determination can be used to assess the amount 
of a' and ~' in a preparation because a linear correlation between Hyand 
~' content appears to exist, as Figure 6.5 shows. The hardnesses of some 
~' and a' sialons are given in Table 6.10. 

A third family of sialons is based on the Si2 N20 structure, and these 
are known as the o'-sialons. 

All the sialon families are the subject of intensive research work, but 
currently commercial materials and artifacts are restricted to two grades 
supplied by Lucas Cookson Syalon Ltd: a general purpose wear grade 
known as Syalon 101 which is a ~'-sialon -with grain-boundary glassy 
material, and a high temperature grade, Syalon 201, also a ~'-phase with 
yttrium aluminum garnet (YAG) boundary material. 

More interest has recently centered on the nature of the glassy grain­
boundary phases because glasses containing substantial amounts of nitrogen 
are quite novel and crystallization of such phases is seen as a way to improve 
the high-temperature mechanical properties of sialons in general. Typical 
Mg-Si-AI-O-N glass compositions are listed in Table 6.10, along with some 
hardness, and hardness-derived data. General equations relating HK , E, 
and Kc to nitrogen content have been experimentally derived(4): 

HK = 0.549 N + 6.58 GPa (6.3) 
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Figure 6.5. Linear dependence of Vickers hardness on the J3'-sialon content of sialon prepar­
ations. After Babini et al. (3) 

E = 9.2 N + 65.4 GPa (6.4) 

Kc = 0.0328 N + 0.82 MPa ml / 2 (6.5) 

Equations (6.3)-(6.5) can be used for Mg-Si-Al-O-N glasses when N is 
measured in % by weight. 

These equations are statements of the general trend found in all this 
work with nitrogen-containing glass, that hardness and elastic modulus all 
increase with increasing N content. 

Even more recently a new family of solid solution ceramics based on 
SiC, Al20C, and AIN have been prepared and investigated. The acronym 
for these materials is sicalon, and they have to be prepared by hot pressing 
appropriate mixtures of SiC, AlN, sialons and aluminum oxycarbide at 
temperatures in excess of 1800°C. 

All of the forms of Si3N4 , sialons, and sicalons can be prepared for 
hardness testing by polishing with the commercial diamond pastes down 
to 1 JLm. If surface etching is needed, a rather harsh treatment is required 
by boiling in a three-to-two mixture of sulphuric and orthophosphoric acid 
for four hours. 
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Table 6.6. Reaction Sintered Si3N4 

Density, 
Hardness K ,C p 

Method Microstructure (GPa) (MPam1/ 2t (kgm-3 ) Notes 

Vickers 
25% porosity, 7.5 2.2 

0.5-7.0 #£m grains 
25% porosity, 5.0 2.2 

2-50 #£m grains 
21%a,79%f3 3.4 2590 
13%a,87%f3 2.4 3410 
8%a,92%f3 2.2 2310 

Knoop 
14.2 0.49 N load 

0.98 N load 
8.83 4.50N load 
8.83 

Brinell 
9.81 2.0 2500 From 3 point 

bend 

"From equation (5.40). 

6.1.2.3. Hardness Values and Data Derived from Them 

Data for the different types of silicon nitride and sialons can be found 
in Tables 6.6 to 6.10. 

6.1.3. Boron Carbide 

Boron carbide, B4C, is mostly used for its hardness and wear resistance. 
It is, after diamond and cubic boron nitride, the third hardest material for 

Table 6.7. Critical Load and Crack Size for Si3N4 from Equations (5.11) 
and (5.12) 

Median Indent 
Crack or long 

Load depth radial axis E 'Y P* c* 
Sample (N) (mm) (mm) (mm) (GPa) (J m-2) (N) (mm) 

HS-130 5.9 0.0305 0.0634 0.0675 310 25 15.7 
10.1 0.0405 0.0960 0.106 
15.7 0.0494 0.120 0.1205 
20.6 0.0640 0.140 0.1398 35 
25.5 0.0700 0.170 0.1578 
30.4 0.0800 0.188 0.165 45 

CVD 4.91 310 0.142 
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Table 6.9. Chemically Vapor Deposited Si3N4 

Hardness 
Method Microstructure (GPa) 

Knoop Crystalline 29.4 
25.2 
19.6 

Amorphous 20.71 

Vickers 34.4 2.1-5.0 

"Values dependent on which Equation of (5.40), (5.45)-(5.59), is used. 

E 
(GPa) 

310 

Notes 

0.49 N load 
0.98 N load 
4.9 N load 
0.98 N load 

0.99 N load; 
indent with 
19.21Lm cracks 

industrial use. Within its structure it combines a low density, 2510 kg m-\ 
with a high Young's modulus of 441 GPa, and this leads to its use as 
lightweight personnel and aircraft armor as well as strong neutron moderator 
rods in nuclear reactors. For body armor the boron carbide is hot pressed 
into hexagonal tiles 6 mm thick which are then mounted on a backing of 
glass-tiber-reinforced epoxy resin. On impact with a projectile, even one 
made from the hardest, most piercing material such as tungsten carbide, 
the B4C shatters but absorbs so much energy in the process that the missile 
then cannot penetrate the tiber-reinforced underlay. 

Industrial production of B4C is based on fusion of boric oxide and 
carbon in electric furnaces operated around 2500°C. This process leads to 
lumps of coarse-grained material of high purity which has to be milled for 
sinter powders. Finer powders are obtained by magnesiothermic reduction 
of the boric oxide at lower temperatures around 1750°C: 

(6.6) 

6. 1.3.1. Bonding, Composition, and Structure 

The covalent bonding in B4C in both the structural B12 icosahedra and 
the intericosahedra bonds is the same as that occurring in the element boron 
(Section 6.1.8), and not unexpectedly the rigid three-dimensional structure 
of B4C resembles that of boron itself. Two structural units can be discerned, 
B12 icosahedra and C3 carbon chains. The structure can then be viewed as 
a face-centered cubic lattice with a B12 icosahedron and a C3 chain occupying 
the lattice points with the B12 at what would be the Na+ sites in the NaCl 
structure and the C3 chains being centered on the Cl- ion sites. Boron is 
bonded to carbon through sp-sp orbital interaction, and three interatomic 



Table 6.10. Sialon Hardness Data 

Hardness K1c 

Method/ sample Microstructure (GPa) (MPa m 1/2 ) Notes 

Vickers 
Syalon Hot pressed 19.\3(1,2) (1)9.81 N load 

Zero porosity 15.31(1,3) (2)25°C 
12.26(1,4) (3)500°C 

(4)1000°C 

Sandvik cc680 \3.05 (5,6) (5)Surface bombarded 

{'" ,,6.m with AI20 3 
17.6 at 12.3 /Lm particles" at 140 m S-I 

10.3 at 23.2 /Lm (6)Equation (5.49) used 

5.4 at 44.1 /Lm with E/ H = 23, 
P = 2.94 N 

,8' - si'alons: 
Si3N4-10% Ce02 17.31 

-5% AI20 3 ,8'/(a' + ,8') = 0.31 
grains 0.6 /Lm 29.53 

-5 wt% AI20 3 ,8'/(a' + ,8') = 0.87 
grains 1.0 /L m 21.22 

Mg Sialon Glass 

Mg\3.7Si2\.6 
AI3.9056.9N3.9 Zero porosity 8.90(7) 0.84 (7)Load = 0.98 N 

E = 80.9 GPa 7.97(S) (S)Load = 9.81 N 

MgIS.75SiI6.67 E = 108.1 11.46(7) 1.10 
AI6.25052.osN 9.76(S) 

N6.25 
Mg I4.3Si IS.4 E = 1\3.3 GPa 11.64(7) 0.95 
Als.205\.oNs.2 9.57(S) 

Sicalon Hot pressed 20.5-21.4 4.1-4.3 
90-95% SiC, 
4.1-2.1% AI 20 3 
5.9-2.9 AI4C3 

Knoop Glass zero {,16'" 
(9)0%N 

Y-Si-AI-O-N glass porosity 7.95(10) (10)5% N 
9.12(11) (11)10% N 
9.86(12) (12)15% N 

Mg sialon glass, 
composition as above 

N3.9 7.66(7) 
6.22(S) 

N6.25 9.27(7) 
7.00(S) 

NU5 9.47(7) 

7.4i") 
Y sialon glass Zero porosity 
at % N = 6.3 p = 3820 kg m-3 9.01(7) 0.95 E = 141 GPa 

\3.3 p = 3920 kg m-3 10.37(7) 1.44 E = 157GPa 
15.0 p = 4000 kg m-3 10.37(7) 1.25 E = 186GPa 

Brinell 19.62 8_10(\3) (l3)Determined by 
Syalon 3 point bend, 

not hardness. 

(.IThe results showing a very high K,c value at the surface after erosion with fine AI 20 J particles are a strong indication 
that engineering ceramics may have much tougher surfaces than first thought. 
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distances are important: B-B = 0.174 to 0.180 nm, B-C = 0.164 nm, and 
C-C = 0.139 nm. A section of the structure is shown in Figure 6.6 indicating 
how the C3 chains are bonded to the boron icosahedra. 

From Figure 6.6 it is easy to see that B4C is likely to be an idealized 
composition because excess boron can be accommodated by replacing the 
central of the three carbon atoms by boron, which would then form a 
stronger sp-sp bond with neighboring boron atoms in the icosahedra. Thus 
it is possible to get a composition range from B12C3 to BI3C2 and, even 
though this happens, the general hardness data for boron carbide do not 
reflect the possibility with investigators quoting B4C as the composition 
each time. However, detailed hardness values and those for hardness-related 
properties are not plentiful as Section 6.1.3.2 shows. 

6.1.3.2. Hardness Values and Data Derived from Them 

Data derived from the hardness values of sintered B4C can be found 
in Table 6.11. 

6.1.4. Boron Nitride 

Principally two forms of BN, differing markedly in their hardness, are 
commercially available. The hexagonal form because of its chemical inert­
ness, its electrical insulating properties, and its low coefficient of friction 

Figure 6.6. Part of the structure of B4C. Large atoms are carbon; small atoms are parts of 
boron icosahedra. 
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Table 6.11 Hardness of Sintered B4C 

Hardness E 'Y 
Method Microstructure (GPa) (GPa) (J m-2 ) Notes 

Vickers 44.15 460a 3.27 load = 0.98 N 
Fine polycrystalline 32.2 500 K I , = 6.0 MPa m l/2 

Rockwell C 
Porosity range 30-90b 

0-30%, 
grains 2ILm 

a E = 460[1 - 8/1 + 2.998] GPa, where 8 = fractional porosity. 
b HR = Ho(1 - ( 2 )2 exp (- B8), where B = 0.35 for boron carbide. 

is encountered mostly as crucible material for molten metals and as high­
temperature insulation. In these uses it is usually fabricated by the hot 
pressing route. 

At temperatures around 2300°C and high pressures, around 6.3 GPa, 
the hexagonal form can be converted to a cubic diamond structure form. 
The cubic modification is known as borazon and is finding application now 
in wear-resistant parts and in the cutting tool industry. 

A third form of BN exists that is also a high pressure polymorph, with 
the wurtzite, structure and it is not always clear whether borazon samples 
contain both the cubic and this hexagonal form. 

Although borazon requires fierce conditions for its manufacture, the 
precursor hexagonal BN powder is made by a relatively low-temperature 
reaction from boric oxide. An inert filler is used to disperse the B20 3 and 
prevent it from forming large, slow-to-react lumps; calcium phosphate is a 
common filler material stable at the 600-800°C at which the reaction is 
carried out. Ammonia is used to convert the B20 3 to BN at these tem­
peratures. Acid leaching leaves an impure product that is upgraded by 
heating in ammonia to llOO°C and nitrogen to 1800°C. 

A chemical vapor deposited material is made by pyrolyzing tri­
chloroborazine and plating the vapor formed BN onto substrates: 

(6.7) 

At temperatures around lOOO°C the product is amorphous and up to 
1200°C it is polycrystalline with little orientation. When prepared above 
1800°C by this method the product is highly oriented with resultant obvious 
anisotropy of mechanical properties. This feature can affect the values of 
hardness found in the literature. All forms are chemically very inert, but 
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surfaces can be etched with sodium nitrate at 530°C and slip traces revealed 
on {111} if not {00l} surfaces. 

6. 1.4. 1. Bonding, Composition, and Structure 

Carbon and BN are isoelectronic and not surprisingly, therefore, the 
two structures found for carbon, diamond, and graphite are found for the 
main polymorphs of BN. The common hexagonal "white graphite" form 
is shown in Figure 6.7. Hexagonal layers of alternating Band N arise from 
covalent bonding between half-filled Sp2 hybrid valence orbitals. Each atom 
in the layers has a pz orbital perpendicular to the plane of the hexagonal 
rings but, while the boron orbital is empty, each nitrogen p orbital is full; 
7T-interaction between these orbitals is minimal because of the preclusive 
energy differences. Thus there is no delocalization as is the case with 
hexagonal carbon layers, and so BN is not metallic in behavior. The presence 
of the lone pair on each nitrogen atom does assist the direct alignment of 
a N atom above a B atom in successive layers, as Figure 6.7 shows. The 
hexagonal unit cell has a = 0.2504 nm and c = 0.661 nm and a density of 
2270 kg m-3• Planar B-N bonds are 0.145 nm long and interlayer B-N bonds 
are 0.333 nm long, providing obvious anisotropy in mechanical behavior. 

The cubic, very hard form borazon is difficult to produce from the 
hexagonal structure shown in Figure 6.7 because to obtain the cubic F unit 

0'145 nm 
or; .. 

0'333nm 

~tif0.W2 ~M S?(; ~ 
I" I" I 
I I , ' 
I " I I I 

~~~~ 
I I I I I I I 

I " I I I , I I I I 
I I I I I 

~~~~ 
Figure 6.7. The layer structure of hexagonal BN. Dark circles are boron atoms and white 
circles are nitrogen. 
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cell with tetrahedrally distributed 4-coordinate Band N atoms, bonding 
has to be changed to Sp3 hybrid bonding from the Sp2 arrangement. 

6. 1.4.2. Hardness Values and Data Derived from Them 

Few data exist, but some are collected in Table 6.12. 
The results for aggregated BN cubic crystals shown in Figure 6.8 

demonstrate a surprisingly high rate of indentation creep (see Section 4.4) 
at such a low homologous temperature-i.e., -O.2Tm' 

Table 6.12. Hardness of Sintered BN 

Hardness 
Methodl sample Microstructure (GPa) Notes 

Vickers 
Hexagonal 1.96} 

Loads in the range 
0.245-1.47 N 

Cubic Borazon 46.11 
60% cubic 3",m grains in a 35.33 
85% cubic binder of TiN, 42.20 

AlN, and WC 

Knoop 
Hexagonal BN Polygonal grains of 6.87 Load = 1.96 N 

2",m in Si3N4 
matrix 

Cubic 3-9",m grains in 33.35 
binder phases TiN 
and TiB 

Cubic 1-5",m grains in 34.35 
TiN, TiB binder 

Load=4.91 N Cubic 1-3",m grains in 39.2 
TiN binder 

Cubic 2.5",m grains in 39.2 
cobalt and WC 
binder 

Cubic Single crystals Load = 4.91 N; 
200-500",m edge 

430 } 
consonant with 

length, (001) plane {I 11}(1 10) being 
long axis [100], (001) the active slip 
plane long axis [110] 30.0 system 

Cubic Aggregate of 55 Load = 0.98 N 
10 ", m crystals 39.5 Load = 1.96 N 

35 Load = 2.94 N 
30 Load = 4.91 N, then 

no further load 
effect on hardness; 
n in equation (4.2) = 1.7 
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50 

10 

> 
% 

Si (111) ~12] 450°C 

Time s 

Figure 6.8. Hardness of cubic BN at 500·C showing an indentation creep effect and comparing 
it to some single crystal data for alumina and silicon. (5) 

6.1.5. Silicon Dioxide, Silica, Glasses, and Glass Ceramics 

There are three main reasons why a considerable amount of work in 
the hardness field has been done with this class of materials. First, on the 
theoretical front, there is the fact that glasses have been considered to be 
ideal brittle materials and have been used to test theoretical ideas; the fact 
that conventional, soda-based glasses could be indented without cracking 
was an early step in the reappraisal of this class of materials. Marsh(31) used 
the presence of indentations in glass surfaces and the appearance of sliding 
hardness grooves to suggest that glasses had a plastic component in their 
mechanical behavior. Naturally this became a source of controversy and 
fueled many indentation hardness studies. 

A second obvious reason why glasses have been studied so much is 
the fact that they are transparent and the generation of cracks below the 
surface can be seen and measured. 

The third main reason why.hardness methods have been used is tech­
nical in the sense that crystallization of the glass to produce whole new 
families of materials-the glass ceramics-can be followed. Glass ceramic 
systems are becoming increasingly important in applications as high­
temperature, high-strength, 100% dense bodies. 

Most recent and careful observation of the deformation zone below 
an indent in glass shows that it consists of a series of flowed areas separated 
by areas in which elastic deformation has taken place (see Section 5.8). All 
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deformation between the elastic zones is concentrated into a series of 
intersecting flow lines. Median, radial, lateral, and Palmqvist cracks appear 
to be nucleated by the strains at the intersection of these flow lines or along 
them where they have boundaries with the elastic-only deformed regions. 
Observations such as those summarized above do show that genuine slip 
occurs and not just compaction of the open network structures of the glass. 

6.1.5. 1. Silicon Dioxide 

The various forms of Si02 are based on complete corner sharing of 
the four oxygen atoms in Si04 tetrahedra, and the large degree of poly­
morphism arises from the competing structural requirements outlined below. 
First consideration must be given to the covalent bonding present in the 
"isolated" Si04 unit; silicon with a groundstate electron configuration 
Is22s22p63s23p23do requires less energy to form four valency orbitals via 
the excited state Is22s22p 63s13p33do than does the archetypal atom carbon. 
Hence these four valency orbitals are formed and are directed to the corners 
of a tetrahedron with no involvement of the empty, relatively low lying 3d 
orbitals. To match these valency orbitals of silicon it is possible for oxygen 
atoms to be hybridized also to produce four Sp3 hybrids from the ground 
state Is22s22p4, and resonance between the Si and oxygen hybrids would 
produce a tetrahedral unit, as observed, but bonding of two or more of the 
Si04 units through an oxygen atom would result in Si-O-Si angles of 109°. 
However, in this orientation none of the oxygen 2p orbitals containing wave 
pairs are directed toward the empty 3d orbitals on the silicon atom and so 
no 'IT-bonding with resultant strengthening of the Si-O bonds can occur. 
If, however, the oxygen atoms are hybridized only to the sp state then linear 
Si-O-Si bridging would result and the 2p2 orbitals on the oxygen atom 
would be able to interact with the empty 3d orbitals of silicon producing 
stronger Si-O bonds. Thus Si02 and glasses based on Si02 can have Si-O-Si 
bridging angles between the structural Si04 building units that vary from 
109° to 180°, . giving rise to polyhedral variation. Put another way, it is 
possible to say that oxygen orbital hybridization can alter to accommodate 
the requirements of other groups bonded to the silicon or to meet the 
coordination requirements of charge balancing cations that are found in 
silicates and glasses. 

A second structural feature of linked Si04 tetrahedra leading to poly­
morphism is the rotating of tetrahedra about the common oxygen atom to 
give configurations ranging from eclipsed to staggered. This feature was 
not possible for SiN4 tetrahedra in Si3N4 (see Section 6.1.2). 

A third possibility is relative tilting of tetrahedra about triad axes. 
These variations do give rise to polymorphs, and it is not outside the bounds 
of possibility that the large hydrostatic pressures beneath an indenter can 
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cause some of them to occur locally with corresponding energy absorption 
and apparent increases in hardness. Structural analysis of the material in 
the immediate vicinity of an indent is not often encountered and so this 
possibility is not considered. 

All Si02 structures are described as frameworks and have "open" 
appearances with large interstitial spaces. The structures are a compromise 
between the conflicting requirements of tetrahedral shape, the ideal 
tetrahedra linking angle of 180°, and the symmetry demands of the structure. 
The main polymorphs are described below. 

6. 1.5. 1a. Quartz. This is stable up to 870° when it transforms to 
tridymite, but because substantial rearrangement of oxygen hybridization 
is required the transformation is very slow to occur. At 573°C quartz 
undergoes a rapid phase change between the a (low-temperature) form and 
the {3 (high quartz) structure with the transformation just involving a small 
amount of rotation by Si04 groups about diad axes. The {3-form of quartz 
appears to be stronger than the a-form and has a zero to slightly negative 
thermal expansion coefficient up to 1400°C. The fact that it does exist up 
to such a high temperature reflects the sluggish nature of the quartz ~ 
tridymite change. Both forms of quartz are common raw materials of the 
ceramics industry. When pure, quartz is colorless and transparent, com­
monly exhibiting conchoidal fracture. 

Both structures are based on a hexagonal lattice containing three 
formula units per unit cell with a = 0.49 nm and c = 0.539 nm. 

6.1.5.1 b. Tridymite. This form of Si02 exists in the temperature range 
870°C-1470°C before transforming to cristobalite, but again the transforma­
tion is extremely slow. A consequence of the sluggishness of the transforma­
tions is that tridymite is commonly encountered at room temperature where 
it has an extremely large hexagonal unit cell with a = 3.008 nm and c = 
4.908 nm, containing 864 formula units; this is a-tridymite. At 250° there 
is a rapid phase transformation to the {3-form which has a much smaller 
hexagonal unit cell with a = 0.503 nm, c = 0.822 nm. This simpler structure 
can be described in the pseudolayer manner already used for SiC and Si3N4 
and some correlation with SiC can be seen, making it likely that SiC is 
protected to give it environmental protection by a thin layer of tridymite 
rather than the other forms of Si02 • 

6.1.5.1c. Cristobalite. This is the high-temperature form ofSi02 from 
1470° to the melting point at 1730°C, but it can be encountered down to 
ambient temperatures as once again the kinetics of transformation are 
dominant. The idealized structure is cubic; a = 0.705 nm with Si-O-Si linear 
groups in the diamond structure. When found at room temperature it is 
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actually tetragonally distorted; this is the a-form. Once again there is rapid 
transformation to the cubic J3-form at 220°C as the Si-O-Si bond angles 
open out to 180°. The J3-form has negligible thermal expansion because 
increase in the Si-O-Si angles causes a shortening of the Si-O bonds while 
the rising temperature increases their length, tending to a null situation. 

