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Summary.--This paper presents a method of design of a supersonic nozzle which incorporates recent 
developments in compressible flow theory. Continuous curvature of the contour is ensured by defining 
a continuous gradient of Prandtl-Meyer angle along the nozzle axis. The flow in the throat was calculated 
from results given by Hall (1962). A matching technique was used to determine a triplet of values for the 
throat radius of curvature, the flow deflection at the inflection point and the Prandtl-Meyer angle at the 
point on the nozzle axis where the left-running characteristic through the inflection point intersects the 
nozzle axis. 

The majority of the new work is to be found in the Appendices. Appendix B presents a method of deter- 
mining the co-ordinates along a particular characteristic by inverting the results given by Hall 1 (1962). 
Appendix C reviews the accuracy of the method of characteristics and, Appendix D suggests a method by 
which it may be possible to increase the accuracy Without resorting to calculations made at very small 
step sizes. 
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1. Introduction. 

1.1. General Introduction. 

Although the literature on the design of  supersonic nozzles is extensive there are very few tabulated 
ordinates available for working section Mach numbers greater than 2.0. Many of the ordinates which are 
available are based on design methods which are to some extent unsatisfactory. The errors introduced 
are indeed small but they are certainly not negligible in comparison with the manufacturing tolerances 
which are imposed. In view of the advanced state of knowledge in the field of compressible flow, it should 
now be possible to design the inviscid core of a supersonic nozzle quickly and sufficiently accurately to 
make the design errors small compared with the manufacturing errors. It may be argued that such accuracy 
is not required in view of the uncertainty introduced by adding a calculated boundary layer allowance, 
but this does not seem sufficient reason for introducing a further uncertainty by using an inaccurate 
method to design the inviscid core. 

A nozzle to produce a uniform stream of Mach number 3"0 was required and it was decided to design 
the inviscid core sufficiently accurately for the ordinates to be correct to +_ 0.0002 inches. The half height 
of the nozzle at the test section was to be about 2.5 inches, so that the half height at the throat was approxi- 
mately 0.6 inches. 

In supersonic nozzle design the conventional two-dimensional nozzle is usually considered to consist 
of several regions as shown in Fig. 1. These are : - -  

(i) the contraction, in which the flow is entirely subsonic, 

(ii) the throat region, in which the flow accelerates from a high subsonic to a low supersonic speed, 

(iii) an initial expansion region, where the slope of the contour increases up to its maximum value, 

(iv) the straightening or 'Buseman~' region in which the cross sectional area increases but the wall 
slope decreases to zero, and 

(v) the test section, where the flow is uniform an d parallel to the axis. 



A good approximation to the throat height can be obtained by one-dimensional flow considerations. 
The error is small, being of the order of R -2 where R is the ratio of the radius of curvature of the nozzle 
wall at the throat to the throat half height; it is only 0.1 per cent when R = 5.2. 

From practical considerations the length of the nozzle should not be too great. There is, however, a 
minimum length below which it is not possible to design a nozzle which will accelerate the flow smoothly. 
This minimum length is usually regarded as the length of the nozzle which has a sharp-edged throat, 
the flow being turned from a parallel sonic stream through a centred expansion wave. Some doubts have 
been raised (Lord 2 (1961)) about this being the absolute minimum and the question is discussed more 
fully in Section 1.2. Tables of co-ordinates of the sharp-cornered nozzles are given by Edelman 3 (1948) 
and Shames and Seashore 4 (1948). However, this type of nozzle is impractical owing to viscous effects in 
the region close to the corner, and experience has shown that it is advisable to exceed the 'minimum' length 
by about 30 per cent. 

In 1931, Busemann s gave a construction for a nozzle to convert divergent radial supersonic flow in 
two dimensions into a uniform supersonic stream of higher Mach number. This method was graphical 
and approximate so that it was subject to protractor errors, and afforded no means of determining the 
length of the nozzle in advance. The m~aximum expansion angle which will produce a desired flow in the test 
section without requiring compression waves is one half the Prandtl-Meyer angle of the desired flow. 
Puckett 6 (1946) pointed out that smaller expansion angles than the maximum were possible. The resulting 
nozzle would be longer but might have a more uniform final flow. Puckett also suggested the possibility 
of assuming a uniform radial flow at the maximum slope cross-section. Only the flow region downstream 
of the inflection point need then be calculated, and a smooth curve could be faired back to the throat 
from the inflection point. 