Both a- and J3-cristobalite can be described by the pseudolayers of 
puckered hexagonal rings of Si04 units, and when this is done it is possible 
to see that tridymite and cristobalite are related in the way the zinc blende 
and wurtzite structures are. 

The increasing openness of these polymorphs is reflected in decreasing 
density from quartz (2655 kg m-3 ) to cristobalite (2330 kg m-3). 

Perhaps significantly in the context of this book there are three rare 
polymorphs of silicon dioxide all found after the application of high 
pressure: coesite, keatite, and stishovite. The possible production of these 
in the zone immediate to the indenter and the energy this would absorb do 
not appear to have been considered. 

6.1.5.2. Silica and Glass 

Silica is the name given to fused Si02 that has become rigid without 
crystallizing and is therefore the glass formed from the polymorphs 
described in Section 6.1.4.1. Being a glass it conforms to the definition: a 
noncrystalline elastic solid with viscosity> 1012.5 Ns m-2. To be noncrystal­
line we conceive it to be a solid with areas of 2.0 nm maximum order. Within 
this constraint for order there have been many attempts to describe structural 
models for silica and other glasses; there are too many to review and consider 
the various features of, but this information can be found in Chapter 3 of 
reference (6). Sufficient to say that the commonly accepted random network 
model based on the disordering of the crystalline structures of Si02 may 
be neither correct nor the most helpful when considering the behavior of 
glasses in general. 

It must be emphasized, however, that when glasses based on silica are 
formed by adding other oxides such as CaO and Na20 then substantial 
changes to the bonding must occur with the introduction of a varying degree 
of ionic bonding making these solids mixed covalent and ionic in character. 

None of the models for glass structure allow interpretation of behavior 
via dislocation generation and glide which, in the area of hardness and 
mechanical properties, is a drawback as most of the work in the preceding 
chapters demonstrates. Interpretation is heavily dependent on flaw gener­
ation and propagation and on chemical bond interpretations involving 
dilation effects. For example, it has been shown that dilation of an already 
compact structure in metallic glasses does lead to flow behavior. Such 
behavior does reflect an overall structure in which localized structural 
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variations can control overall mechanical properties. The appearance of 
kinked "flow lines" has already been described in Section 5.8 and shown 
to produce hardening effects under the point of a pyramid indenter. 

The addition of oxides known as network modifiers-that is, Na20, 
K20, CaO, La203, and many other ionic oxides-generally causes a con­
tinuous decrease in hardness, and where this is found not to be true then 
it is because precipitation of finely dispersed crystals is taking place. For 
example, up to 10% by weight La203 decreases the Vickers hardness of 
silica from 6.87 GPa to 6.38 GPa almost linearly, after which the hardness 
rises again as more La203 is added and La2Si207 pyrosilicate crystals are 
formed. This is a useful outlet for the technique of microhardness indenta­
tion because it can be used to follow nucleation and crystal growth stages 
in the preparation of glass-ceramic materials. 

While the material remains a glass the hardness decreases on addition 
of ionic oxides because the polarizability of all non bridging oxygen atoms, 
those that are not shared by two network elements such as silicon, is 
increased. Thus we are not surprised to find that indentation hardness does 
have a strong correlation with changes in molar refractivity of glass, the 
polarizability of the added cation, and glass softening temperature. 

It is through these effects that other mechanical correlations are made­
for example, the relationship between Young's modulus and Vickers hard­
ness which can be expressed as equation (6.8). 

Hv= C'(aGK)1/2 (6.8) 

In equation (6.8) C' is a constant giving the ratio of the stress to the 
resistance to deformation at the time the indentation ceases; a is the ratio 
of average single bond strength to Si-O bond strength. G and K are shear 
and bulk moduli, respectively, with G = E/2(1 + p) and K = E/3(1- 2p). 
The Poisson ratio is estimated from the ionic oxide volume fraction com­
pared to the Si02 volume fraction. For silica glass with no added modifier, 
a must equal 1 and C' = 0.19. 

Equations (5.11) and (5.12) relate flaw sizes that are produced by 
impact on glass to the measured hardness via the fracture toughness 
parameter. 

Perhaps the most important semi-empirical relationship between 
indentation hardness and a mechanical property of glass, namely, flow 
stress, has already been introduced in Chapter 1; it is that derived by Marsh 
following his original interpretation of indentation shapes in glass. Marsh(31) 
was originally interested in finding the yield stress in glass, having postulated 
that glasses were not perfectly brittle as generally assumed. Taking a leaf 
from the metallurgist's book, he turned to the Tabor relationship, equation 
(1.9), which was derived for a flat, rigid indenter and gives two-thirds the 
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pressure under the indenter as hydrostatic and one-third as shear stress 
with only the latter able to produce plastic flow. This assumes that elastic 
deformation is unimportant. However, equation (1.9) leads to values of 
flow stress well below the observed brittle fracture stress and so flow should 
be apparent in the fracture patterns of glass. To resolve this dilemma Marsh 
believed that elastic deformation in glass systems was important and so 
moved from the Tabor approach to that of a spherical cavity being expanded 
by the hydrostatic pressure with no material being forced up to the surface. 
Combining his analysis with hardness and modulus data for a series of 
glasses, ceramics, and plastics he arrived at equation (1.13), which is similar 
in form to the more theoretically derived equation of Johnson (1.14). A late 
small variation in the model changed equation (1.14) to the following 

H 2 [ In E cos (J] 
y=- 1+ U 

3 3(1- v)uy y 
(6.9) 

Equations (1.13), (1.14), and (6.9) give H y = 4.5uy instead of the Tabor 
relationship and give values of u y sufficiently close to U urs that the 
phenomena associated with yield and flow are not apparent in macroscopic 
breaking tests of glass. Nevertheless clearly from the appearance of the area 
directly beneath an indenter the material can be made to flow as these 
stresses are reached and exceeded. The intersection of flow lines below the 
glass surface is the site of flaw generation leading to failure. 

That Marsh's instinct was correct regarding the importance of the elastic 
component of the deformation of glass and ceramics has been much more 
recently confirmed in the derivation and practical application of a relation­
ship between the residual impression dimensions, hardness and modulus.(7) 

The analysis is based on two cycles of a Vickers indenter where first 
the loading causes elastic and plastic deformation, then unloading allows 
elastic recovery, and finally reloading is done at the same indent with loads 
sufficient to bring about various percentages of the original elastic deforma­
tion and increase the indent depth to the original depth. This sequence is 
sketched in Figure 6.9. 

In Figure 6.9, the depth of impression L is given by equation (6.10) 

L = ya cot '" (6.10) 

where y is a geometrical factor that takes account of surface deformation 
around the indent (see Figure 1.6). 

Load P is related to hardness through equation (1.6) and elastic 
recovery is governed by equation (6.11) 
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a c 

Figure6.9. (a) Vickers indent made. (b) Elastic recovery of the indent. (c) Reloading to deform 
to original depth. 

p = _E_co_t....:ljJ~ 
o 2(1 _ v 2 ) 

(6.11) 

Impression depth after unloading divided by the unrecovered depth L is 
called the residual impression parameter, and this parameter squared is 
related to hardness and Young's modulus from equations (6.10), (6.11), 
and (1.6) 

( L - 1)2 [ 2 ('YE)2 ] Hv L = 1 - 2( 1 - v) 'YH tan IjJ E (6.12) 

It is not always possible to measure the indent depth directly by focussing 
on indent bottom and surface, respectively, at the depths required to produce 
uncracked indentation, but when it is done equation (6.12) is found to be 
obeyed with respect to a linear dependence between Hvl E and residual 
impression parameter squared until low values of Hvl E are encountered. 

A closer fit with experimental data over the whole Hvl E range is 
claimed for the related expression given as equation (5.64) for the reasons 
given in Section 5.4.3. 

An interesting use of equation (6.12) is as an elasticity-plasticity param­
eter to classify not only glasses, but ceramics in general. This arises because 
for ideal elastic behavior (L - II L)2 = zero and Hvl E is the ratio that brings 
the bracket in (6.12) to unity. Thus Hvl E = 0.15 represents no plasticity, 
and for perfect plasticity (L - II L)2 = 1 because 1 = 0, and for this to be 
true Hvl E must equal zero. The above ratios are found using v = 0.25, 
'YEI'YH = 1, and IjJ = 74.05. Data given in Table 6.13 show soda-lime glass 
not to be least plastic of the range of materials quoted. 

These then are a number of equations and observations that have 
resulted from using glass to study the processes that generate indentation 
shapes and cracks around such indents. 
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Table 6.13. Values of Hyl E as a Plasticity Parameter 

Vickers hardness Young's modulus 
Material (OPa) (OPa) Hv/ E 

B4C 44.2 460 0.096 
Soda-lime glass 5.6 70 0.080 

Pyroceram 8.4 109 0.077 
Si 9 168 0.054 

SiC (single crystal) 33 460 0.072 
SiC (RB) 25.7 403 0.064 
SiC (CVD) 32.3 450 0.072 

Si3 N4-a 18.5 300 0.062 
Si3N4 -{3 16.0 310 0.052 

Al20 3 20.1 406 0.050 
WC-Co 12.7 575 0.020 

Zr02 (PSZ) 11.4 170 0.067 
MgO 9.3 240 0.039 

The nature of glass surfaces and their structure can be investigated by 
using hardness techniques: One example applied to industrially made flat 
glass suggests how such glass can be improved.(8) Vickers indents were 
made on the surface of the glass as received, after various heat treatments 
and after treatment with boiling water. Following a dwell time of 15 s at 
loads in the range 0.75 to 1.25 N, the indent corners with cracks emanating 
were counted 15 seconds after the indenter was withdrawn. The ratio of 
cracked corners to all corners expressed as a percentage was used for 
comparisons. After analysis for Na+ and H+ content and a consideration 
of the results it was clear that treatments able to remove surface hydrogen 
result in more cracks. The H+-depleted layer was found to be only 100nm 
thick but is dominant in its effect on the appearance of indentation traces 
and the cracks they contain. Depolymerization at the surface of the Si-O-Si 
network causes Si-OH groups to be in the surface layer. Thus the 100-nm 
layer is softer and has a lower U'y and E. This softer layer will yield more 
easily and produces less cracks as a result. Thus heating the glass to 460°C 
increases the crack formation on subsequent tests by 50% compared to the 
as-received glass while treatment with boiling water quickly restores the 
glass to the as-received condition with few cracked indents being made. A 
reheat to 550°C reintroduces the propensity for cracked indents with 60-
100% of all corners having cracks. This experiment is a visible confirmation 
of the phenomenon in glasses known as antifatigue: Standing in damp 
environments in the absence of stress produces an increase in the strength 
of the material. 
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6. 1.5.3. Glass Ceramics 

A glass ceramic begins its existence as a glass which at some stage in 
the manufacturing route undergoes a process that enhances the formation 
of crystal nuclei by the addition of nucleating agents and controlled changes 
in the heating cycle. The resultant material contains very small crystals and 
ideally is 100% crystalline. However, the technical compositions that can 
in the first instance provide glasses stable enough to be processed by glass 
technology methods and then later be crystallized are almost impossible to 
crystallize to zero-glass phase. Hence the properties of these materials are 
dominated by the residual glassy phase around the crystals. 

At present the major restriction in this field is the need for the initial 
glass, which puts a restriction on the range of crystal composition and the 
types that can be encountered. The most advantageous aspect is that they 
are to some extent engineerable in the sense that thermal expansion 
coefficients can be varied to suit both metal and ceramic systems. This 
means that they represent good intermediate materials able to bond metals 
and ceramic systems together. Dependence on the intergranular glass phase 
means that they have limited refractoriness and poor strength characteristics. 

Hardness is used in two areas of their study: first, as a method of 
monitoring the preparation process through hardness-temperature-time 
studies; second, to estimate strength and toughness. An example of hardness 
revealing something about the glass-ceramic process is the results for 
LizO-CdO-SiOz glasses before and after heat treatment as given in Table 
6.14. These results(9) show broadly that separation into crystals and glass 
occurs around 650°C and after separation the new glass contains a higher 
percentage of CdO and is therefore harder than the original glass. In contrast 
the glass ceramic prior to separation has a decreasing Knoop hardness as 
the CdO content increases. 

A useful property of some of the series-for example, lithium aluminum 
silicate (LAS)-is that they are transparent and offer an alternative to glass 
and single crystals for the direct observation of indentation processes and 
crack formation. 

6.1.5.4. Hardness Values of Silicon Oxides, Glass, and Some Glass 
Ceramics and Data Derived from Them 

The limited amount of data in Table 6.14 is sufficient to demonstrate 
the large decrease in hardness that accompanies glass formation in the SiOz 
system and in the classical silicate system cordierite. They also demonstrate, 
along with Figure 6.10, the presence of surface softening induced by an 
aqueous environment. Little variation in the toughness parameter K1C is 
encountered, which from equations (5.11) and (5.12) implies that only small 
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critical impact loads are necessary to produce the flawed surfaces so 
dominant in glass mechanics, glass science, and glass usage. 

6.1.6. Carbon, Silicon, and Boron 

Interest in these covalent ceramics is almost equally divided between 
potential engineering applications and their use as electroceramics. Carbon 
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as graphite and as fiber is rapidly gaining in engineering applications; 
obviously, as a cutting and drilling medium, carbon in its diamond form 
has always excited interest. The excellent heat-transfer characteristics of 
diamond give it special applications in electroceramics as a substrate; in 
this respect recent success in deposition from the vapor phase of diamond­
type films could be very significant. 

Silicon as whisker material is entering the area of engineering applica­
tion, but the dominant area of interest is the use of silicon and doped silicon 
as semiconductor materials. The use of hardness measurement as a probe 
of the properties of specially prepared silicon crystals for semiconductor 
device use has been attempted several times but as some of the data presented 
below show, doping at the levels used in the device industry does not show 
up as change in hardness even through etch-pit rosette studies in the area 
around indentations show some dependence of dislocation movement on 
concentration and type of dopant. 

Boron is a major fiber for engineering applications in such areas as 
reinforcement of aluminum but has not been examined by the hardness 
technique to any substantial extent. 

Despite the multitude of applications of these materials, it is true to 
say that most of the interest shown in their hardness properties is purely 
theoretical because of the controlled way in which experiments can be 
carried out involving them, as well as the ready availability ofwell-character­
ized single crystals. Thus data on diamond and single-crystal silicon is 
reasonably easily found while information on other polymorphs is frequently 
not available. This latter point brings us to a consideration of bonding, 
polymorphism, and microstructure of these materials. 

6.1.6.1. Carbon 

Crystalline carbon exists in natural deposits in three crystalline 
modifications: a and ,B-graphite and diamond. Synthetic graphites contain 
only the a-form, from which the ,B can be made by mechanical working. 
This introduces the possibility of the transformation a ~ ,B during a hard­
ness test. Localized transformation from diamond to a metallic carbon 
,B-graphite could also be considered, but in this case a radical rearrangement 
of covalent bond hybridization would be required from Sp3 to Sp2 + P such 
that time would be a problem. 

6.1.6.1a. Diamond. Classically the groundstate carbon electron struc­
ture hybridizing to produce four Sp3 valency orbitals explains the tetrahedral 
coordination, the constant C-C bond lengths of 0.1555 nm, and the three­
dimensional picture of a structure consisting of puckered hexagonal rings. 



Ceramic Systems 247 

The layer sequence of the carbon atoms is (AA')(BB')(CC')(AA'), etc., 
where A and A', etc. denote the different orientations of layers. The brackets 
show the overall sequence ABC... which indicates the cubic overall 
sequence. Thus diamond has a cubic structure of high symmetry such that 
any section through it cuts large numbers of strong Sp3 _Sp3 bonds so that 
no easy cleavage exists. 

6.1.6.1h. Graphite. The a-form has an hexagonal stacking sequence 
of layers caused by the turbostratic arrangement of new neighbor layers 
when the layers are rotated by 60° on ascending the c axis in order to 
minimize delocalized 1T-bond repulsion. All layers are planar because the 
carbon atoms have hybridized Sp2 orbitals producing very strong covalent 
bonds at 120° in the plane of the layers. Sideways overlap of the pz orbitals 
produces the 1T bonds delocalized in the plane of the layers and bestowing 
the metallic properties, as well as the gross anisotropy evident in all proper­
ties of graphite. 

When the layer stacking has a smaller turbostratic angle such that the 
position repeats after every fourth layer-i.e., there is an ABC ABC ... 
stacking sequence while maintaining the Sp2 hybridization-then /3-graphite 
results. If the layer sequence were maintained but the hybridization changed 
to Sp3 then a transformation of /3-graphite to cubic diamond would result. 

Graphite is a generic term for a wide range of carbonaceous materials 
made by high-temperature pyrolysis of a range of organic precursors ranging 
from coal through hydrocarbon gases to polymer fibers such as polyacrylo­
nitrile. Such products have a variety of crystal and microstructures ranging 
from the nearly perfect crystalline material known as pyrolytic graphite to 
the amorphous phases known as carbon black or glassy carbon. All manufac­
tured graphites in fact consist of microcrystalline graphitic regions in an 
amorphous carbon matrix. Frequently there is no simple stacking sequence 
of carbon layers in the graphitic regions so that intergrowths of a and /3 exist. 

Until recently, chemical vapor deposition of cracked hydrocarbons was 
a source only of pyrolytic carbon with a graphite structure but when 
deposited in a glow discharge produced by a radio frequency generator of 
0.5-1.0 kW from a gas pressure of 0.5-3 kPa and at 950°C, microcrystals of 
diamond have been deposited yO) The diamond film is formed from {1l1} 
and {100} crystal faces and has a high hardness as shown in Table 6.15. 

6.1.6.2. Silicon 

This element crystallizes with the diamond structure involving covalent 
bonds formed from Sp3 hybrid silicon atoms. A molecular orbital description 
of bonding based on the Sp3 hybrid orbitals shows that the gap between 
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Table 6.15. ISE Effect for 
Silicon (111) 
in [110] 

Temperature 
(DC) n 

25 1.54 
100 1.73 
200 1.80 
300 1.82 
400 1.83 

Chapter 6 

the filled valence band and the empty conduction band is only 1.09 e V 
which means that at 10000 K about one electron in 700 can cross the gap to 
the conduction band, bestowing intrinsic semi conductivity of about 
10-2 ohm- l cm- l • The energy levels vacated in the valence band by the 
promoted electrons bestow intrinsic "hole" -type conductivity. Manipulation 
of the hole concentration and the insertion of discrete energy levels in the 
band gap by the alloying of Si has been the basis of the semiconductor 
device industry. 

The fact that hardness does not appear to vary with dopant concentra­
tion or type-that is, n-type, with excess electrons, or p-type, with electron 
deficiencies-suggests that electron transfer across the gap during hardness 
determination is not seriously involved in the mechanism. However, the 
dislocation motion is affected by dopants as the etch-pit rosette technique 
shows, and this suggests that the hardness should be related to the dopant. 
This in tum implies that the room temperature mechanism responsible for 
plastic deformation leading to an indent impression is dominated by a 
non dislocation glide mechanism. Of the several possibilities, a structural 
phase change involving twinning seems possible allied with a microcracking 
process. For example, shear at every third layer along (111) in the cubic 
structure can produce a double hexagonal stacking sequence (AA')(BB') 
(AA') .... This would involve bond rearrangement to a metallic hexagonal 
form of silicon and could be brought about by a multi axial compressive 
stress similar to that available beneath an indenter. The magnitude of the 
energy required to bring about the transition is approximately 'Y / c where 
'Y is the intrinsic stacking fault energy of the cubic structure and c is the 
axial length of the wurtzite cell arising from the cubic diamond structure. 
With a wurtzite cell around 0.63 nm, about 10 GPa are required for the 
conversion. Such a stacking fault sequence can lead to twin formation with 
a preferred interface between cubic and hexagonal forms on (115) cubic 
planes. 
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This mechanism is in accord with the fact that silicon hardness is only 
a weak function of temperature up to about 380°C, after which it is strongly 
temperature dependent as Figure 6.11(a) shows. The temperature depen­
dence is reflected in the ISE effect with the n values approaching 2 above 
300°C as Table 6.15 and Table 4.3 show for silicon in comparison to some 
other ceramic systems. Above the transformation at 380° deformation occurs 
through a combination of dislocation glide and thermally activated disloca­
tion creep, and such hardness values would then be expected to reflect 
doping effects as dislocation movement involves interaction between band 
gap and dislocation atmosphere as outlined in Section 4.4 and Figure 4.8. 
Hardness in the outermost layers of silicon is affected by the zeta potential, 
as Figure 6.11(b) shows, which indicates a minimum hardness for p-type 
silicon at a zeta potential of -60 m Vas controlled by sodium pyrophosphate 
solutions. 

Indentation twinning and possible structure change are the only indica­
tions that exist for any forms of silicon other than the cubic diamond 
modification which is in contrast to the polymorphism of carbon. Chemically 
deposited silicon films from the vapor phase are frequently encountered 
that are amorphous to X-radiation. 

6. 1.6.3. Boron 

As a structural ceramic this element appears as fibers grown from the 
vapor phase onto thin substrate wires, usually of tungsten. As a result of 
this central core and the W-B interface they have not yet achieved anything 
approaching their intrinsic capabilities. To make fiber, the boron is deposited 
at 1100°C onto the 10-#Lm wire from the reaction of BCh with H2 which 
gives polycrystalline fiber of average crystallite diameter 2-3 nm. The boron 
is in the tetragonal or mixed tetragonal, a-rhombohedral polymorphic 
modification. 

Both the abovementioned boron structures are unusual in that they are 
made up of 12-boron-atom icosahedral units linked at each apex to another 
such unit. One structural description regards the close packing of the Bt2 
units; e.g., for the tetragonal polymorph the packing is of the cubic type. 
A more useful structural description is obtained by considering the 
molecular orbital arrangement on the B12 icosahedron: Each boron atom is 
considered to center two sp hybridized orbitals and two p orbitals. One of 
the sp hybrids is directed outward from the icosahedron and forms the 
basis for overlap and covalent bond formation with similar valence orbitals 
on other icosahedra, thus providing the strong, three-dimensional network 
of bonds. The second sp hybrid and the Px, Py orbitals on each boron are 
directed toward the inside of the icosahedron and, depending on symmetry, 
there is a polycentered molecular orbital consisting of 36 levels. Only 13 of 
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the inner levels are bonding, but since 12 x 3 = 36 electrons only need be 
allocated, and 12 of them are in the outward sp hybrids, the remaining 24 
electrons can be accommodated in the bonding level leaving two "holes" 
to bestow semiconductor behavior and some inherent chemical reactivity. 
As with diamond, any section through the structure cuts large numbers of 
strong covalent bonds, so no easy cleavage exists. This time, however, the 
bonds are mainly sp-sp and not as strong therefore as the diamond Sp3 _Sp3. 

6.1.6.4. Hardness Data and Properties Derived from Them 

As well as information for C, Si, and B, a few data are given in Table 
6.16 for germanium for comparison purposes with the other group IV 
members even though it has no engineering applications. It does, however, 
have important electro ceramic properties. 

The relative ease with which hardness studies of silicon can be made 
and the ready availability of well characterized single crystals is reflected 
in the number of results and the figures that involve this material. Figure 
6.8, for example, shows the indentation creep effect and Figure 6.11 shows 
the chemomechanical effect on the Knoop hardness. Figure 6.12 shows the 
effect that temperature and load have on the radial cracks; several studies 
have both derived and measured the critical load necessary to produce such 
cracks, with good agreement being achieved at the small load of 0.02 N 
which implies that such cracks, so easily produced, play a dominant role 
in applications. The dominant role played by dopants of both nand p type 
in the electronic properties of silicon has recently been shown to be negligible 
when hardness above 400°C is measured. Hardness is found to be indepen­
dent of doping at any load, (11) but significantly, the dislocation rosette length 
does vary systematically with the dopant. Growth of the rosette is easier 
with n-type dopants present than with p-type. 

In order to reveal the dislocation etch pits a vigorous etchant has to 
be used: 1 part 0.25 M K2Cr207 solution to 4 parts 40% HF. Etching times 
from 10 to 90 seconds are needed. At a 0.98 N load the rosette length is 
9 JLm at 1.96 N for a dopant concentration of 1012 atoms cm-3 and, as the 
impurity level is raised to 12 x 1018, the rosette arms are 15 and 66 JLm at 
the above loads, respectively. 

The load-hardness effect in the diamond structure is shown in Figure 
6.13. 

6.2. IONIC ENGINEERING CERAMICS 

Here one encounters some of the traditional refractory ceramic 
materials that have been used for generations but are now receiving much 
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reappraisal as fabrication routes to very high densities become available, 
new routes to achieving toughness are being sought, and production routes 
to fibers are pioneeredY2) This section contains data on A120 3, MgO, Zr02, 
BeO, and alloys of these and other oxides. 

6.2.1. Alumina 

Worldwide there has been a large trade in alumina and high-alumina 
ceramics for many years which is currently valued at approximately $821 x 
106 ; they completely dominate the engineering ceramics market. Some of 
the types, additives, and uses are listed below: 

1. Purity> 99.7% Al20 3 available at high densities and dependent on 
the dopant can be translucent with zero porosity. Such material has 
grain sizes of 3-30 J-tm and is used as machine tool tips, crucibles, 
and high pressure sodium vapor lamp tubes. In these purest grades 
the small amount of impurity is MgO or Y 203 . 

2. Grades around 99% A120 3, usually doped with MgO, Si02, and 
CaO, have a variety of uses for mechanical components and high­
temperature tubing. 

3. 93-99% Al20 3 with the same general dopants because of their high 
acid resistance have many mechanical outlets including pumps, tool 
tips, and insulators. 

4. 75-93% Al20 3 doped with MgO, Si02, Zr02, and TiC are strong 
and tough, finding uses in tool tips, mechanical mills, and erosion 
protection sheaths. 

The general processing route is sintering, not often hot pressing, which 
is another advantage alumina systems possess. 

As well as the commercial interest in the material, scientists have found 
the ready availability of good single crystals, corundum and sapphire, a 
great incentive for hardness studies and anisotropy studies. 

The nomenclature of aluminas, a, {3, and 'Y, suggests that polymorphism 
is common with this material. However, if one considers only the undoped, 
pure form of the material, it exists in only one crystalline form throughout 
the entire temperature range to the melting point at 2050°C. This form, 
a-Al20 3 is the pure form with a hexagonal structure, D~a space group, and 
two Al20 3 units per unit cell. In this structure, even at room temperature, 
slip occurs on {0001}(1120) systems. As for the other forms, {3-AI203 has 
been shown to be a ternary oxide with general composition Na20.11 Al20 3 
and will be discussed fully in Section 6.3.1. The nomenclature 'Y-AI203 is 
used to describe a number of phases produced by incomplete dehydration 
of gelatinous Al(OH)3, which leads to Al20 3 containing impurity protons. 
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The structure of this material is a cubic form of defect spinel. Thus in this 
section we will consider only the common form of alumina, a-Al20 3 • 

It is common when considering ionic oxides to visualize the structure 
in terms of close-packed layers of the large 0 2- ions generating the packing 
sequence for cubic or hexagonal symmetry and then to see the cations as 
occupying octahedral or tetrahedral interstices in the close-packed layers. 
This picture produces a too symmetrical view because when the small cations 
with large charges occupy the interstices, polarization is a consequence and 
a series of unequal MO+ _02- distances are generated. In a-Al20 3 such 
distortion causes 3 oxygen ions to be closer to each Al3+ and the structure 
then is formed from highly distorted Al06 octahedra. These distorted poly­
hedra and the overall hexagonal symmetry lead to a large anisotropy of 
hardness for alumina. Grain sizes commonly in the range 0.1 to 300 ~m 
contribute to variations in reported hardness values, fracture toughness, 
and strength, while impurity phases, often glassy, at grain boundaries add 
further to the variations in behavior and reported results. 

Thermal etching between 1200 and 1500°C for 5 minutes is often 
sufficient to reveal grain boundaries after polishing. Careful polishing to 
0.1 ~m diamond is usually needed to get good Vickers and Knoop data. 
Because of the availability of such a wide range of samples and the impor­
tance of alumina as a ceramic material many reports exist where the 
anisotropy, the effect of grain size, and the effect of grain-boundary material 
and surface treatments have been examined by the hardness techniques. 
Before tabulating hardness and other data it is worthwhile examining a few 
examples of these effects. 

6.2.1.1. Grain Size Effect 

Theoretical calculations for noncubic oxides point to a grain size-K1c 
relationship. The essence of the relationship arises because below a critical 
grain size no microcracks arise from thermal expansion anisotropy on 
cooling, but above the critical grain size the presence of spontaneous 
microcracks is reflected in the measured K1C value, and this could appear 
directly in a hardness-grain-size relationship. High-purity hot-pressed Al20 3 

is available with grain sizes in the range 6-60 ~m and such material can 
be tested by the Vickers method and the toughness parameter measured 
using loads from 5-200 N and the Evans and Charles equation, equation 
(5.41). The data shown in Figure 6.14 indicate a slight hardening effect with 
grain size increase, probably reflecting the relative weak bonding in grain­
boundary regions, and a sharp decrease in fracture toughness above 15 ~m 
grain size until 25 ~m grains are reached. Indent sizes are around 20 ~m, 
but because microcracks arising from the thermal anisotropy are located in 
grain boundaries, development of indentation radial cracks is hindered. 
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Figure 6.14. Grain size effect on Vickers hardness and toughness of AI20 3 • 

However, above 25 #Lm grain size the indent is essentially in the crystal and 
radial crack development is unhindered and therefore the sample is less 
tough as determined by the indentation technique. When cubic Y203 is 
tested this way there is no grain-size effect on K 1C because Y20 3 , being 
cubic, has no spontaneously produced grain-boundary microcracks. 
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6.2.1.2. Grain Boundary Effect 

An indentation method has been developed to measure one of the three 
quoted measurements of grain-boundary strength: K'~, the critical stress 
intensity required to propagate a crack along a grain boundary; ')1gb, specific 
fracture energy; and o.,b, local microscopic fracture stress. The obvious 
parameter is K'~, which is related to single-crystal fracture toughness K IC 

and the percentage intergranular fracture (PIF) by 

Kgb - K2 C 2 (~ PIF) 
IC - IC os 2 100 

The other measures of grain-boundary strength then follow: 

gb _ 0.886K'~ 
uf - (a::,)1/2 

(6.13) 

(6.14) 

(6.15) 

where a::' is the average original size of the grain-boundary microftaws that 
initiate grain-boundary fracture. 

To find PIF, scanning electron micrographs are used to study the 
appearance of radial cracks from an indent made at 91.8 N load. Such 
cracks show no preferential cleavage fracture of larger grains, no significant 
change in PIF along a macro crack, and average grain boundary inclination 
to the macrocrack in the range 38°_47°. Typically, A120 3 of 99.5% theoretical 
density and 11.9 JLm average grain diameter has a PIF of 65% and therefore 
a grain boundary K IC of 0.68 MPa m 1/2 which is much lower than values 
for KIC given in Tables 6.17 and 6.18 and shows the importance of the 
grain boundaries. Of course, when the alumina is of lower purity the 
grain boundary region becomes a sink for the impurity with obvious effects 
then on U,b and K'~ and overall K IC values. It is by changing the content 
and crystallinity of the grain-boundary phase that reported heat treatments 
have their observed effects on toughness and strength of alumina specimens. 
For example, when an A120 3 sample with a 10% (by volume) boundary 
phase consisting of A120 3 , MgO, and Si02 close to the eutectic at 
7.5: 20.5: 62% (by weight) is sintered at 1600°C, the toughness determined 
by use of equation (5.46) increases from the as received value of 3.0 up to 
5.1 MPa ml / 2• Microscopy reveals that the improvement stems from turning 
the grain-boundary phase from a glass to a crystalline silicate. 
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6.2.1.3. Anisotropy Effect 

It has already been stated in Section 3.5 that, although it is known to 
exist, the anisotropy effect has not been fully investigated. Figure 3.12 shows 
the anisotropy of hardness on (0001) and (1100) in alumina and Table 4.3 
in Section 4.1.2 has the different ISE effects on the different planes and 
directions. Clearly the effect of hardness anisotropy is more marked on the 
prism planes than on the basal planes, as is not unexpected in view of the 
distorted nature of the Al06 octahedra in the structure. Knoop hardness 
shows that the anisotropy effect decreases rapidly with test temperature 
increase as shown in Figure 6.15. 

6.2.1.4. Surface Treatment Effect 

Studies involving sapphire single crystals and sintered polycrystals 
show that large variations in reported hardness arise from variations in 
surface treatment because they produce different degrees of work hardening, 
as shown in Figure 6.16(a), (b). Reaction with aqueous environments to 
produce forms of ,),-Al20 3 also occur, and the effect pH has on varying the 
surface hardness is shown in Figure 4.10. Ion implantation experiments 
show that initially the hardness can be increased substantially by solid 

15 

10 
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G 
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90 

Azimuthal angle 

25 DC 

600 DC 

.1020 DC 
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Figure 6.15. Knoop hardness as a function of long axis orientation: 0° = [1120],90° = [0001], 
180° = [1120] on Al20 3 (1100). From Brookes.(t3) 
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solution formation and the production of a compressive surface layer before 
being reduced as higher ion doses produce the amorphous layer analogous 
to some of the 'Y-Al203 phases. Figure 6.16c shows an example of the 
variation in effect that surface treatment can have, especially when induced 
by the vigorous quenching technique of ion implantation. 

6.2.1.5. Hardness Data and Properties Derived from Them 

Collected measurements for single-crystal Al20 3 and polycrystalline 
Al20 3 can be found in Tables 6.17 and 6.18. 

6.2.2. Magnesia 

Magnesia has the advantages of being abundant, refractory, and resis­
tant to basic melts, but because of its structure it has relatively low strength 
and is reactive with acidic components. Thus the outer surface of a crystal 
or a significant portion of fine powder is the carbonate or hydroxide, not 
the oxide. This is reversion to the raw material, for most magnesia is derived 
from either magnesite, MgC03, or dolomite, MgCa( C03h, by calcination. 
Powders made this way require hot pressing to achieve theoretical density. 
Large crystals of MgO can be obtained from the melt at 2450°C. These 
crystals cleave easily along {100} planes bestowing as a result the common 
name for single-crystal MgO: namely, periclase. 

The radius ratio of Mg2+ /02- falls comfortably in the octahedral 
polyhedron range and so one simple rock-salt structure is all that occurs 
in which Mg2+ ions occupy the octahedral interstices of a close-packed 0-2 

structure. Polarization from Mg2+ is not a problem, and as a result one is 
dealing here with one of the most ionic of all ceramic systems. 

The structure is undeformed fcc with four formula units per unit cell. 
Within the rock-salt structure slip is easy on {110} even though dislocation 
models suggest that slip on {IOO} in (110) might be more favorable because 
{100} planes are the most densely packed and have the widest spacings. 
However, for such a slip system the ionic nature intervenes because at half 
the translation the Mg2+ ions are juxtaposed; this would require extra high 
energies to overcome. Thus only at high temperatures is the "obvious" slip 
system {I00}(110) available. Known slip systems are the primary, {II0}(110); 
the secondary (800-1600°C), {I00}(110); and, above 1600°C, {111}(1l0). In 
all cases the directions are (110), which connect ions of same sign without 
involving a juxtaposition of like ions during the movement; (100) glide 
would result in such juxtaposition en route. 

Above 1600°C all systems can operate, conferring ductility on MgO, 
and under the high stresses of point indentation such plasticity at room 
temperature makes this ceramic relatively soft. Fracture is also not difficult 
and appears to be well understood. Common types of fracture involve 
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cleavage on {100}; fracture on {100} is caused by dislocation interactions 
on intersecting orthogonal {110} slip planes, as, for example, !a[Oll] + 
!a[OH] = a[OlO]; fracture on {110} is initiated by dislocation interactions 
on obliquely intersecting {110} slip planes, such as !a[Oll] + !a[10I] = 
!a[110]; and fracture on a (110) plane parallel to a deformed surface. Such 
well-documented information on this structure and ready availability of 
single-crystal material have made this a source of hardness research often 
involving the dislocation etch-pit rosette technique as outlined in Section 
3.1 and shown in Figure 3.3. 

Flat, smooth surfaces of polycrystalline MgO are not easy to prepare 
because of the easy pull-out arising from the slip and fracture systems 
outlined. Careful polishing with 11£ diamond paste is needed. Etchants as 
mild as saturated NH4CI solution at room temperature or 0.5 M AlCl3 at 
50°C will reveal surface structure; 15 s are needed to see grain boundaries 
and 1 minute to see etch pits. More vigorous reagents for etch-pit revelation 
are nitric acid at 90°C for 15 s on {tOO} or phosphoric acid, H 3P04, at 60°C 
for 1 minute on {110}. 

Microstructure and purity can have considerable influence on the 
measured hardness of magnesia artifacts while a degree of hardness 
anisotropy also leads to variations. The plethora of slip systems can also 
lead to work hardening in such a structure. The following abstracted studies 
highlight these effects. 

6.2.2.1. The Influence of Microstructure 

This is most clearly seen when a specific microstructure is prepared 
and varied in a controlled way such as directionally solidifying to produce 
a lamellar eutectic of MgO-MgAh04 in which the interlamellar spacing of 
MgO and spinel can be varied. Results shown in Figure 6.17 demonstrate 
a straight-line relationship between hardness and interfiber spacing when 
the MgO lamellae are indented with a Knoop diamond and a load of2.94 N. 
The almost linear relationship between d- t / 2 and hardness shows a Petch­
type relationship between increasing hardness with decreasing "grain" size. 
Since the values for microhardness for "pure" MgO are around 8.5 GPa, 
the considerable hardening effect brought about by this specific microstruc­
ture and by producing finer microstructures is also clear from Figure 6.17. 
Indents were made only in the MgO areas and not over the MgO-MgAh04 
interface boundaries, so these data show the important role such boundaries 
must play in determining overall hardness and strength of samples with 
this fibrous microstructure. 

6.2.2.2. The Effect of Work Hardening 

As already stated, several slip systems have been proven for the MgO 
structure, and so dislocation movement is relatively easy and varied. Such 
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14·2 

13·2 

0·1 0·7 

Interlamellar spacing 

Figure 6.17. Knoop microhardness of MgO lamellar in directionally solidified MgO-MgAI204 

eutectic versus square root of reciprocaiiamellar spacing. After Kennard et al.(1S) 

a situation would lead one to expect a work hardening contribution to 
observed hardness values for magnesia unless it is specified that care has 
been taken to anneal the samples. Brookes has shown that even contact 
with soft pointed sliders on well lubricated MgO surfaces can lead to work 
hardening as long as the material of the slider can itself work harden to 
produce an ultimate hardness sufficient to cause slip on critical resolved 
shear planes in magnesia. The maximum hardness achieved by the work 
hardening is a function of the slider ultimate hardness 

(6.16) 

In equation (6.16) HK is the Knoop hardness at a load of 0.98 N of the 
area directly beneath the slider; Ho is the annealed hardness of the MgO 
crystal before contact; Hu is the ultimate Knoop hardness of the slider 
material after it has been made to flow; and a is a constant = 0.5 for 
magnesia. Figure 6.18 demonstrates this work hardening effect. 

The work hardening demonstrated by the slider experiments clearly 
shows the effect of dislocation mobility on this rock-salt-structure material, 
and it is not unexpected to find much evidence for a load hardness effect 
with a range of n values at room temperature depending on plane and 
direction; this is shown in Table 4.3. Dislocation mobility under the influence 
of the stress fields found in indentation hardening also manifests itself as 
an indentation creep effect as shown in Figure 4.11. 
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Figure 6.18. Knoop hardness of MgO in area over which a copper slider has passed, as a 
function of depth below surface. After Brookes.(16) 

6.2.2.3. Hardness Anisotropy 

Rickerby and Brookes, in independent studies, have reported 
anisotropy with the softest direction being the one in which the Vickers 
indent diagonals lie along [110] on (001) planes, as shown in Figure 6.19 
and discussed in Section 3.3. More recent investigation(17) claims that such 
anisotropy is an artifact arising from the fact that the indent shape on the 
surface is not square after removal of the diamond which leads to a 15-20% 
variation in Hv. Furthermore there is extensive cracking along (110) at 
loads above 0.49 N. 

The Giberteau results in Figure 6.19 are plotted when the indentation 
area is calculated from the observed nonsquare shape of the indent. Interest­
ingly, when they are recalculated using just the observed indent diagonal, 
2a, to calculate H v , a distinct anisotropy is observed in agreement with the 
earlier work. In an attempt to resolve this problem the dislocation etch-pit 
rosette lengths were considered following earlier analysis, which gives a 
dislocation velocity V ex: T m where T is the resolved shear stress. Then I, the 
dislocation rosette length, is proportional to load and time 

1 ex: pm/(2m+l)t 1/(2m+1) 

or 

(6.17) 
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(001) Brookes P=0·49 N 

10 

6 

o 45 0 
Angle from [100J 

Figure 6.19. Vickers hardness of (001) MgO as a function of indenter diagonal orientation. 
After Giberteau. (17) 

Since large values of m characterize ionic solids, the rosette length will be 
proportional to p l /2 and independent of time. Furthermore II a is a constant, 
so if Bv is anisotropic then I will be anisotropic in the opposite sense. 
Experimental observations show this not to be the case even though the 
relationship I against pl/2 is clearly demonstrated, but great care now has 
to be exercised in interpreting rosette lengths since they may show no simple 
correlation with hardness data, as the work with GaAs and silicon discussed 
in Section 3.6.2 shows. 

6.2.2.4. Hardness Data and Properties Derived from Them 

Data not already discussed from various sources for MgO are given 
in Table 6.19. 

6.2.3. Zirconia 

Until a decade ago, zirconia would not have been considered a candi­
date to be developed as an engineering ceramic because its polymorphism 
can lead to such large strains that it is self-fracturing. It has always been 
used in the refractories and glass industry in amounts approaching three­
quarters of a million tonnes per year. A detailed study of the crystallography 
of zirconia, and in particular the mechanism of the phase changes, has 
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placed this material in the forefront of ceramic potential. A result of recent 
research is a new generation of zirconia-based materials prepared by sinter­
ing ultrafine powders prepared by special chemical processes. Because high 
densities can be achieved at moderate temperatures, the solid artifact con­
tains large amounts of the metastable tetragonal modification which results 
in very high toughness and modulus of rupture and even more significantly 
bestows an excellent resistance to crack initiation. The fine powders needed 
to ensure metastability lend themselves well to forming by cold isostatic 
pressing or to conventional slip casting. As a lightweight material with a 
low coefficient of friction, it is being used in wire drawing dies, in diesel 
engines as cylinder liners, as complete turbocharger components, and as a 
toughening agent in other ceramic systems. 

6.2.3.1. Bonding and Structure 

The radius ratio of Zr4+: 0 2- is 0.57; this is close to a boundary value, 
indicating some polymorphism between structures with metal-oxygen 
octahedra and metal-oxygen cubes as structural units together with 0 2-_ 
Zr!+ tetrahedra. This is the case with a low-temperature structure containing 
distorted octahedra as the Zr4+ induces polarization and partial covalency. 
The structural consequence of the polarization is a monoclinic phase stable 
to about 1 1 70°C, but the actual transformation is dependent on several 
parameters as indicated in Section 6.2.3.2. When the transformation is 
accomplished, the Zr4+ _02- polyhedra show eightfold coordination of the 
Zr4+ but do not reach the ideal cubic structure because there are two 
Zr4+ _02- distances of 0.207 nm and 0.247 nm in the polyhedron. The overall 
symmetry is higher when tetragonal but the unit cell volume shows a sharp 
decrease variously given as 4-9% depending on the form and purity of the 
sample. It is this sharp decrease that subjects zr02 artifacts to large strains 
and very large tensile stresses sufficient to break up a single crystal. It has 
been a physical barrier to its use in the past. More thermal energy eventually 
overcomes the polarization distortion, and at about 2300° the deformed 
polyhedra become truly cubic and zirconia then has the fluorite structure. 

It has been necessary in the past to counteract the effect of the mono­
clinic to tetragonal change, and this has been achieved mainly by alloying 
with a cubic oxide in which the metal cation is larger than Zr4+. These solid 
solution materials were of either cubic or tetragonal symmetry and became 
known as stabilized zirconia. More recent investigation has shown that 
sufficient alloying oxide to not completely produce the tetragonal form is 
desirable because there are gains in toughness and strength (see Section 
6.2.3.2); these materials are partially stabilized zirconias, PSZ for short. 
Common additives that lead to these forms are MgO, CaO, Y203, La20h 
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and Ce02. With the exception of Ce02, stabilization cannot be achieved 
with these oxides without introducing some other form of lattice defect: a 
combination of oxide ion vacancy and cation vacancy with or without 
variable valency charge compensation. 