Using this type of approach an analytic expression for the contour downstream of the radial flow region 
was found by Atkin 7 (1945) and by Foelsch s (1946). Atkin converted a uniform parallel low supersonic 
stream into a divergent radial flow. This radial flow was then converted into a uniform parallel supersonic 
flow at the desired Mach number by a 'Busemann' or straightening contour. The design was completed 
by adding a suitable initial contour. A similar derivation of these analytical relations was given by Foelsch. 
Foelsch also provided a means of designing a suitable contour to convert uniform radial supersonic 
flow into uniform parallel supersonic flow. This approach was adopted by Beckwith and Moore 9 (1955); 
they also started with a straight sonic line at the throat, normal to the axis of symmetry of the nozzle, 
and improved the method by computing the contour between the throat and the inflection point using the 
method of characteristics. 

A nozzle design which does not directly employ the mathematical method of characteristics was evolved 
by Friedrichs 1 o (1944). A series solution of the non-linear wave equation was used, only the leading terms 
in the series being retained in the design proper. This method was expanded by Nilson t 1 (1948) and used 
by Baron 12 (1954) as a basis for the design of a number of nozzles. 

Practical requirements concerning nozzle handling and time delays during test periods have brought 
forth methods which permit a quick change from one Mach number to another. One of the developments 
has been the production of variable-Mach-number nozzles jack-supported flexible steel sheets. However, 
an incompatibility between the aerodynamic and structural requirements is introduced if a point of 
discontinuous curvature exists at the inflection point. This has led to the development of continuous- 
curvature nozzles which are necessarily of longer length, e.g. see Riise 13 (1954), Rosen 14 (1955) and 
.Sivells is (1955). Even with solid nozzles it is convenient to have continuous curvature of the walls. By 
qthis means the rate of growth of the boundary layer is kept continuous which makes it easier to correct 
the inviscid contour for boundary-layer growth and, therefore, helps to produce a more uniform flow in 
test section. 

In the present design it was decided to follow Foelsch s, Beckwith and Moore 9 and others in prescribing 
part of the supersonic flow field to be a region of radial flow. It was considered an advantage, however, 
to prescribe this region to lie within the nozzle in order to avoid straight segments in the contour which 
might lead to discontinuities in the rate of boundary-layer growth on the wails. The radial-flow region is 
shown as region IIIb in Fig. 2, touching the contour at the point of inflection. The present design may be 
considered to be a modification of Beckwith and Moore's method, account being taken of the more recent 



advances for the calculation of the flow in the throat region. At the same time the opportunity has been 
taken to include a matching region IVa, which by maintaining continuity of the axial velocity gradient 
ensures continuity of the nozzle curvature at point K, a desirable feature missing in many nozzle design 
methods. 

The other matching region IIIa was computed by the method of characteristics starting from known 
"conditions along HB, ~B P and PI. To keep BP short and to maintain continuity of wall curvature it is 
desirable that both Mach number M and Mach number gradient be continuous at points B and P. The 
Mach number gradient in the radial flow region is a function of Mach number only, whereas the Mach 
number gradient at B is strongly dependent upon R. The gradients in both cases are shown in Fig. 3 for 
various values of r* and R respectively, where r* represents the distance between the virtual origin of the 
radial flow and the sonic circle. Since the analytic theory used in the throat region is only valid over a 
small section it is clear that perfect matching, i.e. with B and P coincident, is not possible unless the design 
Mach number is close to unity, and thus, a compromise is usually required. In the present case R was chosen 
to be equal to 5, 0~ to be 16.70 ° (r* -- 3-42785) and a parabolic distribution of M was assumed between B 
and P. In general, it would be more convenient to work in terms of v rather than M since v is used in  
the characteristic calculations. For  this reason the equations in the next section are given in terms of v. 

1.2. The Question of Minimum Length. 
The axial distribution of v between points B and P must be chosen in such a way that limit lines do 

not occur in the flow field inside the nozzle. Some consideration of the question has been given by Lord 2 
(1961) but precise criteria are not available and it appears to be questionable whether or not precise criteria 
can be given. A reasonable, although indirect, criterion is to ensure that the intersection of the branch 
line* with the characteristic DJ (Fig. 2) lies on or outside the nozzle contour. This criterion appears to have 
been suggested by Friedrichs 1° (1944)]" but as his paper is not readily available the question is discussed 
below. 