The occurrence of the three polymorphs is also a function of particle 
size; as the crystallites are reduced in size, a critical size is reached when 
the tetragonal form is more stable than the monoclinic form, and at even 
finer grain sizes the cubic is the stable form. An explanation for this is given 
in terms of the surface energy of the three polymorphs by suggesting a 
decrease 'Ymono > 'Ytet > 'Ycubic; so as the total surface area increases, the 
monoclinic form becomes metastable relative to the tetragonal. Following 
that argument through to hardness via Johnson's development of Hill's 
expanding cavity equation, equation (1.14), and putting uy in that equation 
equal to the Griffith-Orowan value (B'Y / 7TC) 1/2, then the hardness would 
be predicted to follow the order monoclinic> tetragonal> cubic. This, 
however, is the reverse of the experimental data. However, an examination 
of the theoretical hardness equation, equation (1.46), provides some expla­
nation because the tetragonal form has a molar volume Vm which is 4-9% 
smaller than that of the monoclinic form and the hardness of the tetragonal 
form should then be greater than that of the monoclinic. Indentation of the 
tetragonal form would cause pressure-induced transformation of the mono­
clinic form in the plastic zone and then it would appear to be softer than 
expected. Hence the order would be cubic> tetragonal> monoclinic. A 
microscopic examination of hardness-tested monoclinic Zr02 shows (100) 
and (110) twinning on a scale as fine as 10 nm in two orthogonal directions; 
it is this that provides for multiaxial, nearly continuous plastic deformation 
and the unexpected softness of the monoclinic form. The softness of the 
tetragonal form relative to the cubic form is revealed by the microscope to 
be due to the postulated stress-induced transformation to the monoclinic 
form. Because Zr02 powders contain a range of particle sizes it is common 
to find samples containing variable percentages of all three forms. 

A less well documented transition which occurs in the Zr02 system 
may be an important consideration in hardness studies because it is brought 
about by the application of modest hydrostatic pressure in excess of 
3.2 GPaYS) Experiments have shown that monoclinic Zr02 transforms at 
room temperature to a metastable high-pressure form which has orthorhom­
bic symmetry; the transformation is very rapid, having the characteristics 
of a martensitic transformation and hence an important shear contribution. 
Above 16.6 GPa yet another transformation occurs to a second type of 
orthorhombic structure. However, it is the relatively low pressure transfor­
mation with glissile elements that is of some interest for hardness consider­
ations. Indeed, it may be this transformation that contributes to the 
anomalous softness of monoclinic zr02 just discussed above in terms of 
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surface energy and twinning. Transformation at these pressures and the fact 
that low temperature annealing around 350°C can have marked effects on 
the retention of the high pressure phase at ambient pressures lead to the 
view that it is a surface nucleation phenomenon. Hydrostatic environment 
and particle size are factors that influence the retention of the high pressure 
tetragonal form down to room temperature. However, it is the reverse 
transformation to the smaller volume orthorhombic form under the influence 
of the large shear beneath an indenter that is relevant here. 

6.2.3.2. Transformations in Zirconia 

Already it has been stressed that the important phase change is mono­
clinic to tetragonal and the reverse, metastable tetragonal zirconia to mono­
clinic. The ways to achieve this are summarized in Figure 6.20. 

All the routes in Figure 6.20 have been successful and widely studied. 
The general agreement is that the monoclinic to tetragonal transformation 
and its reverse is a first-order heterogeneous change involving the movement 
of a glissile boundary between phases. It is therefore extremely rapid, 
occurring by a martensitic type of shear transformation involving large shear 
strains. When the monoclinic phase transforms to the tetragonal, twins 
are produced in the tetragonal phase: An interface moves parallel to 
(lOO)mono leaving twins on the (i12)tet or (li2)tet. Thus when a twinned 
tetragonal phase transforms back twins are produced on the (llO)mono 
and (OOl)mono planes with topotactical relationships (lOO)mono II (llO)tet 
and [OOl]mono II [OoOtet. The twinning mechanisms are responsible for 

1 

2 

3 

Monoclinic .:;c=~' Tetragonal ~'<=~> Cubic 

INCREASE 
TEMPERATURE ----~~~~=-------~ 

GRAIN SIZE PECREASE 

STRESS •• ------------------from metastable grains 

4 ELASTIC CONSTRAINT _______________ • 

IN MATRIX OF OTHER 

CERAMIC 

5 
ALLOY OXIDE ____ ....!I!IlNilIIC~R .. EcA ... SE_%"'_ ____ _ 

Figure 6.20. Physical ways to effect the zirconia transitions. 
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the softness of the monoclinic form, and the occurrence of the transforma­
tion, because it is dependent on the sample grain size, leads to variations 
in observed hardness. 

While for many years the occurrence of the martensitic change was 
thought to be very bad with respect to the usage of zirconia, it now gives 
ceramic engineers three mechanisms for improving zirconia itself as well 
as many other ceramics containing zirconia: microcrack, transformation, 
and agglomerate toughenings. These are outlined below. 

Stable micro cracking in brittle materials generally results from large 
localized stresses, and in the past this has been caused by thermal contraction 
anisotropy; now, however, the unusual volume effect in transforming from 
tetragonal to monoclinic zirconia can be utilized. The zirconia should have 
a particle size large enough to transform to the monoclinic form in the 
matrix in which it is placed, and the elastic strain so produced should be 
greater than the matrix can stand allowing radial cracks to form at the 
monoclinic Ze02-matrix interface. A growing macro crack will then encoun­
ter a process zone of microcracked material, and toughening will occur as 
the macro crack encounters the microcracks and is caused to bifurcate and 
then extra loading is needed to generate further growth as extra surface 
energy 'Y is required. The toughening will be proportional to the process 
zone's size and the density of microcracks. The density of microcracks will 
depend on the volume fraction of monoclinic zirconia, and clearly there 
must be some lower volume limit because too few particles will not generate 
sufficient transformation strain to crack the matrix interface. However, too 
many particles will produce an interlocking network of microcracks that 
will effectively increase the macrocrack length greatly when the tip reaches 
such a tangle of microcracks; in this case the ceramic strength will be 
seriously degraded. Even if the microcracks do not form by a spontaneous 
mechanism, either because the particle sizes are not correct or because the 
volume of zirconia is too small, a process zone can be generated by 
application of an external strain interacting with the transformational strain. 
Modeling the steps in the energy processes has enabled some interesting 
features of this type of microcrack toughening to be deduced. Steps in the 
process are as follows: 

1. Calculate dilatational strain energy for a tet ~ mono transformation. 
This is etransup Vp where etrans = dilatational strain, up = stress within 
the particle, and Vp = volume of the particle. 

2. Consider the applied tensile stress which produces a dilatational 
strain that lessens the effect of Step 1 but produces interacting stress 
fields. 

3. There is a third stress field that arises from the mismatch in E values 
for the Zr02 particles and matrix. This contributes to the strain 
energy. 
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4. The transformed particle increases in size and therefore has a larger 
surface energy which is included in an energy balance allowing an 
estimate of applied stress necessary to produce a process zone to 
be made. 

5. zr02 particle size is important in the above steps, and there is a 
minimum size, rmin necessary to induce a microcracked zone when 
stress is applied: 

(6.18) 

where 'Yi = interfacial energy, Em is the matrix is Young's modulus, 
and_ etrans is the dilatational strain. Thus particle size can have a 
noticeable effect on hardness of zirconia and zirconia-containing 
ceramic only when r min is exceeded. 

In order to need no applied stress to generate a process zone (spon­
taneous microcracking), the critical particle size re is 

(6.19) 

Particle sizes in excess of this produce greater toughness in the matrix, but 
not much greater, because a narrow distribution around re is needed with 
a wide distribution, reducing the toughening effect because resistance to 
crack extension is shown to be directly proportional to V;-that is, the 
volume fraction of Zr02 above r min-and to be inversely proportional to 
rei i-I where i is the distribution of particle sizes. Thus a volume fraction 
over 0.3 is needed, and only when this is achieved is a marked improvement 
in toughness noted. 

This volume dependence shows how the microstructure of zirconia and 
partially stabilized zirconia or zirconia-containing ceramics can influence 
hardness values quite markedly. 

Figure 6.20 indicates that either a small enough particle size or a 
sufficiently constraining matrix can hold a zirconia particle in a metastable 
tetragonal form down to room temperature. When this occurs, strengthening 
and toughening can be achieved because the stress field that is always 
moving ahead of a propagating crack releases the elastic constraint and 
allows the tetragonal -+ monoclinic change to occur. The effect of the trans­
formation is the usual volume expansion, and so a compressive stress field 
is set up which is in opposition to the macrocrack stress field, and growth 
is inhibited. Similarly the stress field set up during a hardness test would 
be opposed by this mechanism, and the hardness of the material would be 
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registered as greater than expected. This effect is decreased as earlier 
discussion suggests because the twinned monoclinic crystals have a ductile 
mechanism for deformation (Section 6.2.3.0. 

A corollary to this strengthening and toughening mechanism arises at 
the surface where there is a lack of hydrostatic elastic constraint and it is 
not possible to prevent tetragonal -+ monoclinic transformation on cooling. 
Thus the surface layer undergoes a volume expansion leading to compressive 
stresses in a surface "skin" that restrict the development of surface flaws. 
Mechanical abrasion can develop the depth of the surface-compressed layer 
until it is larger than the size of a critical flaw but still small compared with 
the cross section of the artifact. Thus failure from the surface is inhibited 
and strength improvements result. 

Until recently, to utilize transformation toughening zr02 powders of 
small particle size have been well distributed in the chosen matrix to prevent 
grain growth by sintering. For each matrix there will be a critical mean 
Zr02 particle diameter that is capable of contributing to transformation 
toughening. For example, the critical size reported in the Iiterature(29) for 
Zr02 in A120 3 composites is around the 0.6 J.tm diameter range. It must be 
stressed, however, that the particle size distribution is just as important 
because the population of transformable sized particles is important, not 
the mean particle size of the zirconia; recent results by Osendi and Moya,(30) 
summarized in Table 6.18, support this observation. Recently, improvements 
have been noted when agglomerates of zirconia containing many small 
particles are kept as such. The whole agglomerate is kept in the metastable 
state by the combined effect of self and matrix constraint. The macrocrack 
tip enters such an agglomerate and then causes transformation leading to 
growth hinderance and the concept of agglomeration toughening. 

6.2.3.3. Hardness Values and Data Derived from Them for Zirconia and 
Zirconia-Containing Materials 

Despite their potential commercial importance, zirconia and zirconia­
containing ceramics have not been as extensively studied with respect to 
hardness as might be expected. This is apparent from the few data in 
Table 6.20. 

The grain size effect and the range of K rc values is demonstrated in a 
recent investigation of Ce02 stabilized zr02 which may become an important 
form of PSZ more common than other stabilized zirconias because of its 
resistance to sulphurization in high temperature uses. Ce02 stabilized 
zirconia samples contain from 20-100% of the tetragonal form when 
8-16 mol% Ce02 is used. Figure 6.21 shows the effect of grain size and 
monoclinic content. 
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Figure 6.21. Grain size effect on Vickers hardness of Ce02 partially stabilized Zr02 . After 
Tsukuma and ShimadaY9) 

Samples containing only 7 mol% Ce02 contained mostly the mono­
clinic form, and K 1C values determined at 490 N loads to produce cracks 
and analyzed by the Niihara equation, equation (5.53), were high, in the 
range 11-16 MPa m 1/2. High tetragonal content produced by 11 mol % Ce02 
had K 1C values in the range 5-7 MPa m l / 2 which demonstrates that the 
tetragonal ~ monoclinic toughening mechanism was not as effective as the 
controlled microcrack process zone method, but both represent improve­
ment on the reported value of 1.1 MPa m l / 2 for single crystal Zr02' Further 
support for the greater efficacy of the monoclinic micro cracking route to 
toughness is seen in Figure 6.22 where the greatest toughness values for 
directionally solidified AI20 3-PSZ ceramic are shown in the region contain­
ing monoclinic Zr02' The fiberlike morphology shows some anisotropy of 
toughness and produces shallow radial Palmqvist-type cracks with loads in 
the range 5-100 N; because of the type of crack the Niihara equation, 
equation (5.53), was again used to determine K 1C' 

Microscopic examination of the surface crack lengths and their depths 
below the surface for two stabilized and partially stabilized zirconias(20) 
available as commercial products, after indentation at 294 N, shows that 
the cracks do not often have the geometry of the halfpenny (see Section 
5.2) but are usually of the shallower Palmqvist radial type with dj c' ~ 0, 
where d is the crack depth and c' is the surface trace. 
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Figure 6.22. Fracture toughness by indentation method and Vickers hardness of Al20 3 contain­
ing PSZ. 

Porosity affects the hardness of zirconia and PSZ perhaps more 
markedly than nontransformable ceramics because b in equation (6.20) is 
8, whereas most other ceramics conforming to equation (6.20) have a b 
value of 7. 

Hmeasured = Ho exp ( - bp ) (6.20) 

In equation (6.20), Ho is the hardness at zero porosity, b is a constant 
(usually 7), and p is the fractional porosity. For the Vickers hardness of 
tetragonal zirconia, the equation arising from equation (6.20) is given in 
GPa as 

Hy = 12.27 exp ( -8p) (6.21) 

When substantial porosity is present, even in a sintered ceramic such 
as the fi-Al203-Zr02 composite shown in Figure 6.23 (top), the hardness is 
determined by a compaction mechanism. In Figure 6.23 (top) the indented 
area has almost no dark pores compared to the surrounding area and shows 



Ceramic Systems 279 

Figure 6.23. Vickers indentations made on the surface of I3-Al20 3 infiltrated with Zr(N03 )4 

solution and sintered at 1400°C. (top) Magnification of 760x of indent made at 4.9 N after 
one infiltration. (bottom) Magnification of340x of indent made at 19.6 N after ten infiltrations. 
Mter Inwang.(21) 

cracks along the indent edges arising from grainboundary fracture and grain 
rearrangement in the compacted area. When the same sample is more fully 
pore filled with zr02 from the decomposition of zirconium nitrate solution, 
as shown by the greater abundance of white areas in Figure 6.23 (bottom), 
the sample is much harder and shows the characteristic comer cracks (see 
Section 5.2) of a brittle ceramic subjected to a large indentation load, in 
this case 19.6 N. The presence of the Zr02 increases the toughness parameter 
of the ,a-Ah03 by 42% in the example shown in Figure 6.23 (bottom). 

6.3. ELECTRONIC CERAMICS 

Data for some very important electronic ceramics have already been 
given and discussed in Section 6.1. The electroceramics of importance, when 
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these covalent semiconductor materials have been removed, are all ionically 
bonded and are usually ternary oxides. The first has already been referred 
to in the section dealing with alumina and is the potentially important 
~-Alz03' 

6.3.1. Beta-Alumina 

Fast ion conduction in the planes separating the spinel blocks present 
in this structure is responsible for the deep interest in using this ceramic as 
a solid electrolyte in advanced battery design. The term ~-alumina encom­
passes an ever growing series of ternary oxides MxOY'l1Alz0 3 with the best 
known being NazO·llAlz0 3' the one most people associate with the name 
~-alumina. The structure has overall hexagonal symmetry with each unit 
cell containing two very important mirror planes perpendicular to the c-axis. 
These planes are separated by four close packed layers of Oz- ions contain­
ing AI3+ in octahedral and tetrahedral sites, distributed so as to have spinel 
composition and structure. Each spinel block is linked through Oz- ions 
on the mirror planes that are joined to AI3+ ions in the spinel blocks above 
and below the plane. The AI-O-AI links so formed have considerable 
covalent character through sp hybrid bonding. In the mirror planes these 
linking oxygen atoms form an open hexagonal array of negative ions able 
to coordinate Mn + cations on the plane. Two sites for Mn+ ions are available, 
each type forming an hexagonal array, one known as the Beevers-Ross site 
lying beneath a trigonal interstice in the spinel oxide layer; the second site, 
known as an anti-Beevers-Ross site, lies directly beneath an oxide ion in 
the spinel layer. Partial occupancy of the Beevers-Ross sites, and the 
availability of the antisites, is responsible for the easy ionic conduction in 
the plane of the Oz- ions forming the mirror plane. The overall unit cell 
has a large, 2.26 nm c axis, because it contains two of the spinel blocks 
related by a twofold screw axis. 

Nonstoichiometry is the rule in this class of material together with 
obvious anisotropy and considerable polymorphism. The polymorphism 
arises from one, or a combination of, the following mechanisms: variation 
in the number of close-packed 0 2 - layers constituting the spinel block, 
change in the screw axis relationship of the blocks, increase in the number 
of blocks along the c-axis, and replacement of Al20 3 in the spinel blocks 
by other MzOrtype oxides. Examples of all these variations are known and 
the nomenclature has extended to ~', ~", ~1II-Al203' etc., to accommodate 
them. 

Anisotropy in mechanical properties, as well as electrical properties, 
is associated with the presence of the mirror planes. Easy cleavage on (00.1) 
conduction planes is observed. The micro hardness method has been found 
convenient for probing this mechanical anisotropy and producing data that 
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can be used in calculations to find the critical current density above which 
strength damaging flaws are generated in ,8-Al203 battery membranes. A 
critical current density at which a crack is nucleated can be estimated from 

ic = AK~( c,)-n (6.22) 

In the above equation, c' is the flaw length, A is a constant, and n is a 
model-derived constant varying between 1.0 and 3.0 depending on the model 
used. When Kc values as derived from macroscopic tests on polycrystalline 
samples are used, ic values several orders of magnitude too high are predicted 
from those observed to produce cracks in the ,8-Al20 3 membrane. 

The hardness indentation technique is able to distinguish (00.1) 
cleavage planes from prismatic planes, all of which can be investigated by 
the methods described in Chapter 5. In this way E values in x and y 
directions have been found on different planes as well as K 1C values for 
the various planes. Clearly, E values need to be determined that are relevant 
to the planes of interest, whichever of the K 1C equations in Chapter 5 are 
used. Data obtained with indenter loads in the range 19.6-49.0 N using 
both Vickers and Knoop indenters show, in Table 6.21, the considerable 
variation in E for the structurally important planes. Using the E values 
obtained this way, Kc values were calculated for cracks running along [00.1], 
i.e., perpendicular to the mirror planes, which are in agreement with values 
from macroscopic methods with values around 1.98 MPa m1/ 2. However, 
Kc values for cracks running in the basal plane were only 0.162 MPa m 1/ 2, 
and if this value is used in equation (6.22) critical current densities are 
predicted that are around those found practically. Thus it appears that 
current overload initiates failure by nucleating small cracks running across 
(00.1) planes in the ,8-AI203 grains. Basal plane hardness and toughness 
were seen to be load dependent up to 50 N according to equations (6.23) 
and (6.24) which relate hardness and toughness to load P 

Hy = 13.5 - 3.37 x 10-5 p 3 (GPa) 

K 1C = 0.916 - 6.42 x 10-7 p3 (MPa m1/ 2) 

(6.23) 

(6.24) 

Attempts to improve K 1C values so that greater current densities can 
be used are concentrated on the inclusion of zirconia as a toughening agent 
(see Section 6.2.3.2), and results given in Table 6.21 and Figure 6.24 indicate 
some success from this route. Most of the improvement is thought to arise 
from a compressive surface stress which can be estimated from Figure 6.24 
and equation (6.25): 

(6.25) 

In equation (6.25), K ic is the intrinsic fracture toughness (i.e., the value 
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8 

2 

2 10 

Figure 6.24. Fracture toughness calculated for a polished surface of fJ-A1203 + 15 by weight 
of % tet zr02 plotted against square root of indentation crack length. 

for pure P-Ah03), A is a constant (?T I / 2 ), U c is the residual stress, compres­
sive and therefore negative, and c' is the indent crack length. 

Results from a more specific examination of hardness anisotropy using 
the Knoop indenter have been given in Section 3.5.1, which shows that the 
direction of maximum hardness in the basal, (00.1) plane depends on the 
M+ cation in the mirror plane: active slip systems are (00.1)(1120) for 
Na+-p-Ah03 and (00.1)(10IO)for Ag+, K+,and Tl+-P-Ah03, which suggests 
some differences in local structure in the conduction planes. 

6.3.2. Spinels 

This class of ceramic is named after the mineral MgAh04 and many 
members have been fabricated because of the sensitive dependence of their 
electrical and magnetic properties on composition and temperature. Such 
a dependence arises from the variations in cation site occupancy that can 
be engineered. Spinels containing iron are particularly useful because of 
their magnetically soft properties that led to their application in computer 
hardware, memory devices, high-frequency transformers, and phase shifters. 

Discussion and differentiation of spinels is based on the X-ray revela­
tion that the basis of the structure is cubic close-packed layers of oxygen 



Ceramic Systems 285 

ions with variable occupation of the octahedral and tetrahedral sites by A 
and B cations that such packing generates. The unit cell contains 32 0 2-
ions in the close packed array which leads to the structural composition 
AgB16032' Since a close-packed arrangement of 32 anions generates 64 
tetrahedral and 32 octahedral sites and only 24 cations have to be accommo­
dated, there is great scope for structural variation. 

Anion charge neutralization can be achieved with different combina­
tions of cation valency: A 2+ + 2B3+, known as two-three spinels; A 4+ + 2B2+, 
known as four-two spinels; and A6+ + 2B+, the six-one spinels. Two-three 
spinels constitute 80% of the class. 

Very few cations can occupy the tetrahedral sites without distorting 
the oxygen anion packing, so many spinels are less symmetrical than cubic. 
The structure is described as normal or inverse. When all 8 A-type ions 
occupy tetrahedral sites and all 16 B cations are in octahedral sites, the 
spinel is known as normal even if the oxygen site distortion does not result 
in cubic symmetry. When half the B cations occupy the tetrahedral sites 
and the other half plus the A cations occupy octahedral sites, the substance 
is called an inverse spinel. Obviously degrees of inversion can be encoun­
tered depending on the mechanisms that allow inversion to occur. Many 
of the important uses of spinels arise from the degree of inversion. For 
example, consider Fe304, which is a completely inverse spinel, 
(Fe3+)tet(Fe2+,Fe3+)octO~-, because of the strong octahedral site tendency 
of Fe2+. Such a structure produces a random array of Fe2+ and Fe3+ ions 
in equivalent octahedral sites which leads to "hopping charge" semiconduc­
tion via Fe2+ ~ Fe3+. Substitution of Zn2+ with its dominant tetrahedral 
site characteristic eventually leads to Zn2\etFe~+0~- with complete sup­
pression of electrical conductivity. 

Closely related to the spinel structure is that of the hexagonal, magneti­
cally hard ferrites characterized by the commercially important BaFeI2019' 
In this structure the oxygen anions are hexagonally close-packed and, 
because Ba2+ cations are of a similar size to oxide ions, some are incorpor­
ated into the oxygen layers, too. This has the effect of defining a greater 
number of sites than the octahedral and tetrahedral ones found in spinels. 
Among the five distinct sites so produced the Fe2+ and Fe3+ cations are 
distributed. Because the structure is hexagonal, the magnetic properties are 
markedly anisotropic, and we might expect this to be true for hardness 
measurements, especially since Table 3.1 shows that cubic manganese zinc 
ferrite demonstrates hardness anisotropy. However, definite measurements 
do not seem to have been made on single crystals of BaFeI20 19' Improve­
ments in the fracture toughness of sintered BaFeI20I9 have been made by 
mixing in a low melting glass phase, and here the indentation technique 
has proved useful in confirming the toughness improvements made to these 
ceramic magnets. (22) 
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In the search for newer electroceramics, a series of spinel and spinel­
related sulphides have been prepared and examined.(23·24) The hardness of 
these materials shows a general trend related to the cation coordination: 
the softest are like ZnGaS4 which have the defect chalcopyrites structure 
and are tetragonal with 4-4 coordinated cations; the spinels like ZnSc2S4, 
with 6-4 coordination, are intermediate in hardness; while the 8-8 coordin­
ated materials like CaLa2S4, that have the Th3P4 structure, are hardest. 
Some hardness values are given in Table 6.21. A particularly unusual feature 
of the defect chalcopyrites structure is the decreased hardness at low loads 
so that the hardness versus load curve in Figure 6.25 is in marked contrast 
to the normal behavior sketched in Figure 1.3; according to the analysis of 
indentation size effect given in Section 4.1, the n exponent in equation (4.2) 
is greater than 2 for these sulphospinels. 

6.3.3. Perovskites 

The ideal perovskite structure derives from the mineral CaTi03 , which 
is cubic with a unit cell around 0.39 nm containing one formula unit. The 

> 
%: 

6'0 

5·5 

5·0 

4·5 

25 50 75 100 

Load 9 

Figure 6.25. Unusual softening effect at low loads for ZnGa2S4 single-crystal hardness. Mter 
Vengatesan et al. (24) 
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structure is most commonly viewed as corner-sharing B06 octahedra along 
the cube axes. This regular, well ordered arrangement is then seen as 
generating a series of interstitial sites one of which has 12-fold 0 2- coordina­
tion and is available for the large A + cations. When all 12 coordinate sites 
are vacant, an interesting electroceramic Re03 results which has excellent 
metallic electrical conductivity in the [001] direction. When all the A sites 
are occupied by, say, Na+ another unusual metallic conductor, NaW03, 
whose golden color closely resembles Re03, results. Variation from Nao to 
Na1.o in Nax W03 produces a wide range of conducting ceramics known as 
the tungsten bronzes. Semiconductor-to-conductor transitions occur in the 
series at critical compositions, but pressure can also cause such transitions 
at a given composition. The size of the octahedral site at which B cations 
reside is large, and often the B cations are displaced from the center of 
symmetry. If all such displacements are cooperative so that the dipoles are 
aligned, a spontaneous polarization occurs like that found in Pb(ZrTJ03 
along (001). Hence ferroelectric ceramics frequently occur in this class of 
material and, since ferroelectric perovskites are piezoelectric, they are used 
to convert electrical pulses to mechanical oscillations and vice versa. When 
the B octahedral cations are transition elements, a wide variety of magnetic 
properties can be found as the d orbitals on the B ions interact along [001] 
through the pz orbitals of the 0 2- ions. When the B site contains iron, the 
ceramics are known as orthoferrites and possess high coercivity. 

Although the ideal structure is cubic, it is found only infrequently 
because polarization of the 0 2 - by the small B cations causes considerable 
covalency. Deviation from the cubic structure is defined by the tolerance 
factor 

(6.26) 

'A and 'B are the cation radii and '02 - the oxide anion radius. When t is 
1.0 the cubic structure is found, but usually t is in the range 0.75-1.0. At 
the low values of t, tetragonal and orthorhombic structures are encountered. 

Variation of composition and structure have made it possible to 
engineer materials with specific properties, and this has led to the develop­
ment of many perovskite ceramic sensors: for example, BaTi03 has a large 
positive temperature coefficient and is used as a current limiter or as a 
temperature measuring device; BaTi03 + BaSn03, known as BTS, has been 
developed into fast, stable, and sensitive detector systems for temperature 
change, relative humidity meters, and the detection of small amounts of 
organic gases as the decrease in resistance of the system is monitored. The 
effectiveness of BTS sensors depends upon development of three types of 
pore system within the material: micropores < 2 nm, mesopores 2-5 nm, 



288 Chapter 6 

and capillary pipe macropores >50 nm. In addition, LaTa03 and PbTi03 
have been developed as pyrometer materials and optical sensors because 
the current output is proportional to the total incident radiation energy and 
Pb(ZrTi)03 converts mechanical to electrical energy and finds uses in igniter 
systems, bleepers, resonators, and strain gauges. 

Hardness, like the electrical properties, is related to the concentration 
and type of A atoms in the structure; this is demonstrated in Figure 6.27 
which shows that the hardness of the (110) and the degree of anisotropy 
increases as the sodium content of NaxW03 increases. The fact that A-type 
cation-lattice interactions are dominant in determining hardness with the 
concentration of conduction electrons being unimportant is demonstrated 
by the lack of anisotropy and the relative softness shown by Re03 crystals 
in Figure 6.27. Re03 has all A sites vacant but by virtue of the Re7+ valency, 
compared to \0+ in Nax W03, it has a filled conduction band. 

Hardness in these materials may be related to the size of the band gap; 
as Am+ - B03 interactions lower the energy of the bonding states then as the 
concentration of A cations rises, the band gap is increased. Thus, when 
bonds are broken during a hardness test, electrons need to be excited to 
the nonbonding or conduction levels, a process that becomes more difficult 
as the composition of the A sites is varied. 

The active slip system has been determined by the RSSM approach 
(see Section 3.6.1) to be (110)(110), and the slip lines shown around the 
indents in Figure 6.26 support a (110) assignment.(25) 

f 
[100] 

20 m 

Figure 6.26. Knoop indents produced by a 1.96 N load on a (001) crystal face of Na075 W03 

(a) along [110] and (b) along [100]. 



Ceramic Systems 289 

9 

8 

7 t'o> 
/ 

IV 
6 / Q. 

(!) 

/ 

f "k <100> 

03 
~ 5 ::t: 

4 

3 

2 
W03 
unoriented 

0 0·2 0·4 0·6 0'8 1·0 

x 

Figure 6.27. Knoop hardness of (001) faces of Nax W03 and Re03 crystals and of unoriented 
W03 crystals. 

6.3.4. Ceramic Superconductors 

The perovskite structure can, like almost all oxide ceramics containing 
transition elements, be made defective, and when this was achieved for 
yttrium-barium-copper perovskites a startling development was reported 
that has the potential to alter our way of life; high-temperature superconduc­
tivity was discovered. The phenomenon was first reported for material of 
compositions YBa2Cu307, the structure of which can be described in several 
equivalent ways centering on the basic K2NiF4 structure. One description 
refers to the structure as possessing a sequence of Ba-Y - Ba ions along the 
c-axis separated by two-dimensional CU02 planes leading to a tripled unit 
cell in the c-direction. Thus the formula would be YBaCu309-X implying 
considerable numbers of vacancies in the oxygen sites to bring the overall 
composition to 0 7, Other descriptions of the structure emphasize the defect­
perovskite-Iayered nature according to which there are ordered oxygen 
vacancies in the CU02 planes separating the planes containing Ba2+ ions. 
This description leads to the YBa2Cu307-x formulation. Structural features 
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thought to be essential for the occurrence of superconductivity in a perov­
skite are: an ordered array of vacancies, mixed valence Cu2+ and Cu3+ 
states (although the existence of Cu3+ is disputed), and pyramidal and 
square-planar coordination of copper ions. 

The attainment of superconductivity is very dependent on the annealing 
conditions used because the structure is so easily able to intercolate oxygen 
and also pertectically decomposes at 1040°C. There appears to be an 
optimum oxygen stoichiometry for high temperature superconductivity 
related to the content of oxygen in the copper plane that will allow "perfect" 
CU02 chains to be created by oxygen vacancy ordering in the basal plane 
of the structure. 

Changes in oxygen content are, however, not without structural con­
sequences and, as oxygen is removed, the orthorhombic distortion of the 
cubic perovskite structure is altered. Thus above a critical temperature the 
unit cell can lose oxygen such that the oxygen content reaches °6.5 , at which 
point a transition to tetragonal symmetry occurs. This tetragonal phase will 
not show the superconductivity around the 90K mark which makes the 
orthorhombic phase so exciting. As the oxygen leaves the Cu-O-Cu chains 
in the orthorhombic phase, the 0 2- ions disorder between sites in the basal 
plane along the a and b axes which effectively makes them equivalent axes 
and produces the tetragonal symmetry. 

In order to realize the potential of these ceramics they must be fabri­
cated, and with such a low decomposition temperature sintering to high 
strength is proving a problem. Hardness determinations will prove useful 
in characterizing the mechanical properties of these and other ceramic 
superconductors, but as yet little has been reported. Table 6.21 contains 
hardness values obtained for the YBa2Cu307-x superconductor at room 
temperature and at liquid N2 temperatures (77 K). As expected, the Vickers 
hardness rises to 3.1 GPa at 77 K and some success with sinter additives is 
achieved because the standard material hardness is raised from 2.2 to 
2.5 GPa after sintering in their presence. Indentation hardness techniques 
have been used to establish the KJC value of 1.1 MPa m1/2• 

6.3.5. Hardness Data and Properties Derived from Them 

Some of the collected data, most of which was obtained from single 
crystal experimentation, are given in Table 6.21. 

6.4. SPECIAL CERAMICS (REFRACTORY HARD METALS) 

This class of ceramics contains some of the hardest materials available 
for exploitation, and the types encountered have such ranges and combina-
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tions of properties that they cannot be described easily by one form of 
chemical bonding. Components of ionic, metallic, and covalent bond models 
are obvious in their behavior, their structure, and the theoretical descriptions 
encountered. Consideration is made a little easier by grouping the ceramics 
formed from the small nonmetal atoms carbon, nitrogen, and oxygen and 
calling them interstitial alloys, then grouping together the borides and 
silicides because the large nonmetal atoms in these systems form chains, 
sheets, and network structures through s-p covalent bonding into which 
metal atoms are intercalated. 

Composites of interstitial alloys and metals are encountered in this 
class of ceramic, in particular the system sintered tungsten carbide-cobalt, 
which is used in metal cutting tools. 

Many of the interstitial carbides are cubic and as a result of this have 
been examined in detail by the hardness technique with respect to anisotropy 
of behavior. As in the work with perovskite oxides (Section 6.3.3), there 
have been many studies made to investigate the relationship between compo­
sition and hardness because one of the fascinating aspects of these materials 
is the tremendously wide ranges in stoichiometry that are encountered, and 
the large changes in physical properties these introduce. 

Within the classes of silicide and boride a much wider range of structural 
types is encountered. 

6.4.1. Interstitial Carbides 

All interstitial carbides have high melting points, and indeed the solid 
of highest melting point known is an alloy of 80% TaCO.93 + 20% HfCo.93 

which melts above 4050°C. All are brittle and have high hardness values 
and high strengths maintained to high temperatures. All have a metallic 
luster and electrical and thermal conductivities of the same order as those 
found for metals. Thermodynamically they are expected to be easily oxidized 
and corroded but surface protective layers of oxidized material are often 
adequate to allow their use in ambient and, in many cases, to high tem­
peratures. Such an unusual admixture of properties suggests that the bonding 
forces in these ceramics cannot adequately be interpreted on anyone model. 
The best explanations offered for their intrinsic properties involve models 
that have ionic components, covalent overlap of bonding orbitals, and broad 
overlapping bands of molecular orbitals. 

The technically important interstitial carbides usually exhibit three 
distinct phase ranges dependent on M : C ratio. First M takes up carbon in 
solid solution to produce the a-phase with an expanded metal structure. 
When the solubility limit is passed in the range 5-10%, conversion to the 
~-phase occurs which is a nonstoichiometric phase around MCO.5 composi­
tion. The width of the composition variation is temperature dependent and 
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arises from carbon deficiency, not metal excess. The ,B-phase inevitably has 
an hexagonal symmetry. Extra carbon brings about a transformation of the 
metal structure to cubic and the carbon occupies octahedral sites in the 
cubic structure to produce the r-phase. The r-phase is always widely 
nonstoichiometric from MCO.55 to MC1.o, but it must be stressed that it is 
unlikely that the M : C ratio of 1 : 1 is ever achieved. Modern bonding theory 
suggests that maximum electron stability is achieved when x in MCx reaches 
a maximum in the range 0.83-0.97. Samples that are supposedly MC1.o must 
be carbide and graphite eutectics. Since all octahedral sites in the rock-salt 
structure of metal atoms are not occupied by carbon atoms, there is consider­
able scope for ordered occupation and the existence of series of superstruc­
ture phases; VCx is a classic example of this behavior. 

The general mechanical behavior of the cubic carbides is similar to 
that of carbon and silicon (Section 6.1.5), with the slip systems, elastic 
behavior at room temperature, and plastic behavior at elevated temperatures 
being the same. Mechanical properties show a marked composition depen­
dence not least hardness, for example, the hardness of TiCo.82 is 19.63 GPa, 
and this rises to 26.99 GPa for TiCo.97 . In contrast, the Vickers hardness of 
TaCO.82 is 26.99 GPa, but this decreases to 13.74 GPa at TaCO.96 ' A plausible 
explanation for this behavior for two materials that have almost identical 
structures has to be sought in the bonding arrangements. (26) Titanium in 
group IV and Ta in group V differ only in the number of valence electrons 
they contribute to MCx and CM6 octahedra molecular orbitals. Addition 
of electrons from carbon in the titanium case is to metal d -carbon p7T 
bonding bands, but these are full in the case of the CMx octahedra in TaCx; 
thus, carbon electrons are moving into antibonding levels in the M-C d-p7T 
bands. 

The slip mechanism at temperatures up to 1500°C have been probed(27) 
for crystals of NbCo.8, VCO.88 , and a range of less well defined samples of 
TiCx and TaCx by using the indentation creep technique (see Section 4.3) 
as well as by oriented Vickers and Knoop studies. The results, shown in 
Table 6.22 with m values in the range 3.7-4.3 and activation energies around 
the value expected for carbon diffusion, indicate that a common slip mechan­
ism exists, governed by carbon diffusion and dislocation climb. The activa­
tion energy for indentation creep of WC is 460 kJ mol- 1 which is higher 
than values in Table 6.22, but this reflects the fact that r-WC is hexagonal 
not cubic. 

Hardness is quite anisotropic at room temperature, becomes less so as 
the temperature rises, and shows a reversal beyond a critical temperature. 
Figure 6.28 demonstrates these features for TiC indented on (001). This is 
indicative of a change in the operative slip system with temperature. 

Although there are growing uses for this type of carbide as crucibles, 
pump linings, heating elements, electrode materials, and in the case of VC x 
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Table 6.22. Hardness Creep Data 

Material Crystal arrangement rna Q (kJmol-1) 

TiC. (100)[001] 3.85 336 
(110)[001] 4.05 339 
(111)[110] 3.73 322 

YCO.88 (100)[001] 4.27 358 
(110)[001] 4.07 348 
(111)[110] 3.79 333 

NbCO.8 (100)[001] 3.91 378 

am and Q are from the relationship B = H~ exp (-Q/ RT). 

nuclear fuels, by far the commonest application is in the field of cemented 
hard-metal cutting tools. These tools are a successful attempt to minimize 
the problems associated with brittleness when using the desirable high 
hardness of the ceramic to provide cutting faces for tools. A ductile metal 

30 

o 90 

Azimuthal angle 

180 

Figure 6.28. Knoop hardness anisotropy as a function of temperature for TiC on (001), 
O· = [100], 45° = [110], 90· = [010],135· = [liO], and 180· = [100]. 
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is used to cement the interstitial carbide crystals. A suitable metal has to 
fulfill several criteria: 

• It should wet the carbide when molten so that good bonds can be 
formed on cooling. 

• It must not itself be a carbide former. 
• It should have little solubility in the carbide phase. 
• It should be ductile. 
• It should be resistant to oxidation. 
• It should have good self-sintering characteristics. 

The metal found to satisfy these criteria best is cobalt, and in particular it 
fulfills them best with 'Y-WC, so the literature is heavily weighted toward 
WC-Co systems. 

Because WC is oxidized to W03 at high cutting speeds and this oxide 
is volatile, in order to cut hard steels, substantial amounts of TiC x are added 
to some WC-Co grades. Some hardness data for cemented carbides is given 
in Table 6.23 along with other carbide data, and equations (5.51), (5.52), 
and (5.55) can be used to determine fracture toughness parameters from 
indentation hardness measurements. 

6.4.2. Ionic Ceramic Carbides 

The term "ionic" is, in most of cases, an oversimplification because 
the carbides in this class usually have metallic sheen and solid-state electrical 
conductivity similar to those of a metal, so some delocalized bonding is 
involved. Furthermore, these properties usually occur when the carbon-to­
metal ratio exceeds 1.0. Examples are Ln2C3 and UC2. Many such carbides 
contain C2 units and, because of the enhanced reactivity with water or water 
vapor, it is thought that the C2 unit carries two negative charges, hence the 
ionic classification. A molecular orbital analysis of two carbon atoms can 
be used to demonstrate that the C2 unit has two holes in the bonding level 
with energy lowering for the system when the electrons are provided by a 
metal atom. Further stabilization is then achieved by ionic bonding between 
the metal cations and the C~- anions. A third component of the total bonding 
can then arise as the antibonding 2p! orbitals on the C~- unit are favorable 
for overlap with metal d or f orbitals. The result of this is a refractory, 
hard material with some potential uses as long as the system is protected 
from water vapor. 

For UC2 the system can be represented as U + C2 ~ U4+C~- + 2e- in 
the 7 s-6d-2p! band. 

If the metal is a lanthanide, then the carbide would contain Ln3+C~­
and only one electron per metal is available for the covalent 6s-5d-2P! 
band. In this way the decreased stability on going from UC2 to LaC2 is 
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anticipated. The presence of C~- units in the octahedral sites of the close­
packed metal structure brings about a tetrahedral distortion as the C~- ions 
are aligned with their long axis along [001]. Nonaligned C~- units can lead 
to overall cubic symmetry, and so all such carbides are polymorphic, 
exhibiting brittle martensitic phase changes when subjected to raised tem­
perature or pressure. 

The hardness, both pendulum and Vickers, of a series of lanthanide 
carbides LnC2 is most easily interpreted on the bond model outlined above. 
Figure 6.29 shows the pendulum hardness of the lanthanide dicarbide series 
alongside the f electron character of the delocalized electrons, and the 
notable feature is that the softer dicarbides contribute a higher f-electron 
character to the band, so the 2p! metal band will be more diffuse. Mter 
SmC2 the hardness appears constant, while the f-orbital contribution is zero 
from SmC2 onward. The hardness ofYC2 and ScC2 , which are isostructural 
with the lanthanides but in which the 4f levels are too far above the Fermi 
surface to allow any 4f character in the band electrons, have hardness 
values close to LuC2 and the other heavy lanthanide dicarbides. A sharp 
change in hardness values as indicated in Figure 6.29 is not to be expected 
from other contributions to the bonding since the lanthanide contraction 
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Figure 6.29. Correlation between f-band electron concentration for Ln3+ and pendulum 
hardness (--). Also shown is the number of f-band electrons (- - -). Pendulum hardness for 
LnC2. After McColm.(28) 
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of 14% from LaC2 to LuC2 leads to an expectation of gradually increasing 
hardness across the series. 

Since these substances are isostructural, solid solution formation is 
easy across the whole series, and the hardness of 50 mol % alloys, 
Lno.sLno.SC2' can be considered alongside the observed depression of the 
cubic-to-tetragonal phase transformation on cooling. It has been shown(28) 
that the depression in transformation temperature, a T" is related to cell 
volume difference a v and the shear modulus G for such solid solutions 
when the dicarbide of smaller cell volume is considered as the solvent and 
the dicarbide of larger cell volume is dissolved in it; the relationship is 

aT, = AG(a V)2 (6.27) 

A direct linear dependence like that shown in Figure 6.30 between hardness 
and a T, for these solid solutions demonstrates the relationship between 
hardness and shear properties. 

6.4.3. Interstitial Nitrides 

There are great similarities between carbides and nitrides, and the same 
bond models are used when rationalizing their properties. The overall uses 
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Figure 6.30. Relationship between Vickers hardness and the depression of the transformation 
temperature for NdC2 50: 50 mol % solid solutions. 
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as crucibles, pump parts, and components in cermet cutting tools parallels 
the carbide phases. Crystal structures and packing sequences through a, p, 
and l' phases are like those for carbides, but the heavier metals such as 
TaN and NbN are not able to achieve a cubic form, existing only as 
hexagonal polymorphs. However, the application of high pressure to TaN 
results in a cubic modification, which as Table 6.24 shows is almost three 
times harder than the hexagonal form. In the cubic form the extra covalent 
contributions to bonding more than offset the easier slip that is available 
in the more symmetrical structure with the result that the extremely hard 
material, cubic TaN, Bv = 31.4 GPa, is achieved. 

As a general rule the nitrides appear to be more stable than the carbides 
and do not have nonmetal-rich phases, similar to MC2, or any other other 
nitrogen-rich phases. Once again for all compositions wide stoichiometric 
ranges are encountered as a result of nitrogen vacancies. It is doubtful if 
MN 1.0 exists. 

Because of their fine golden color, high hardness, and extreme corrosion 
resistance, TiN films deposited by CVD techniques are becoming common 
in both electronic and mechanical applications. 