In the special case when the sonic line is straight the minimum-length nozzle occurs when the initial 
expansion region on the contour is reduced to a sharp corner at the throat, of angle vD/z, and the Busemann 
or straightening part of the contour extends from the throat to the test section. Any streamline within 
this 'principal' nozzle defines a possible nozzle contour but the singularity at the centre of the expansion 
wave indicates that the centre of the expansion must lie on or outside the boundary of the flow field. Thus, 
it is clear that, a streamline outside the principal nozzle cannot be defined. 

When the sonic line is curved the minimum-length nozzle becomes more difficult to define. If the princi- 
pal nozzle is defined tO be the streamline passing through the intersection of the branch line with the right- 
running characteristic through D, as shown by Fig. 4, then the following argument suggests that this 
defines the minimum-length nozzle of this particular family. 

If it can be assumed that a streamline can be defined outside the principal nozzle, then the limit will 
be reached when the flow possesses a singularity, i.e. when two characteristics intersect as at A in Fig. 4. 
Then the limiting streamline would be 1-1 through A, and A will represent a sharp-edged corner in the 
contour. The right-running characteristic through A and D is v + 0 = vD, and the left-running characteristic 
through A can be defined as v - 0 = ~, where e > 0. Hence, the Prandtl-Meyer angle and the flow deflection 
at A are ½(v D + e) and ½(VD --e) respectively. 

The flow in the test section must be uniform and parallel to the nozzle axis, thus the contour to the right 
of A must be shaped so that no reflections occur. Also, section ADC must take the form of a zone of 
simple waves, because this is the only flow that can be matched to a uniform parallel flow. A simple wave 
is such that .all flow properties along the left-running characteristics are uniform, and since it is undesirable 
for practical reasons to have compression waves in the nozzle test section, the simple wave must be an 
expansion wave and hence contour AC must be concave downwards. Hence, along AC the Prandtl-Meyer 
angle must increase and the flow deflection must decrease. 

For  a comprehensive account involving the derivation of the equations governing the behaviour of 
branch lines and limit lines the reader is referred to "Modern Developments in Fluid Dynamics : High 
Speed Flow", (Clarendon Press) p. 259. 
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However, as indicated above, at A vA = ~VD + ~), 0A = ½(VD -- e ), and at B where the branch line cuts 
streamline 1-1, vB and 0 B must each be equal to VD/2. This implies, that along AB,v decreases and 0 increases 
i.e. a state of affairs exists which violates the conditions stipulated above. Fu~rther, it can be seen that these 
conditions are only satisfied in the region between the nozzle axis and the streamline through the inter- 
section of the branch line and the right-running characteristic through the point on the nozzle axis where 
the test-section Mach number is first attained. 

The nozzle contour at the throat determines the shape of the branch line in the region of the nozzle  
axis, and thus, if the branch line is made steeper the nozzle length can be reduced still further. This idea 
leads back to the nozzle which has a straight sonic line at ~the throat, because the slope of the branch 
line is then infinite. Hence, it can be concluded that whatever the shape uf the sonic line the principal 
nozzle is defined as the streamline through the intersection of the branch line and the right-running 
characteristic through the point on the nozzle axis Where the design Mach number is initially attained. 
This suggests that the absolute minimum-length nozzle occurs when the sonic line is straight. If the 
sonic line is straight, the velocity gradient at the throat is zero, whereas if the sonic line is curved the 
velocity gradient is non-zero and positive valued, so that it appears that the design Mach number might 
possibly be attained in a shorter distance when the gradient is non-zero. At first sight this seems to be a 

, )  . . 

reasonable supposition. Unfortunately, the preceding discussion throws no light at all on its validity 
and no clear-cut case can be made  for supporting or refuting this statement. 

2. The Method of Design of the Inviscid Core. 
2.1. Region 1. 

To date, very little consideration has been given to the flow in the subsonic part of the nozzle and the 
wall shape is usually prescribed by any convenient smooth curve. The reasonable flow uniformity 
achieved with nozzles designed on this basis seems to indicate that the precise shape of the wall is not 
very important, excepting of course the region immediately upstream of the throat. However, adverse 
pressure gradients should be avoided as far as possible because these may be strong enough to provoke 
separation of the boundary layers, and although reattachment is likely to occur upstream of the throat 
there is the possibility of non-uniformity of the flow downstream of the throat. 