6.4.4. Borides 

Like the carbides and nitrides, these materials have all the characteris­
tics of covalent and metallic materials, so their properties are interpreted 
according to a number of mixed bonding models. For anyone system, MBx , 

more than one bond model is encountered because compared to the carbides 
and nitrides the nonmetal-metal ratio is very large, ranging from 0.2 to 12. 
Several metals form as many as six distinct boride phases, most of which 
are very stable, usually more so than the carbides or nitrides. Their availabil­
ity and lower cost mean that borides are the most commonly used special 
ceramics. Diborides, in particular TiB2 and ZrB2' are commonly encoun­
tered now as linings on rocket nozzles and rocket nose cones and in turbine 
applications as well as sintered pump parts. Their resistance to scratching 
and abrasion sees their use as sliding contacts in electrical systems because 
of course their unusual bonding behavior gives many of them electrical 
resistivities similar to those of metals. Higher borides such as LaB6 are used 
as stable refractory sources of electrons in several types of electronic 
application. 

The stability ofborides, as the fact that so many exist attests, is a reason 
for their not appearing as components in cermet systems; few, if any, metal 
matrices will not react with boride powders or fibers to form ternaries that 
lead to matrix degradation. Indeed, when boron fibers are to be used they 
have to be coated, usually with carbon, to prevent matrix interactions. 
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Fortunately, aluminum is one of the few metals that does not readily form 
borides, so it is used as a matrix for boride or boron fibers. 

The size of the boron atom means that it cannot be accommodated iti 
tetrahedral or octahedral interstices in close-packed metal structures, which 
was the convenient model used to discuss the carbides in Section 6.4.2. 
Furthermore, the large size of boron together with its 1S22s22pl electronic 
structure, easily hybridized to (1 s22( Sp2»* arrangements, means that overlap 
of the Sp2 planar orbitals is frequently achieved, leading to the evolution 
of chains and networks of covalently bonded boron atoms throughout many 
of the structures found in metal borides. It is convenient to use the composi­
tion MB2 as a pivot point in any discussion of structure: From M4B to MB2 
the structures are viewed as being intact metal lattices which define M6 
trigonal prisms capable of being occupied by boron atoms; that is, different 
degrees of boron vacancy concentration can exist in complete metal struc­
tures. Above MB2 up to MB12 the structures are regarded as three­
dimensional boron networks within which combinations of metal atoms 
and vacant metal atom sites are perceived. The pivot composition, MB2 , is 
generally a widely nonstoichiometric phase with deficiency in both sublat­
tices, but more often the boron network is most affected. Diborides are 
hexagonal and consist of alternate two-dimensional planar layers of boron 
atoms and metal atoms. The filled trigonal prism model that leads to the 
interpenetrating networks can be seen in Figure 6.31. 

Figure 6.31. Condensed M6 trigonal prisms of metal atoms at Z = 000,0, and Z = 001, 0, 
each prism sharing all three faces. Hexagonal network of Sp2 hybridized boron atoms ___ 
are at Z = OQ!. These two-dimensional networks compose the structure of MB2 phases. 
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Other boron linking patterns found in borides are summarized in Table 
6.23. Several bonding theories have been developed, starting from the 
recognizable networks of boron found in these compounds. For example, 
NMR and conductivity measurements on diborides suggest that the boron 
network has a 1T bonding component which could be achieved if some 
electron transfer from metal to boron took place. The model would then 
be Mn+(B2)n- with an ionic contribution to bonding. The extra electron 
density on the boron network would provide p orbital character above and 
below the boron planes rather similar to that found in graphite. Such an 
arrangement would favor a metal atom dz orbital covalent contribution to 
bonding via B(2p )-M(4 or 5)dz overlap. Calculations show that the bonding 
level from the B(2p)-M(4 or 5)d orbitals lie just below the Fermi surface 
while the antibonding level lies above the Fermi surface. This fact would 
account for the weaker bonding in group V diborides (NbB20 TaB2) which 
have greater electron density in the anti bonding level compared to group 
IV diborides (TiB2, ZrB2' HfB2). In terms of hardness the group IV diborides 
are harder than those of group V, which supports this model. 

Diborides have a large homogeneity range as a result of the structure 
containing metal vacancies plus excess borons at l and ~ 0 sites; both 

Composition 

MB 

Table 6.23. Boron Units Encountered in Borides 

Boron unit 

A 
Isolated B atoms 

I-
B2 pairs 

Single chains 

Double chains 

Layer network, 
see Figure 6.27 

Three-dimensional frameworks of B6 octahedra 

B-B distance 
(nm) 

0.33 

0.179 

0.177 

0.177 

0.175 

0.174 
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occurrences will lead to a decrease in electrons in the antibonding level 
with increased stability. Figure 6.32 reflects this by showing a sharp increase 
in hardness for NbB2 of 0.29 GPa (at % boron}-l. 

Summarizing, for diborides the total bonding forces come from strong 
covalent Sp2 hybrid interactions in the boron planes, strong metal d orbital 
interactions in the planes of metal atoms, ionic bonding following metal -+ 

boron electron transfer, and bonding and antibonding contributions from 
boron (2p }-metal (dz ) orbitals. 

These last two contribute to holding the two-dimensional networks 
together. The nature of the bonding, strong in planes and weaker between 
planes, together with the hexagonal symmetry, leads to considerable 
anisotropy, not least in hardness values. 

The bond models for the boron-rich borides such as MB6 have a 
common feature with the ionic carbides discussed in Section 6.4.2, in that 
a mechanism exists for a favorable transfer of electrons from the metal 
atoms to the boron framework to add a considerable ionic character to the 
overall bond character. Molecular orbital calculations for isolated units 
such as B6, using 2s and 2p boron orbitals, reveal that the molecular orbitals 
can be divided into two sets: one group of six outward pointing at an energy 
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Figure 6.32. Vickers hardness as a function of composition for the nonstoichiometric NbB2 

phase. 
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value approximately nonbonding. Half occupancy of each of these will 
involve six electrons per B6 unit and provide the basis for establishing the 
boron three-dimensional network by covalent interaction of these wave 
functions with near-neighbor B6 units. A second set of 18 molecular orbitals 
is inwardly directed to the B6 octahedron, the energies of which make seven 
levels bonding and the remainder antibonding. The 12 remaining electrons 
fully occupy six of the bonding levels contributing to the B6 stability and 
leave two holes in a bonding level. It is the presence of the two holes that 
encourages ionization of the metal atom to allow full occupancy. Metallic 
or semiconducting properties arise from the narrow gap between the intra-B6 
bonding and antibonding levels. Calculations involving groups of B6 
octahedra show that some of the molecular orbitals are broadened into 
bands. CaB6 is a semiconductor because the two electrons from Ca ~ 
Ca2+ + 2e - just fill the B6 bonding level, and there is still a gap before the 
antibonding set. LaB6 is ionized to La3+ + 3e - which places one electron 
per La atom in the anti bonding level and relatively easy to remove from 
the solid. These materials are good sources of electrons and electrode 
materials. 

6.4.5. Silicides 

Silicides follow the discussion so far given for borides with two notable 
exceptions. First, phases with ratios greater 1: 2 for M: Si are very rarely 
encountered. Second, the oxidation of a silicide leads to MxOy + Si02 
producing substances which are themselves frequently glasses. Hence, sur­
face coatings on these ceramics are glasses which provides considerable 
high-temperature protection with the result that WSi2 and CrSi2, for 
example, can be used at temperatures above 1700°C for many hours in the 
air. 

The metal-rich silicides do not have such predictable structures from 
just knowledge of their composition, as the borides do; for example, CrSi, 
FeSi, and CoSi contain isolated Si atoms and not zig-zag chains as might 
be expected from boride phases of the 1 : 1 composition. Furthermore, the 
composition MSi2 is variable in structure type: FeSh contains isolated Si2 
pairs and ThSi2 has a three-dimensional Si atom framework while MoSi2, 
among others, has the two-dimensional layer structure of Si networks and 
metal networks close packed like those found in MB2 phases. 

6.4.6. Some Hardness and Hardness-Related Data for 
Special Ceramics 

Hardness methods are commonly used to gain a measure of yield stress, 
uY ' of this class of materials and particularly as a function of temperature. 
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Table 6.24. Hardness Values and Hardness-Derived Data for Some 
Refractory Hard Metals and Special Ceramics 

Hy HK K 1C 

Ceramic Microstructure (GPa) (GPa) (MPamI/2) Notes 

W2C Fused 26.99 
WC Fused 22.08 
WC-Co 7.6% cobalt 20.0 10,a 15b P = lOON 

10.45 8,a 7b P=400N 
WC-Co 6.0% cobalt 12.76-15.7 P = 200-400N 
WC-Co 5.0% Co 19.84 7.1a Load = 294N 

0.6f.£m 5.1c 
10.0% Co 17.46 10.5a Load = 294N 
0.5f.£m 6.4c 

16.0% Co 15.70 15.4a Load = 294N 
0.5f.£m 6.4c 

24.0% Co 13.30 21.9a Load = 294 N 
0.7 f.£m 10.2c 

12.0% Co 14.27 15.2a Load = 294N 
1.1 f.£m 9.3c 

Cr3C2 Fused 17.2 E = 373GPa 
Mo2C Fused 18.65 
UC Fused 19.63 
TiC Single crystal 

(110)[100] 25.92 20.01 
(110)[110] 28.62 26.95 

TaC 20 E = 285GPa 
VC Single crystal 

(111)[100] 18.03 13.52} T = 300°C 
(111)[110] 16.61 10.78 

VCO.88 Single crystal 
(100)[100] 

30.4 } [110] 32.39 
(110)[100] 26.99 P = 1.96 N 
[110] 27.0 
(111)[100] 26.5 

NbCo.8 Single crystal 
(100)[100] 29.93} Load = 1.96 N 
[110] 27.93 

CrB2 Sintered 17.67 
Fused 24.55 
(001) 22.47-20.37 

Cr3B Fused 10.80 
TiB2 Hot pressed 26.6 
MoB2 (100) 24.24-21.30 
WB2 (100) 22.18-20.51 
CrB {010} 19.23-22.96 } 
CrB4 {OlO} 20.90-22.96 

Load = 0.98 N 
Cr3B2 {OlO} 20.71-24.04 
'Cr2B3 {OlO} 20.31-22.47 
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Table 6.24. Continued 

Hv HK K1c 
Ceramic Microstructure (GPa) (GPa) (MPam1/ 2) Notes 

BeB2 Dynamically 
compacted 31.21 

p = 2420 kg m-J 

BeB6 Dynamically 
compacted 

p = 2350 kg m-J 25.32 
MosSiJ Polycrystals 11.68-13.05 Load = 0.98 N, 

variation is evi-
dence of anisotropy 

MoSi2 (100)[010] 8.93 
[011] 9.91 Load = 0.98 N 
[001] 10.89 
(001)[010] 12.27 
[011] 12.76 
[100] 10.89 
(101)[010] 11.09 
[101] 11.38 
[100] 12.46 

WSi2 (100)[010] 11.48 Load = 0.98 N 
[011] 12.56 
[001] 15.70 
(001)[010] 13.54 
[011] 14.43 
[100] 12.66 
(101)[010] 13.50 
[101] 13.74 
[100] 12.17 

TiN 20.61 P = 1.18 N 
23.65 P=0.98N 

A1N Dynamically 7.29 p = 90% theor. 
compacted 10.27 p = 95% theor. 

TiC Single crystal 
(001) 28.95 
(110) 26.50 
(111) 27.28 

ZrCO.89 (001) 24.63 
(110) 22.96 
(111) 23.55 

HrC (001) 25.12 
(110) 22.67 
(111) 23.65 

VCO•91 (001) 26.79 
(110) 23.55 
(111) 21.79 

NbCO•94 (001) 27.09 
(110) 20.81 
(111) 19.92 

(continued) 
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Table 6.24. Continued 

Hv HK K1C 

Ceramic Microstructure (GPa) (GPa) (MPaml/2) Notes 

TaC (001) 22.08 
(110) 19.14 
(Ill) 18.45 

TaN 31.4 Cubic structure 
made by 
explosive forming 

ll.08 Normal 
hexagonal form 

TiB2 (0001) 26.90-38.27 
VB2 (0001) 26.20-28.76 
VB2 Polycrystais 24.04 
NbB2 Polycrystals 26.01 

(0001) 23.95-29.44 
TaB2 (0001) 28.95-30.23 28.56 

(1010) 25.03 
(1012) 24.04 

H f B2 (0001) 19.63-24.54 24.83 
(1010) 23.75 
(1012) 22.18 

ZrB2 (0001) 19.63-25.51 28.95 
(1010) 26.60 
(1012) 27.68 

LaC2 2.40 
CeC2 0.98 
PrC2 1.37 
NdC2 2.36 
SmC2 6.38 
GdC2 4.63 
DyC2 5.71 
HoC2 5.61 
ErC2 4.48 
LuC2 Arc cast 

5.89 
ScC2 5.84 
YC2 5.01 
UC2 7.75 Load = 0.98 N 
UTaC2 19.82 
UMoC2 12.86 
UWC2 12.66 
uCrC2 13.45 
URuC2 6.77 
UMnC2 7.36 
UFeC2 7.65 Load = 0.24N 

• Antis equation (5.48). 
bpalmqvist equation (5.51). 
cLaugier equation (5.59). 
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The general trend of data show that uy decreases some ten times faster than 
for other covalent solids such as Si and Ge (see Section 6.1.5.4), thermal 
softening coefficients, that is B in H = Ho exp ( - BT), for diborides lie in 
the range 1.6-2.1 x 10-3 deg-1• Figure 6.28 gives an indication of the thermal 
softening encountered in interstitial carbides and demonstrates a common 
feature, namely, that slip systems change from {1l0}(110) to {1l1}(110) as 
the temperature is increased. This fact, coupled with the very rapid decrease 
in hardness with temperature, suggests that covalent binding between M 
and C is rapidly reduced. At lower temperatures the high directionality of 
the covalent bonds inhibits slip on close-packed {Ill} as the strength of 
the bonds results in low dislocation mobility. The temperature affects spx 
hybridization through introducing s orbital mobility which means that only 
modest temperature rises are needed to induce metal-like hardness. Some 
of the available data are collected in Table 6.24. 
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Index 

Abrasion hardness, 2 
Absolute hardness, 72, 123 
Activation energy 

of creep 
in magnesia, 141 
in silicon carbide, 141, 215 
in tungsten carbide, 141 

of penetration, 63 
of scratching, 62 

Adhesion of thin films, 205 
Aecheson process, 209 
Agglomerate toughening, 273, 275 
Aliovalent cations and hardening, 9 
AlN4 tetrahedra, 223 
Al04 tetrahedra, 223 
Alumina (Al20 3), 4, 255-264 

anisotropy in, 84, 256, 262 
brittleness index, 188 
Burgers vectors, 89 
critical flaws in, 153, 154,259,260 
density, 260-261 
effect of pH on, 140, 262 
effect of water on, 260 
elastoplastic behavior, 49 
erosion hardness, 192, 229 
gamma, 262, 264 
grain boundary 

fracture toughness, 258-259 
phases, 258 

grain-size hardness effect, 256-257 
hardness 

anisotropy, 81, 84, 260, 278 
pH effect, 262 
temperature effect, 262 

Alumina (Cont.) 
hardness (Cont.) 

time effect, 140 
indentation creep, 234 
ion bombardment, 126 
ISE values, 130, 259, 260-261 
Knoop hardness, 86, 134, 259 

pH effect, 138 
water effect, 134 

Mohs number, 28 
pendulum hardness, 28 
plasticity parameter, 241 
polishing agent, 45-46 
purity and uses, 255 
ring crack appearance, 165 
scratch hardness, 29, 261 
silica glass 

hardness, 243 
modulus, 243 
toughness, 243 

slip systems, 89, 255 
solution hardening, 9, 262-263 
structure, 255-256 
toughness, 127, 184,257-261,278 

grain-size effect, 184, 257, 260 
and zirconia content, 278 

Vickers hardness, 259, 260 
Young's modulus, 259, 260 

Aluminum 
matrix for borides, 298 
surface hardening, 45-46 
Vickers hardness, 46 

Aluminum nitride (AlN) 
hardness, 303 

307 
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Aluminum nitride (Cont.) 
in Sicalons, 225 

Aluminum oxide: see Alumina 
Amorphous layers 

adherence to indenters, 129 
and barrelling, 126 
effect on hardness, 126, 128 
from ion bombardment, 126-127 
ISE, 128 
plastic flow, 130 

Anisotropy, II 
in Al20 3, 262, 278 
avoidance of, 95, 97 
in ,s-Al203' 280-281 
in BN, 232 
and constraint factors, 110 
of creep, 142, 293 
in cubic systems, 75-80, 97 
definition, 65 
and dislocation interaction, 71 
and dislocation etch pit rosette arm 

length,268 
and divergent slip systems, 116 
and etching, 139 
factor, 100, 103-104 
in ferrites, 92 
in graphite, 247 
in hexagonal crystals, 81-86, 109-1l1 
and indent shape, 43-44, 94, 139, 

267-268 
in MgO, 266-268 
in orthorhombic systems, 89 
and plastic flow, 103 
and radiation damage, 80 
and scratch hardness, 105-108 
and slip plane polyhedra, 1l2-1l3 
theoretical models, 97-1l6 
in TiC, 293 

in zinc blende, 76, 97 
Anomalous indentation creep, 141 
Anstis equation, 174 
Antibonding levels 

in borides, 299, 301 
in carbides, 292 

Antifatigue, 206 
in glass, 241 
and residual stress, 206-207 

Apatite 
Mohs number, 27 
pendulum hardness, 28 

Applied load 
confidence ellipsoids, 121-123 
effect of rate, 34-38 

Applied load (Cont.) 
hardness effect, 7-9 
and ring crack radius, 165 
for Rockwell hardness, 47 

Arrhenius behavior, 9 
Aspect ratio, 139 

of SiC, 213 
Auerbach's law, 165, 186 

B6 units, bonding in, 300-301 
B12 icosahedra, 228, 230, 250 

bonding in, 250-251 
BaFe120I9' 285 
Band gap, 135-136 

and dislocations, 250 
and hardness, 288 
of SiC, 214 

Index 

Barium titanate (BaTi03), strength after 
indentation, 185 

Barrel indents, 44-126 
BeB6 Knoop hardness, 303 
Beevers-Ross sites, 280 
Berkovich hardness 

anisotropy, 94 
diamond, II, 39-40 
equation, 11 
fracture toughness equation, 174 
and surface energy, 198 
test, Il, 94-95 

Beryl (Be3Alz,Si60 IJ, 86 
anisotropy, 85, 88, III 
Knoop hardness, 86, 88 
slip systems, 88, III 

Beryllium oxide (BeO), Knoop hardness, 
134 

BezSi04 , 223 
Bhat equation, 174 
Bierbaum hardness, I 
Blunt punch, 12-13, 166-168 

crack development, 166-168 
equation for stress, 113-114 
flow pattern, 12 
indenter analysis, 12, 166 
and plastic zone, 111 

Bond breaking model, 132 
rate equation, 132 

Borazon, 231 
Borides, 297-301 

bonding in, 298-299 
hardness anisotropy, 84, 93, 108-109 
Knoop hardness, 87 
slip systems, 108-109 
structures, 299 



Index 

Boddes (Cont.) 
thermal softening coefficients, 305 

Boron, 4, 9, 246, 250 
fiber, 250 
hardness, 231, 253 

Boron carbide (B4C)' 4, 170, 226, 228 
bonding in, 250-251 
body armor, 228 
hardness porosity relationship, 8 

equation for, 231 
modulus, 228 

porosity equation, 231 
nonstoichiometry in, 230 
SiC composite hardness, 218 
Si3N4 composite hardness, 227 
structure of, 230, 250 

Boron nitride (BN), 4, 76, 230-234 
hardness anisotropy, 76 
Knoop hardness, 83 
slip systems, 76 

Boron oxide (B20 3), 4, 228, 231 
bonding in, 232 
glass, hardness of, 243 
polymorphism, 231 
preparation, 231 
structure, 232 

Bdnell hardness, 3, 10, 163 
damage, 26, 38, 147, 163 
equation, 10 
of SiC, 217 
of Si3N4, 226-227 

Brittleness, 4 
and conical indenter, 97 
and cdticalload, 147 
and erosion, 26 
and flow systems, 103 
index, 4-5, 188 

of Al20 3 , 188 
of MgO, 188 
of silicates, 188 

Brookes Resolved Shear Stress Model, 71, 
88, 97-111 

development of, 110-111 
equation, 100 

BTS sensors, 287 
Bubble raft model, 129-130 
Burgers vector, 67 

in Al20 3, 89 
analyses, 70 
and dislocation interactions, 70-71 
in GaAs, 113 

{j-Al20 3, 81, 255, 280-284 
bonding in, 280 

{j-Al20 3 (Cont.) 
critical curent density equation, 281 
hardness 

anisotropy, 81-82, 281 
Knoop, 86 
load equation, 281 
toughness anisotropy, 281 
toughness equation, 281 

nomenclature, 280 
structure, 280 
zirconia composite 

cracks in, 279 
toughness, 279 
Vickers hardness, 279 

{j-graphite, 247 
{j-parameter, 15,227 

C3 chains in B4C, 228 
Calcite 

Mohs number, 28 
pendulum hardness, 28 

Carbides, 291-296 
bonding in, 291 
boron, 226-230 
cemented, 176 
composition dependent hardness, 292 
creep parameters, 293 
Vickers hardness, 92-93, 292 

Carbon, 246-247 
bonding, 247 
hardness, 252 
polymorphism, 247 

CdO in glass, 244 
effect on hardness, 244 

Cement 
clinker brittleness index, 188 
dental,46 

hardness of, 47 
energy to power, 188 
strength equation, 8 

Cemented carbides, 293 
ce02 in zirconia, 271, 275-276 

hardness, 277 
toughness, 277 

Ceramic 
covalent engineering, 209 
magnets, 285 
sensors, 287 
superconductors, 289 

Chalcopyrites, 286 
Chemically toughened glass, 194 
Chemomechanical effect on silicon, 251 
Chisel edge length, 40-42 

309 
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Chisel edge length (Cant.) 
error in hardness, 41, 94 