I t  is important, however, to consider the shape of the wall near the throat. Quite a number of design 
methods have assumed for convenience that the flow is sonic along a straight line normal to the nozzle 
axis at the throat. GSrtler 16 (1939) and Bershader 17 (1949) have shown that this assumption is o n l y  
valid when the curvature of the wall at the throat is zero. Although this is possible it is difficult to realise 
in practice. If the curvature were zero any small error in the boundary layer correction would be sufficient 
to cause a substantial movement of the effective throat. 

In the present design the subsonic wall profile was part of a hyperbolic curve having the desired radius 
of curvature at the throat. This was continued upstream for several times the throat half-height to a station 
at which the Mach number would be less than about 0.5. On the assumption that conditions further 
upstream would have little effect on the flow at the throat, this part of the contraction was faired in an 
arbitrary way to the existing wind-tunnel entry section. 

If all lengths are made non-dimensional by dividing them by h, the throat half-height, a system of 
co-ordinates x and y can be defined, parallel and normal to the nozzle axis respectively. Further, if x = 0 
is chosen as the location of the throat, when the equation of the nozzle contour is region 1 can be written 
a s :  

X 2 
y2 = 1 + (2.1) 

2.2. Region II. 
Some previous designs have been based on a more realistic throat flow with a curved sonic line, but 

in the main, the theories that have been used are not as accurate as might be desired. Of the various 
analytic theories that are available it was considered that one due to Hall a (1962) was both straight- 
forward to use and sufficiently accurate, so accordingly, it was adopted in the present design. In the original 



paper the velocity and flow direction are expressed in terms of x and y as expansions in powers of 1/R. 

The results for two,dimensional flow are summarised in Appendix A. However, for nozzle design by the 
method of characteristics it is more convenient to be able to calculate a particular characteristic, i.e. to 
know x and 3) as functions of v and 0. The necessary inversion has been carried out and the relevant 
equations are given in Appendix B. 

To determine the conditions along the nozzle axis between B and P, the Mach number gradients at 
these points must be matched to,those in regions II and IIIb respectively. The method of characteristics 

( ~ v )  rather than employs v rather than M, and thus, it is more convenient to work in terms of ~x y= o 

/ " _ _(0M)~ y= 0" The function ~ \ _ _(0V)~x r = o is defined by equation (A.23)in the vicinity of point Band,  in 

Fig. 3, it has been plotted against v for various values of R. 

2.3. Region  I l i a .  

Initially, the boundary conditions of this region must be specified and these cannot be chosen arbi- 
trarily. The Prandtl-Meyer angle v must be continuous at B and p and for continuity of wall curvature 
011 O) 

O--x must be continuous. Along the nozzle axis a quadratic variation of v is the simplest which satisfies 

these conditions. This can be written in the form 

v -  vB = ( x -  xB) ~v 1 ~ P B 

Vp - -  PB 

With this variation of v the length BP is given by 

*(2.2) 

2 (vp - v~) 

The flow conditions at P and the characteristic PI, which separates regions IIIa and IIIb, can be calculated 
directly from the radial flow equations given in Section 2.4. 

The flow in region IIIa was calculated by the method of characteristics, and the main equations relevant 
to this method of calculating two dimensional steady flow are set out in Appendix C. An attempt has 
been made to assess the errors inherent in the method of characteristics, and a suggestion has been 
advanced which would reduce the order of magnitude of the errors and cut down amount of labour 
involved in the calculation of a characteristic network to obtain a given accuracy. This discussion is 
set out in Appendix D. 

2.4. Region I I I b .  

A plane radial flow is defined as one in which all the dependent variables are a function only of the 
distance r from a fixed point in the plane. Thus, in region IIIb, the Mach number distribution is given by 

~,+1 

~" r* - M + M z (2.4) 

*In the present design this equation was used in terms of M. The variation of M along the axis was 

M = 0.96338 +0.32324x+0.00609x 2 

Also, x B = 0.39001 and X p - X  B -- 1-58347 
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which is the same as the area-ratio equation in one-dimensional flow. The length r* is the radial distance 
from the virtual origin to the sonic circle. The streamlines within the radial flow are straight lines which, 
if extended would pass through the virtual origin of the radial flow. 

The rate of change of v with x along the nozzle axis, in the radial flow, can be calculated from equation 
(2.4), i.e. 

2 [1 +Z@M2J 
: 

kc~x} ,=0 r 2 
~ ; ~  1 E(7+ 1)+(7-1)(M 2-1)] 

Fig. 3 shows @xx) y=0 plotted against v for various values of r*. By continuity it can be shown that 

r *  01 = 1 - 5  (2.6) 

where (1 - e )  is the ratio of the actual mass flow through the throat to the mass flow calculated from one- 
dimensional considerations only. The function ( 1 -  e) is given by equation (A.28) In Appendix A (For 
R = 5.0, (1 - e )  = 0' 9911). Equation (2.6) shows that only one of the parameters r* and 01 can be chosen 
independently. The flow direction at the inflection point must always be less than or equal to VD/2, where 
v D is the Prandt1-Meyer angle corresponding to the design Mach number. In the present method of design 
it will always be somewhat less than the maximum possible, the actual value depending on Vp and on the 
size of the matching region IVa. It is convenient to keep this region fairly small, i.e. 

V D -  V C ~ AV 

where Av is chosen to be small, probably of the order of 1 °. Then, 

V i + 01 = V C, 1)I-- 0I = re, 0I = ½(Vc -- Vp) (2.7) 

Equation (2.7) enables 01 to be determined if vp is known. To achieve this, equations (A.23) and (2.5) have 
not been solved directly, instead, Fig. 3 has been used to simplify the solution. For each curve 

R = constant, the value of/\~(~_) at the approximate limit of the analytic theory has been noted. 
\ u x /  y = 0  

in turn each of these values of ~--(0] constant, curves of 01 against v have been plotted. Then, keeping 
\us~/ y = 0  

These curves are shown in Fig. 5. Equation (2.7) can also be plotted on this figure. Thus, it is possible to 
determine a triplet of values for Or, Vp and R. In general, the value of R will have been previously selected 
and vp and 0t can be read directly from this figure';'. Of course, more refined curve matching techniques can 
be employed e.g. a parabola can be fitted between selected curves of constant R and r* such that 



Since the streamlines in region IIIb are straight the boundaries PI and IC can be computed without 
calculating the region contained within these characteristics. The co-ordinates of any point Q along PI 
are computed as follows; the flow angle 0Q is used as a parameter, and from the geometry of the flow the 
following relations are established 

(2.8) 

: sin0Q \r*/Q (2.9) 

The terms within the brackets in equation (2.8) locate the origin of the radial flow at point 0, see Fig. 2. 
The value of (r/r*)Q is obtained from equation (2.4) and VQ, which is given by 

VQ = Vp + OQ 

from the conditions existing along PI. The co-ordinates of a point R along IC are computed from equations 
(2.8) and (2.9) with subscript Q replaced by R, and vR is defined by 

V R ~--- V C - -O  R 

The values of Vp and 01 are  fixed by the design Mach number and other properties of the complete nozzle 
as described in the init{al part of this subsection. 

2.5. Region IVa. 

The second matching of the axial Mach number gradient in region IVa is often omitted in designs. 
However, if the simple wave flow is applied immediately downstream of the inflection point I discon- 
tinuities of curvature occur in the nozzle contour at I and K, and the purpose of region IVa is to eliminate 
these discontinuities. The simplest process to ensure continuity is to define a quadratic distribution of v 
along the nozzle axis which satisfies the conditions 

VD--V C = A V =  0(1  O) 

as defined by equation (2.5). and Ox c 

The following distribution is suitable t 

2/av\2 

v - v D = 4(VD -- VC) (2.10) 

t in the present design M was used as a variable in region JVa. The distribution of M between points 
C and D was 

M =  -2.77449+0.91315x-O.O3610x z 

Also, Xc "-- 11.60854 and XD--Xc = 1.03887 



and the corresponding length CD is 

2(yo-yO (2.11) 

The distribution of v defined by equation (2.10) and the previously computed parameters along the Mach 
line IC provide sufficient information to calculate the remainder of region IVa by the method of character- 
istics. Point J is determined by numerical integration of the mass flow across characteristic JD. The 
process of integration is described in Appendix E. 