Cleavage 
of magnesia, 264-265 
of V 20S crystals, 90 

Coesite, 237 
Composite 

of Al20 3-TiC, 261 
of Al20 3-Zr02, 275 

hardness, 261 
toughness, 261 
modulus, 261 

of a-p-SiC, 213 
body armor, 228 
of MgO-spinel 

hardness, 266 
microstructure, 265 

of SiC-TiB2' hardness, 217 
of Si3N4-SiC, hardness, 227 

Cone crack, 164, 166 
mechanism of development, 166-168 
and ring crack, 166 
and strain energy release rate, 167 

Confidence ellipse, 122-123 
Constraint factor, 11-19,99, 170 

for Berkovich indenter, 174 
calculation for blunt punch, 12-13 
development of, 110-111 
equation, 11 
of glass, 13-19 
and indenter angle, 131 
of perspex, 13 
of single crystals, 13, 99 
and toughness, 171 
values of, 12-13 

Copper slider 
and work hardening, 266 

Cordierite hardness, 242 
Corrision 

of cracks, 177 
of dislocations, 68 
of indents, 139 
stress effects, 201-206 

Corundum, 255; see also Alumina 
Covariance, 122 
Crack 

analysis, 70-71, 149-156, 159-161, 169 
critical loads, 154 
depth 

and crack parameter, 156-158 
and fracture toughness, 187 
in Ge, 163 
and load equation, 155 

Crack (Cant.) 
development summary, 168-169 
direction 

in P-Al20 3, 281 
equation, 199 
in polycrystalline ceramic, 199 

geometry factor, 181 
growth 

estimation, 202 
prevention, 202 
regions, 202 
velocity equation, 203 

length 
in glass, 195 
load relationship, 161 
and temperature, 162 
and stress corrosion, 201 

parameter 
equation, 157-158 
and indenter half angle, 158 
variables, 156-158 

resistance parameter, 187 
stable growth, 201 
subcritical growth, 201 
systems, 150-154, 159 
tip energies, 133 
velocity, 133 

Cracked indents, 146 
and dislocations, 69 
and gas release, 133 
in MgO, 69, 267 
in Na,. W03, 66 
in ScsSi3 , 146 
in Si3N4, 219 

CrB2, Vickers hardness, 93, 302 
Cr3C2, hardness, 302 
Creep 

activation energy, 141, 214 
of carbides, 293 
cortventional, 141 
of cubic BN, 233-234 

Index 

hardness anisotropy of MgO, 142, 266 
Christobalite, 235-237 

density, 237 
Critical current density, 281 

and flaw length equation, 281 
Critical flaw size, 153, 154, 192 

in Al20 3, 154 
in Ge, 154 
in glass, 193 
in MgO, 153 
in Si, 153-154 
in SiC, 154-217 



Index 

Critical flaw size (Cont.) 
in SiO:z, 153 

Critical load 
for crack formation, 147, 153, 154, 

192-193 
in Al:z03, 154 
in Ge, 154 
in glass, 147, 154, 197 
in MgO, 153, 197 
in Si, 153, 251 
in SiC, 153, 154,217 
in Si3N4, 153-154 
in SiO:z, 153, 197 
in WC-Co, 153 

and fracture toughness, 174 
and ring cracks, 165 
and strength, 185 
for surface flaw generation, 196-197 
and toughened glass, 196 

Critical resolved shear stress, 88 
and work hardening in MgO, 266 

Cross slip, 70-71 
Cubic BN, 231 

hardness, 233 
from hexagonal BN, 232-233 

Cubic crystals 
Knoop hardness, 82-83 
plastic zone model, III 
scratch hardness anisotropy, 106-108 
Vickers hardness, 90-94 

CuO:z, chains in superconductors, 290 
Cutting tests, 1 

and surface charge, 138 
and work hardening, 266 

CVD 
B4C, 231 
diamond, 247 

hardness, 252 
SiC, 210 

deposition temperature and hardness, 
220 

etchant, 216 
hardness, 219 
microstructure, 216 

Si3N4, 219, 228 
hardness-load relationship, 221 

Cylindrical blunt punch, 166 
stress field analysis, 166 

Damping test, 25 
energy of oscillation, 5 I, 55 
equation, 25, 51 
process analysis, 55 

Daniels and Dunn equation, 99 
Densification 

aids in Si3N4 , 223 
factor, 18 

Dental cement, 46 
Depth of penetration, 10 

of aluminium, 46 
equation of, 35-36, 239 
equipment, 49 
and load application, 35 
model, 49, 240 
work of, 49 

Diamond, 246 
Berkovich, 11, 94 
bonding and structure, 246-247 
from beta-graphite, 247 
CVDfllms,247 
hardness anisotropy, 76-77, Ill, 116 
impurities in, 76-77 
Knoop hardness, 83, 252 

ISE value, 130 
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Reciprocal mean effective resolved shear 
stress curves, 102 

shapes for indenters, 38-42, 94, 97 
shear modulus-hardness equation, 143 
slip systems, 97, 116 
structure of quartz, 236 
types of, 76, 94 
Vickers hardness, 252 

Dilatational strain energy, 273 
Directional solidifcation of MgO, 256-266 
Dislocations 

around indents, 67, 113,265 
description of, 67 
and donor band level, 135-136 
edge type, 67 
and hardness, 66, 81, 162 

anisotropy, 84, III 
interaction 

analysis, 70-71 
and hardness, 73, 84, 125 

loop, 66-67 
observation, 66-67, 84, 99, 113 

inMgO,265 
partials, 71 
pile-up, 71, Ill, 125, 192 

and cracks, 192-193 
rosette pattern, 27, 90, 248, 265 

arm length equation, 267 
in OaAs, 113, 116 
in silicon, 251 

screw type, 67 
self energy of, 88 
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Dislocations (Cont.) 
slip length, 192 
slip lines, 66, 84 

in GaAs, 113 
and surface chemistry, 132, 134 
and surface interactions, 134 
symbols, 67-68 
theory of, 65, 125 
velocity, 116 

equation, 267 
Dolomite, 264 
Drilling and hardness, 138-139 
Dwell time, 141 

Edge cracks, 168 
Edge dislocation, 67 
Effective resolved shear stress 

correlation with Knoop hardness, 99 
equation, 99, 100, 107, 110 
mean, 99 
and scratch hardness, 106-108 

Elastic 
energy balance, 61 
material penetration depth, 47 
recovery, 239-240 

error in hardness, 44 
work in indenting, 48 
zone equation, 16 

Elastic-plastic 
boundary, 148 

and cracks, 148 
peak stress, 16, 18, 149 

materials 
and indent depth, 47-48 
nature of, 49 

Elasticity-plasticity parameter 
definition, 240 
values of, 241 

Electrokinetic effect, 56 
Electrolytic polishing, 45-46 
Electronic band structure and hardness, 

125, 135-138 
Electronic ceramics, 209 
Emery polishing medium, 45-46 
Energy band bending, 134, 136, 250 
Energy of oscillation, 51 

and pendulum hardness, 56 
Epitaxy in SiC, 212-213 
Erosion 

equation, 161, 189 
exponents, 190 
and lateral cracks, 159, 189 
model, 189 

Erosion (Cont.) 
of sialon, 229 
of Si3N4 , 191 

Index 

volume of material removed, 27, 161, 189 
Errors 

from cracking, 71 
from diamond shape, 41-42, 94 
from elastic recovery, 44-45 
from edge shapes, 42 
in matrix-fiber frictional stress, 201 
from numerical aperature, 43 
from rate of loading, 37 
from surface shape, 44 
from vibration, 38 

ERRS model, 99-105, 139 
Etch pits 

arm length equation, 267 
in disilicides, 90 
in GaAs, 113 
and load, 268 
in MgO, 67, 265 
observation, 66-67 
in Si, 246, 248 

Etchant 
for Al20 3, 256 
for BN, 232 
for MgO, 265 
for Si, 251 
for Sialon, 225 
for SiC, 139, 216 
for Si3N4 , 225 

Etched indents, 67, 135 
in GaAs, 113 
in SiC, 139 
in ZnO, 135 

Evans equation, 173 
Evans and Charles equation, 171, 173 
Excitation processes in ceramic 

decomposition, 132 
Expanding cavity model, 14 

Fermi surface 
in carbides, 295 
in borides, 299 
in ZnO, 135 

Ferrites 
anisotropy and slip systems, 92 
Vickers hardness, 92-93 

Ferroelectric, 287 
Fiber-matrix bonding, 200-201 
Fiber stress, 201 
Finite element method, 19 

and hardness, 19 



Index 

Fivefold symmetry indenter, 97 
Flaw size 

critical, 153 
values of, 153 

maximum,S 
Flaw geometry and fatigue, 206 
Float glass hardness, 242 
Flow 

lines, in glass, 193 
stress 
and constraint factor, 11 
hardening rate, 18 

Fluorite (CaF:z), 76, 94-96 
Berkovich hardness, 94, 96 
hardness anisotropy, 76 
Knoop hardness, 28 
reciprocal mean effective resolved shear 

stress curves, 101-102 
Structure of zr02 , 270 

Fracture toughness 
of Al20 3 , 127,260-261 
of ~-Al203' 281, 284 
of B4C, 231 
and brittleness,S, 188 
of composites, 200 
and crack depth equation, ISS, 163 
and critical flaw size equation, 153 
and critical load, 177, 193 

equation, 153 
and erosion, 189-190 

equation, 27 
ofGe, 252 
of glass, 196 
hardness equations, 173-178 
and indent parameters, 170-173 
from intended beams, 183 
of interfaces, 206 
from load variation, 173, 177,281 
of MgO, 269 
of nitrogen glasses, 225, 229 
parameter, 146, 162 
resistance to flaw generation, 154 
of Si, 127,252 
stress equation, 200-201 
and surface energy, 187 
and surface layers, 126-127,205-206 
of Y~Cu306.S superconductor, 290 
of zr02, 276 

Fracture pattern around indents, 127, 146, 
148, 159 

Friction 
in ceramic fibre composite bonding, 200 
and crack parameter, 158 

Friction (Cont.) 
and environment, 134 
and ring cracks, 166 
in scratch hardness, 95, 106-108 

Gallium arsenide, GaAs 
Burgers vector in, 112 
crack shape and temperature, 163 
dislocation velocity, 112 
etchants for, 113 
hardness anistropy, 77-79, Ill, 116 
n-type hardness of, 79, 253 
p-type hardness of, 79, 253 
plastic zone size, Ill, 113 
rosette arm length, 268 
slip planes in, 112-113 
structure, 78, 80 
Vickers hardness, 79, 111,253 

and shear modulus, 143 
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Germanium oxide (GeO:z), glass hardness, 
242 

Glass 
antifatigue effect in, 206 
definition of, 237 
detection of compressed layers in, 

194-196 
effect of network modifiers, 328 
flow lines in, 193, 234 
hardness modulus ratio, 179,241 
pendulum analysis, 55 

Si02-La20 3 glass, 238 
hydrolysis of, 57, 241 
load-crack length relationship, 195 
median crack generation, 147, 157-158, 

241 
molar refractivity and hardness, 238 
ring cracks in, 164 
structure of, 237 
surface study by indentation, 241 

Glass-ceramics, 234 
hardness, 242-243 
machinable hardness of, 243 
nucleation, 238, 244 

Glide bands, 44,66,69 
in BN, 232 
in CaF2 , 94 
in GaAs, 113 

Glide planes in GaAs, 112, 116 
Glissile boundary, 272 
Grain boundary 

effect on hardness, 123, 265 
fracture, 168, 258 
micro flaws, 258 
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Grain boundary (Cont.) 
nitrogen glass phases, 224 

Knoop hardness, 224 
toughness, 225 

orientation, 199 
phases in Si3N4, 223 
specific fracture energy, 198,258 

equation, 200 
strength equations, 200, 258 
stress intensity factor, 258 
surface energy measurement of, 198-200, 

258 
toughness, 258, 261 

Grain size 
and hardness, 6-7, 123, 256-257 

of Al20 3, 256-257 
equation, 120 
of MgO, 123, 265 
of Zr02-Ce02 , 277 

and indent shape, 43 
and toughness, 184 

of Al20 3, 257 
and zr02 polymorphism, 271-272 

Graphite, 247 
hardness of, 252 

Griffith condition, 151, 167,271 
Gypsum 

hardness of, 46 
Knoop hardness, 28 
Mohs number, 28 
pendulum hardness, 28 

Half penny crack, 156, 169, 260 
Hall-Petch relationship, 120 

in MgO, 265 
Hardening constant, 141 
Hardening in glass, 194 
Hardness 

absolute, 72 
anisotropy, 65, 262, 293 
and applied load, 7, 119-124,251,255, 

281 
and band gap, 288, 292 
Berkovich, 11, 39-40, 73, 94, 214 
Brinell, 10, 38, 163,217,226-227,229 
and chemical bonds, 5, 90, 126, 133, 250, 

288,292 
and composition, 77, 92, 125,225,238, 

260-261,288-289,292 
concept of, 5-10 
and coordination number, 286 
and crack depth equation, 155 
defined by load, 7, 33-34 

Hardness (Cont.) 
definition, I, 5 

Index 

and diamond shape, 39-46, 90, 94, 97 
and dislocation glide, 112-113 
and drilling, 81, 138-139 
effect of surface on, 45-46, 124, 275 
elastic shear modulus 

equation, 73, 140, 238 
ratio, 179 

and electronic structure, 125, 136-137, 
251,288 

and grain size, 123,256-257,265 
equation, 120 

from indent depth, 47-48 
Knoop, 11,29,40-41,73, 82-83, 86-87, 

99-105, 130, 134,214,217,220, 
226-229, 293 

and lattice energy, 24 
and load, 5-9, 33-34, 221, 286 

application rate, 34-38, 140-143 
mean effective resolved shear stress 

relationship, 99-104, 107, 110 
and mechanochemical effect, 133, 134, 

138, 251 
Meyer, 10 
Mohs number, 28, 59 
and molar volume, 24, 133, 238 
parameters affecting, 2, 5-10, 34-36, 94, 

111, 133, 138, 140, 262 
pendulum, 50-54, 245 
and pH, 138-140 
and polarisability, 238 
polarity, 77, 134 
porosity equation, 8, 168, 278 
Rockwell,3, 10,47, 163,227,231,260 
science development of, 2 
scratch, 58-63, 95-96, 105-108,219 
and slip systems, 72, 88, 89, 90, 92, 93, 

98-100, 103, 264-265, 292 
and surface charge, 131, 134, 138 
and surface energy, 5, 131, 155,271 
and surface layers, 124-131,262, 275 

equation, 128-129 
and temperature, 9, 77, 86, 141, 162, 

214-215, 254, 262, 296 
and tensile strength, 5, 121 
tests, 1-3, 34-46, 47, 50-54, 58-62, 94 
theoretical, 20-25, 72-73, 97-111, 123, 

140,271 
and toughness, 146, 163 

equations, 173-177 
Vickers, 10, 42, 73, 92-94, 119-123, 214, 

217,220,226-229,238,241,276 



Index 

Hardness (Cont.) 
Wallace, 46-47 
and yield stress, 11-19 

Herbert pendulum test, 2, 25, 50, 54 
Hertz pressure, 164 

and fracture toughness, 186,217-218 
and ring cracks, 186, 218 

HfC hardness, 303 
H~ 

hardness anisotropy, 108-109 
Knoop, 87 
slip systems, 109 

Hexagonal crystals 
hardness anisotropy, 81-88, 220 
reciprocal mean effective resolved shear 

stress curves, 104-105 
slip planes, 81, 212-213 

Hill's expanding cavity model, 14, 175,271 
Hole conduction, 248 

in boron, 251 
in dicarbides, 293 

Hoop stress, 154 
Hopping charge semiconductor, 285 
Hot pressed SiC hardness, 218 
Hot pressed Si3N4 , hardness-load 

relationship, 221 
Hybridization 

in jl-Al20 3, 281 
and bond angles in Si02 , 235 
in borides, 298 
in boron, 25-251 
in carbon, 246-247 
and slip in carbides, 305 

Hydrogen ions 
and hardness of glass, 241 
and mechanical properties, 138 

Isosahedra in B4C, 228 
Impact damage 

in ceramics, 170 
in glass, 238 

Indent 
cracks, 69-71, 146-159, 267 
edge cracks, 168 
plastic zone, 111, 239 

size equation, 15, 154 
recovery, 239 
residual impression dimensions, 239 

effect on anisotropy, 267 
equation, 124 
shape and etching, 135 
size and surface removed equation, 124 
troughs, 69 

Indent shape, 19-20 
on jl-Al20 3, 279 
and anisotropy, 44, 90, 267-268 
and etching, 135 
on MgO crystal, 267 
and numerical aperature, 42-43 
and penetration depth, 41, 239 
recovery, 48-49, 239 
size, 34 
and slip systems, 68-69, 90 
and surface slope, 44 
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Indentation creep, 26, 38, 103, 111, 140-143 
activation energy, 141,292,293 
of Al20 3, 234 
on BN, 233-234 
of carbides, 293 
and indent recovery, 48, 179-180 

model for, 48, Ill, 179 
and HIE, 179-180 

Indentation hardness 
area measured, 10-12 
and cracks, 70-71, 157 
diamond shape effect, 39-44, 94, 97, 157 
and dwell time, 142 

equation, 141 
grain-size effect, 6 
and indenter symmetry, 74, 97, 98-101 
load effect, 34-38 
polishing effect, 45-46 
and scratch hardness, 63 
and Zr02 polymorphs, 271-273 

Indentation process 
bubble raft model, 129 
and crack generation, 147-159 
model,131 
observation, 244 

Indentation size effect, 119-131 
and absolute hardness, 123 
of Al20 3, 259-260 
of amorphous layers model, 128 
of BN, 233 
and compressed layers, 119, 126, 127 
equation, 12-121 
index, 120, 124 
of LiF, 123 
of MgO, 120, 123, 266 
and microstructure, 121 
of silicon, 127, 248 
of SiC, 123 
of Si3N4 , 123 
and surface layers, 119, 127, 129 
and surface reactions, 119, 126, 127 
and temperature, 130-131 
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Indenter 
half angle and crack depth, 155-158 
symmetry, 74, 97 

and ''pop-in,'' 157 
Intrinsic stacking fault energy in silicon, 249 
Inverse spinels, 285 
Ion beam cleaning, 126 

effect on hardness, 126-127 
Ion implantation, 126-127 

in Al20 3, 262-263 
Ionic carbides, 294-296 
Ionic ceramics, 209 
Indium phosphide (InP), hardness, 83 

anisotropy, 77 
ISB: see Indentation size effect 
Isoelectronic point, 138 

Keatite, 237 
KCI hardness, 80 
Knoop hardness 

of alumina, 28, 86, 259-263 
of beryl, 86 
ofBN,83 
of borides, 87 
of creep, 142 
of cubic crystals, 82-83 

orientation of, 73 
of diamond, 32 
and divergent slip, 116 
equation, 11 
errors, 41 
of germanium, 253 
of gypsum, 28 
of hexagonal crystals, 86-87 
and load dependence, 221, 254 
of magnesia, 265-266, 269 

single crystals, 74-75, 82, 142,269 
grain size, 123, 265 

and mean resolved shear stress, 99-104 
and Mohs scale, 25 
of orthorhombic crystals, 89 
of SiC, 85-86, 214, 217, 220 
of silica, 28, 252 
of Si3N4, 221, 228 
and surface additives, 138, 262-263 
technique for anisotropy, 75, 80-81, 85 
of tetragonal crystals, 90-91 
of TiC, 293 
of Ti02, 124 
of V20" 89 
and Young's modulus, 180 
of Y sialon glass, 229 
of zr02, 276, 277 

Knoop indentation ratio, 178-179 
Knoop indentations 

and anisotropy, 73-90 
and constraint factor, 110 
to find HIE, 179 
and ISB values, 130-131 
relaxation of, 178-179 

Index 

and resolved shear stress curves, 99-105, 
110 

and surface energy, 198 
Kusnetzov, 25, 50-51 

Lancaster microindentation tester, 50 
Lanthanide dicarbides 

pendulum hardness, 295 
Vickers hardness, 304 

Lanthanum boride, LaB6 , 297 
Lanthanum oxide (~03) 

effect on silica hardness, 238 
as network modifier, 238 

Lanthanum silicate (L~Si207) 
hardness, 242 
precipitate in silica, 238 

Lateral vent crack, 55, 126, 148, 154, 
158-161, 235 

analysis of, 159-161 
circular contours of, 159 
critical flaw size, 154 
length as a function of load, 161 
and surface distortion, 159 
at thin fJlm interfaces, 205 

Lattice energy 
and fracture energy, 198 
and hardness, 22, 24 
of silicon, 24 

Lattice vacancy diffusion, 141 
Laugier equation, 173 
Law of mixtures, 128 
Lawn equation, 173 
Leitz low load apparatus, 39 
Lennard-Jones potential, 20 
Lithium aluminium silicate, 244 
Lithium fluoride (LiF), 

Berkovich hardness, 95 
hardne~anisotropy, 75,95,103 
ISB effect, 123 

Load application 
critical value, 153 
direction, 38 

indent diagonal relationship, 121 
rate of, 34-38 
times, 37-38, 140-143 

crack-depth relationship, 155 



Index 

Load application (Cont.) 
hardness effect in silicon, 251, 254 
ring-crack relationship, 165 

Logarithmic decrement, 51 
equation of, 52 

Log-index relationship, 120 
Low load hardness, 34 

and amorphous layers, 127 
and Berkovich diamond, 92 
definition, 7, 33 
and ISE index, 124, 127 
softening in ZnGa2S4 , 286 

Low temperature creep, 142 

Macrohardness, definition of, 7 
Magnesia (MgO), 4, 264-268 

creep activation energy, 141,266 
critical flaw size in, 153 
critical load, 153 
defects in, 131 
dislocation etch pits, 99 

revelation of, 265 
effective resolved shear stress, 100 
elastoplastic properties, 49 
hardness, 82, 265, 269 

effect of water on, 8 
Knoop, 82, 142, 267 
ISE,130 
solid solution effect, 9, 269 
and time, 142 

indentation troughs, 69 
ISE relationship, 121, 123 

value, 130 
plasticity parameter, 241 
polishing of alumina, 45-46 
radiation damage plasticity, 80 
single crystal, 66, 68-69, 142 

anisotropy, 75, 142,266-267,269 
hardness, 82, 142,266-267,269 

sintering aid for Si3N4, 223 
slip systems, 68-69, 264-265 
solution hardening, 9 
structure, 264 

Magnesiothermic reaction, 228 
Magnesite, 264 
Magnesium oxide, ~ee magnesia 
Magnesium sialon glasses, 229 
Manganese oxide (MnO), 75 

Knoop hardness, 82 
Marsh, 13, 55 

and glass flow stress, 13-19 
relationship, 14 

Martensitic phase change 

Martensitic phase change (Cont.) 
in dicarbides, 295 
in Zr02 , 272 

Matrix for slip analysis, 70-71 
Mechanical polishing effect on hardness, 

45-46 
Mechanochemical decomposition, 133 
Median vent crack, 55, 146-148, 169 

critical nucleation load equation, 153 
critical flaw size, 153 
formation of, 146-154 
growth, 154 
nucleation of, 149-154 
"pop-in," 148 
in transparent ceramic, 149, 153 

Meyer 
equation, 10 
law, 120 

Microcrack density 
toughening mechanism, 273-274 
in Zr02 , 273 

Microhardness 
definition, 7, 33 
and grain size of WC, 6 
and load application, 37-38 
and vibration, 38 

Microsyntaxy, 212 
Miranzo equation, 175 
Mises 

criterion, 18 
material, 18 

Mohr-Coulomb material, 18 
yield equation, 18-19 

Mohs 
hardness scale, 27-30 
test, 1,27,59 

Molar volume and hardness, 24, 133 
Molybdenum boride (MoB:J, Vickers 

hardness, 93 
Molybdenum silicide (MosSi3), hardness, 

303 
Molybdenum disilicide (MoSi2) 

Knoop hardness, anisotropy, 90-91 
slip systems, 91 

Network modifiers, 238 
effect on glass hardness, 238 

Nickel oxide (NiO), 75 
pentagonal indenter hardness, 97 
single crystal 

Knoop hardness, 82 
Vickers hardness, 93 

Nihara-Morena equation, 174-175,277 
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Niobium boride (NbB~, composition 
dependent hardness, 300 

Niobium carbide (Nb6CS) 
etch pit observations, 139 
single-crystal hardness, 83, 303 

Nitrides, 296-297 
Nitrogen containing glasses, 224-225 

equation for 
fracture toughness, 225 
Knoop hardness, 224 
Young's modulus, 225 

hardness, 229 
modulus, 229 

Nonstoichiometry in carbides, 292 
and hardness, 292 

Normal spinels, 285 
Normal stresses 

and crack control, 154-155 
on punch face, 13 
in volume beneath indenter, 155 

n-type silicon, 248 
Nucleation of median crack, 152-153 
Numerical aperture 

and errors, 43 
and indentation hardness, 34 

d-sialons,224 
Orthoclase 

Mohs number, 28 
pendulum hardness, 28 

Oxygen content of superconductors, 290 

Palmqvist cracking, 146, 148, 161-162, 169, 
235,277 

analysis, 70-71 
crack resistance constant, 174 
in MgO, 69 
model, 162 
toughness equation, 175-176 
in Zr02-Al20 3, 277 

Partially stabilized zirconia, PSZ, 270 
Partical size and zr02 polymorphs, 271 

and hardness, 277 
Peak load stress, 18, 148 
Pendulum hardness, 25-26, 50-58 

apparatus, 53-54 
of dicarbides, 295 
energy processes, 55-58 
equation, 25, 52-53 
and surface energy equation, 25 
and zeta potential, 245 

Pendulum velocity equation, 57 

Penetration depth 
hardness scale, 46-47 
and Rockwell scales, 47 
and scratch hardness, 62-63 
of various diamonds, 41 

Penny crack growth, 156, 170 
Penny shaped flaw, 150-161 
Periclase, 264 
Perovskites, 286-290 

cracked indent in, 66 

Index 

hardness anisotropy, 77, 93, 288-289 
structure, 286-287 
tolerance factor equation, 287 

Peters equation, 176 
pH 

and hardness, 135, 138 
of Al20 3, 138, 262 

and zeta potential, 138 
Phosphoric acid etchant, 265 
Piezoelectric ceramics, 287 
PIF,258 
Pile-up, 19-90 
Pincushion indents, 44 
Plastic flow 

in amorphous layers, 130 
in glass, 193, 234 
in MgO, 265 

Plastic zone 
anisotropy of, III 
and anisotropy, 103 
equation, 15 
shape, 14-17, III 
size 

and indent size, 171 
and temperature, 162 

slip in, 112-1l5 
Plasticity, 5, 240-241 

and brittleness, 5 
and hardness, 124 
from irradiation, 80 
and machining, 124 
of MgO, 264-265 
parameter, 241 

values of, 241 
and pendulum hardness, 55 
of Si3N4 , 219 

Ploughing test, I, 27-30, 58-63 
results of 

for Al20 3, 29 
for Si3N4 , 29 
for Zr02' 29 

See also Scratch hardness 
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Polarity 
in III-V ceramics, 74 
and Knoop hardness, 134 

Polarizability and hardness, 238 
Polarization in perovskites, 287 
Polishing effect on hardness, 45-46 

of A120 3, 263 
Polyhedra 

in A120 3, 256 
in borides, 299 
in carbides, 292 
in Si3N4 , 221-222 
in Zr02, 270 

Polymorphism 
of silicates, 235 
of zirconia, 270-272 

"Pop-in," 126 156, 159, 161 
critical load equation, 156 
and residual stress, 156-157, 159 
in SiC, 198 
in Si3N4 , 198 

Porosity 
in BTS ceramics, 287 
and cracking, 168 
hardness relationship, 8, 168, 278 
strength relationship, 8 

Pressure induced Zr02 transformations, 271 
Process zone, 273 

toughening, 273 
Pull out work, 192 
Pyrex hardness, 242 
Pyroceram 

plasticity parameter, 241 
hardness, 242 
toughness, 242 

Pyrolytic 
graphite, 247 
Si3N4,219 

deposition rate, 219 
PZT,288 

REFEL process, 209 
Residual impression parameter, 240 

relationship to modulus, 240 
Residual stress, 169 

and antifatigue in glass, 206-207 
equations, 16, 171-172 
and etching, 68, 139 

of SiC indents, 139 
and fracture patterns, 38-39, 148, 156 
intensity factor equation, 172 
and ''pop-in,'' 156-157, 169 

Residual stress (Cont.) 
and radial crack size, 172 
relation to hardness, 157 
and stress corrosion, 203 
and temperature, 162 
value, 157, 171 

Resolved shear stress 
for blunt punch, 114-115 
calculation, 95, 100, 11 0-111, 113-114 
contours, 114 
equation, 98, 100 
for hexagonal borides, 109 
mean value, 99 
Schmid-Boas, 97-98 
for scratch hardness, 107 
for tungsten bronzes, 288 

Rhenium oxide (Re03), 287 
electronic structure, 288 
hardness anisotropy, 75, 287 
single-crystal hardness, 82, 289 

Ring cracks, 163 
and fracture toughness, 186 
position and friction, 166 

Rock-salt structure 
hardness anisotropy, 75, 80 
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reciprocal mean effective resolved shear 
stress curves, 10 1 

slip in, 68-73, 80, 264-265 
Rockwell hardness, 3, 10,47, 163 

of A120 3, 260 
of B4C, 231 
loads, 47 
and porosity equation, 231 
scale, 47 
of Si3N4 , 227 

Rosette 
arm length in MgO, 267 

equation of, 267 
slip, 114-265 

Rutile, Knoop hardness, 124; see also 
Titanium dioxide 

Schmidt-Boas resolved shear stress, 97-98 
Schottky defect in MgO, 131 
Scratch test, 1, 27-30, 58-63 

activation energy, 62 
anisotropy, 95-96 

resolved shear stress curves, 105-108 
apparatus, 59-60 
debris, 60 
equations, 28 
forces, 59-62 
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Stratch test (Cont.) 
friction effect, 30 
hardness of Al20 3, 261 
mechanism, 62 
results for SiC, 215 
track width, 29 
velocity, 61-62 

and track width, 62 
Screw dislocation, 67 
Semiconductor 

hardness anisotropy, 78 
silicon, 248 

Shape factor, 14 
Shear modulus 

hardness 
equation, 73, 140, 296 
relationship for diamond, 143 
relationship for germanium, 143 
relationship for silicon, 143 

and radial displacement, 166 
and ring cracks, 165-166 
and slip length 

equation, 192 
and transformation temperature, 296 

Shear stress 
and absolute hardness, 72, 140 
under blunt punch, 12-14, 111-115 
and frictional stress, 201 
and slip length, 192 

Shore hardness, 1 
Shott zerodur glass hardness, 243 
Sialons, 223-225 

etchant for, 225 
hardness, 229 

and polymorphism, 225 
types, 224 

Sicalons, 225 
hardness, 229 

Silica, critical flaw size, 153 
Silicides, 301 
Silicon, 247-250 

amorphous layer, hardness of, 130 
creep activation energy, 141 
critical flaw size, 153 
electron configuration, 210 
hardness, 24, 116, 130 

Knoop, 134, 129 
theoretical, 24 
Vickers, 249 

indentation creep, 234 
infiltrant in SiC, 209 
ISE of, 248 
plastic deformation mechanism, 248 

Silicon (Cont.) 
plasticity parameter, 241 
reaction with nitrogen, 222 
semiconduction, 248 
strength, 24 
transformation energy, 248 
toughness, 127 
valency bands, 248 
Vickers hardness, 249 

and shear modulus, 143 
Silicon carbide, SiC, 4, 170,209-220 

a-{J polymorphism, 211 
transformation mechanism, 212 

cleavage planes, 214 
coherent twin boundaries, 211 
constraint terms, 109-11 0 
critical flaw size, 153 
critical load, 153 
etchant for, 139 
hardness, 214-215, 217 

Index 

anisotropy, 81, 85, 109-110, 139,214 
effect of water on, 8 
Knoop, 84-86, 134, 139, 214-215, 217 

ISE, 123, 130 
microstructure, 210 
plasticity parameter, 241 
polytypes, 211-212 
preparations, 210 
protective layer, 236 
sintering aids, 210 
slip systems in, 110-111,212,214 
surface energy, 198 
toughness, 187 

Silicon nitride, Si3N4 , 4, 170, 222 
a-{J transformation, 222 
bonding in, 221-222 
critical flaw size, 153 
critical load, 153 
CVD,228 
erosion test, 191 
etchant for, 225 
gas turbine components, 219 
hardness 

Knoop, 221, 227-228 
scratch, 29, 227 

ISE value, 123, 130 
manufacture, 219 
plasticity, 219 
polymorphs, 219, 221-223 

Silicon oxide, Si02 , 236-238 
hardness 

effect of modifiers on, 238 
Knoop, 134 
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Silicon oxide (Cont.) 
hardness (Cont.) 

Vickers, 238 
See also Quartz 
See also Silica 

Silicon oxyntride, 224 
Slip line 

and constraint factor, 12 
field theory, 12, 66 

Slip planes 
convergent, 117 
divergent, 116 

Slip systems 
in Al20 3, 255 
basal, 213 
in beryl, 88 
in carbides, 305 
in cubic BN, 233 
in cubic crystals, 75-79, 97 
in GaAs, 112-115 
in hexagonal crystals, 84 
under a Knoop indenter, 98-99 
line contours, 114 
multiple effect, 108-111 
in orthorhombic crystals, 89 
prismatic,213 
in tetragonal crystals, 90-91 
in tungsten bronzes, 288 

Slow crack growth, 183 
Sodium-{3-alumina, 181, 280-284 

crack generation by electric current, 281 
hardness 

Knoop anisotropy, 81, 85 
load equation, 281 

toughness-load equation, 281 
Sodium chloride (NaCI) 

hardness, 80 
anisotropy, 103 

relationship to B4C, 228 
Sodium peroxide (Na20J etchant for SiC, 

139 
Sodium tungsten bronze (NaxW03), 75 

hardness 
anisotropy, 75, 77, 93, 288-289 
composition effect on, 77, 288-289 
Knoop, 82, 289 
Vickers, 93 

indent in, 66, 289 
Solid solution 

hardening, 125 
of Al20 3, 262-263 
of MgO, 269 

softening, 125, 126, 262-263 

Solid solution (Cont.) 
softening (Cont.) 

and electron concentration, 125-126 
and ion bombardment, 127, 263 

Specific grain-boundary fracture energy, 
198 

Specific surface work, 28 
Spherical cavity model, 175 
Spherical indenter, 163 
Spinel, 284-286 

blocks in {3-Al20 3 , 280 
hardness 

Knoop, 82 
of MgO composite, 265-266 
Vickers, 92, 93 

structure, 285 
Stabilized zirconia, 270 
Stacking fault energy in SiC, 212 
Standard hardness, 7 
Static indentation tests, 3, 10-25, 34-38 

Berkovich, 94 
Brinell, 3, 163 
Knoop, 3, 40-42 
Rockwell, 3, 163 
Vickers, 3, 41-42 

Stishovite, 237 
Stored indentation energy as a crack 

opener, 205 
Strain energy release rate, 158, 167 

equation for cone cracks, 167-168 
and surface energy, 167-168 

Strength 
and crack size in BaTi03, 185 
degradation predictions, 183 
and density, 4 
fracture toughness equation, 183 
and indentation cracks, 181 
and modulus, 4 
and molar mass, 4 
theoretical, 4 

Stress 
after ion bombardment, 126-127 
after load removal, 16, 131 
under a blunt punch, 113-114 
contours under sharp indenter, 155 
field under indenter, 15-19, 149-150 
proflle below sharp indenter, 150 
at radial distance, 164 

Stress corrosion, 181 
estimation of, 203-204 
susceptibility coefficient, 203 

for glass, 204 
Stress intensity factor 
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Stress intensity factor (Cont.) 
coefficient, W7 

of glass, 196 
and grain size, 184 
inter-relationships, 258 
microstructural, 185 
residual, 182, 185 

Superceramics, 4, 145 
Superconductors, 289 
Surface charge 

and electronic band structure, 
135-136 

and hardness, 131, 134 
of ZnO, 135 

Surface energy 
and crack depth, equation of, 155 
determination of, 197 
equation, 198 
of glass, 56 
and pendulum hardness, 25, 54-55 
and ring cracks equation, 186-187 
of SiC, 198 
and slip length equation, 192 
and toughening, 273 
and zr02 polymorphs, 271 

Surface hardening, 45-46 
of Al20 3, 262 
of sialon, 124 
of Zr02, 275 

Surface shape and hardness, 42-44, 45-46, 
124 

Surface toughening, 145, 195-196 
of glass, 241 
of zirconia, 275 

Syalon, 101, 224 
hardness, 229 

Tabor relationship, 13, 238-239 
Tantalum nitride (TaN), cubic, hardness, 

297 
Tempered glass, 194 

flaws in, 196 
Tetrahedra 

layers of in 
SiC, 211 
Si3N4,221-222 

sharing in 
Si3N4,235 
Si02, 235-237 

Thermal anisotropy cracking, 273 
in Al20 3, 256 

Thermal crack resistance parameter, 
187-188 

Index 

Thermal softening coefficient for borides, 
305 

Thermal stress resistance, 187 
Thermolysis, 133 
Theoretical hardness, 20-25, 72-73, 97-111, 

123 
equation, 24 
model,2O 
of silicon, 24 
and Zr02 polymorphs, 271 

Thin films 
effect on ISE, 124-131 
hardness measurement of, 50 

Time independent hardness, 142-143 
Titanium boride, TiB2' 297 

composite hardness, 217 
hardness anisotropy, 109 
ISE value, 130 
slip systems, 108-109 

Titanium carbide (TiC) 
bonding in, 78 
hardness 

Knoop single crystal, 83 
temperature effect, 78 
Vickers single crystal, 93 

toughness, 187 
Titanium nitride (TiN), 297 

hardness of thin film, 50 
Titanium dioxide, Ti02, 124 
Tolerance factor, 287 
Topotaxy in zr02 transformations, 272 
Toughness, 145 

mechanisms in zr02, 27 
Transformation toughening, 273 
Transition metal carbides, anisotropy in, 75 
Transition metal nitrides, anisotropy in, 75 
Trichloroborazine, 231 
Tridymite, 236 
Trigonal prisms in borides, 298 
Tungsten bronzes, 287 
Tungsten boride, WB2, 93 
Tungsten carbides, WC 

cobalt cutting tools, 170, 293-294 
binder for BN, 233 
critical load, 153 
hardness, 6, 241, 302 
Palmqvist cracks in, 174-175 
plasticity parameter, 241 
toughness, 302 
Young's modulus, 241 

hardness, 302 
creep activation energy, 141, 292 

indentors, 157-158 
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Tungsten oxide (W03) 
hardness anisotropy, 77 

Tungsten silicide (WSiJ 
Knoop hardness, 91, 303 
slip systems in, 90 
structure of, 90 

Twin formation 
in silicon, 248 
and topotaxy, 272 
in zirconia, 271 

Uranium carbides, 292, 294 
hardness, 302 

Uranium oxide (U0J 
hardness anisotropy, 76 
toughness, 87 

Uranium transition metal carbides, hardness 
of,304 

Vanadium boride (VBJ, Knoop hardness, 
304 

Vanadium carbide, VC 
single-crystal hardness, 83, 93, 303 

anisotropy, 92-93 
Vanadium oxide (V20S) 

hardness 
anisotropy, 89 
Knoop, 88 

structure of, 90 
Variance, 122 
Velocity of load application 

effect, 34-38 
equation of, 37 
and hardness errors, 37 
values of, 37 

Vickers hardness 
of Al20 3 , 241, 259-261 
of jS-Al20 3, 281 
of aluminium, 46 
anisotropy, 91-94 
of boron, 252 
of B4C, 241 
and composition, 92 
and crack depth, ISS, 157 
and cracking, 70-71, 155 
and depth of surface removed, 124 
diamond, 10, 42 

and crack generation, 157 
in pendulum tester, 53 

of diamond, 252 
equation, 10, 44 
errors in, 37, 41-45 
and erosion, 27 
of GaAs, 79, 252 

Vickers hardness (Cont.) 
of germanium, 252 
of glass, 238, 241 
and grain size, 123 
of graphite, 252 
indent shape, 90 
and load, 119-124, 281 

equation for, 281 
of MgO, 241, 269 
of Mg-sialon glasses, 229 
and pendulum hardness, 55 
of perovskites, 93 
and pH, 135 
and plasticity parameter, 239-240 
and polishing effect, 45-46 
and rate of load application, 35-38 
and scratch hardness, 63 
and shear modulus, 143 

relationship for glass, 238 
of sialons, 225, 229 
of SiC, 214, 241 
of sicalons, 229 
of silicon, 252 
of Si3N4 , 226-228, 241 
of spinels, 92-93 
and surface potential, 135 
of VC, 92-93 
of WC-Co, 241 
and wear particle diameter, 28 
and yield stress equation, 14, 239 
and Young's modulus, 180, 238 
of yttrium-barium-copper 

superconductor, 290 
of ZnO, 137 
of Zr02, 241, 276, 278 

Vickers indentation 
and grain-boundary energy, 199 
and matrix-fiber bonding, 200-201 

Viscous flow, 57 
Viscosity 

effect on pendulum hardness, 56 
of glass, 58 

Wallace hardness, 46-47 
Wear test, 28 

debris, 56-57 
effect of slider shape, 28 
and hardness, 142 
and lateral cracks, 159 
particle diameter equation, 28 
time scale, 139, 142 

Whiskers, 145 
hardness 
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Whiskers (Cont.) 
hardness (Cont.) 

of MgO, 265 
of SiC, 261 

Work of adhesion, 28 
Work of elastic recovery of indent, 48 
Work hardening, 45-46, 103, 106 

of aluminium, 46, 262 
and anisotropy peaks, 111, 115-116 
caused by soft slider, 266 
of crystals, 72 
depth of, 45-46, 267 
and diverging slip systems, 116 
equation for, 266 
of magnesia, 46, 265-267 
and plastic zone anisotropy, 111 
of SiC, 111 

Work of indented volume, 48 
Work needed to create indents, 48 
Wurtzite structure 

of BN, 231 
energy of transition, 248 
of Si, 248 
of SiC, 211 

X-ray topography, 66 

YAG,224 
YB~CU307' 289-290 

hardness, 290 
structure, 290 

Yield and absolute hardness, 72 
Y -sialon glass 

density, 229 
Knoop hardness, 229 
Modulus, 229 

Young's modulus 
of Al20 3, 241, 259-261 
anisotropy in (:l-Al20 3, 281 
of B4C, 228, 241 
and bond type, 172 
and crack depth, 155 
and cracking, 147 
of Cr3C2, 302 
of germanium, 252 
of glass, 238 
and hardness, 72 
hardness ratio, 179 
from Knoop indents, 180 
mismatch stress, 273 
of MgO, 241, 269 
and penetration depth, 47, 240 
and plasticity parameter, 241 
and residual impression parameter, 240 

Young's modulus 
of silicon, 252 
of SiC, 214, 219, 241 
of Si3N4, 226, 227, 241 
of Si02, 238 
of TiN films, 50 
of Y -sialon glass, 229 
of zirconia, 241, 276 

Yttria (Y 203) 
grain size K1C relationship, 257 
sintering aid, 223 

Yttrium ion bombardment, 127 

Zeta potential, 132, 137 
control with Na4P207' 249 
and environmental softening, 137 
and hardness of silicon, 249 
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and pendulum hardness of glass, 245 
and pH, 138 

Zinc blende structure, 80 
hardness anisotropy in, 76, 78 
of SiC, 211 

Zinc oxide, ZnO 
electron energy bands in, 135-137 
hardness 

to modulus ratio, 179 
and pH, 135 
and surface charge, 135 
Vickers, 137 

Zinc silicate, Zn2Si04, 223 
Zirconia, Zr02' 145, 268-279 

in Al20 3, hardness of, 261 
in (:l-Al20 3, toughness increase, 279 
anomolous hardness, 271 
densification aid, 223 
fracture toughness, 276 
hardness 

effect of pressure, 271 
modulus ratio, 179, 241 
and polymorphism, 270-272, 276 
porosity equation, 278 
scratch,29 
Vickers, 241, 276 

plasticity parameter, 241 
structure of, 270 
surface energy, 271 
transformation methods, 272 
Young's modulus, 241, 276 

Zirconium boride (ZrB~, 297 
hardness anisotropy, 108, 109 
slip systems in, 109 

Zirconium carbide (ZrC), Knoop hardness, 
303 

Zirconium oxide (zrO~: see Zirconia 