2.6. Region IVb. 
To obtain uniform parallel flow at the nozzle test section, the part of the contour downstream of 

point J must be shaped to prevent the reflection of expansion waves which originate at the walls of the 
first part of the divergent contour. Because it is adjacent to a region of uniform parallel flow, region IVb 
must be described by a simple wave flow. Thus, left-running characteristics are by definition straight 
and the flow properties along such a characteristic are constant. Therefore, if S is a point on the character- 
istic JD, which is the upstream limit of the simple wave flow, and T is the point where the left-running 
characteristic through S intersects the nozzle wall 

X T -  X$ = IST COS (# + 0)S (2.12) 

YT--Ys = /ST sin (#+O)s (2.13) 

where /ST is the length ST. By continuity the mass flow across SJ must be equal to the mass flow across 
ST, i.e. 

J 

f pa dy sin ( # -  O) 
- -  PS qs  /ST s i n  # s  

Hence 

/ST -- sin #s (1 -- e) Mf(M) sin ( # -  O) (2.14) 

where f(M) is the one-dimensional area ratio function given in equation (2.4) and the integration is 
along DS. The parametric equations defining the final part of the contour JN are therefore given by 
substituting for/ST in equations (2.12) and (2.13). 

3. Boundary Layer Correction. 
The nozzle design method described in section 2 can be used to calculate the 'potential outline'. 

However, in real fluids it is necessary to allow for the growth of the boundary layer along the walls of 
the tunnel. This is done by displacing the potential outline away from the tunnel centre line, the correction 
being applied from a knowledge of the displacement thickness of the boundary layers. 

There are several approximate methods to predict the fate of boundary-layer growth along the curved 
walls. These have been summarised by Rogers and Davis is (1957). In the present design the boundary 
layer thickness at the throat was calculated using an expression given by Sibulkin 19 (1956). The rate 
of growth downstream of the throat was assumed to be constant since this is known to be approximately 
true and the value of this constant was taken from Rogers and Davis' paper. 



Although the assumption is often made that the boundary-layer thickness at the throat is zero, the 
dimensions of the throat play an important part in the development of the flow. An expression for the 
boundary-layer thickness at the throat is given by Sibulkin; this can be rewritten in terms of the dis- 
placement thickness as 

5*throat {Ra~ ~- 
= 0.026 \ R e , ]  (3.1) 

where 

a*h 
R e - 

v* 

In order to evaluate Re, it is first necessary to assign a reasonable value to v*. The temperature and 
therefore the density and viscosity vary across the boundary layer. The pressure, however, remains 
constant and reduces the problem of choosing appropriate mean values ~ and ~ to one of choosing T. 
As the fifth root of the Reynolds number occurs in equation (3.1) it would appear reasonable, in most 
cases, to assume that 

T_T~+T. 
2 

where 

/ 

T1 -- local temperature at edge of boundary layer 

T w = wall temperature 

It is difficult to decide conclusively whether or not this assumption is satisfactory. Sibulkin compared 
the results of his numerical examples with results obtained from other theories. However, his comparisons 
were only between theories of varying degrees of approximation; consequently the adequacy of the 
theory could not be satisfactorily judged. 

According to Fig. 4 of the paper by Rogers and Davis the mean rate of growth of the boundary-layer 
displacement thickness AS*If downstream of the throat for a design Mach number of 3.0 is 

AS* 
- 0 " 0 1 7  

l 

To compensate for the boundary layers on the side walls Rogers and Davis suggest that the effective 
2h+co 

displacement of the contour should be times the displacement thickness, 6*, on the curved wall, c~ 
where o) represents the width of the tunnel. 

Thus, in the present case, the effective displacement of the potential outline should be 0.0194 inches 
per inch run, giving a boundary-layer thickness of about 0.28 inches at the run-out position. 

4. 7he Manufacture and Calibration o f  the Liner Blocks. 

Two sets of liner blocks were planned in the nozzle design programme. It was decided to manufacture 
initially a pair of wooden liners which would be used to check the boundary-layer allowance and for 
carryfng out preliminary experiments. The manufacturing tolerances in wood fabrication are unavoid- 
ably larger than the desirable tolerances; a second set of metal liner blocks, with satisfactory tolerances 
are in the stage of manufacture at the time of writing. 

10 



The wooden contours were shaped from straight grained obeche which was lengthwise laminated to 
minimise shrinkage. Co-ordinates of a steel master template were specified for axial intervals of 0-5 
inches and ordinates to the nearest 0.01 inches. After preliminary carving the blocks were scraped to 
fit the template. The finished surface was clear varnished and rubbed down to give a completed surface 
which was both smooth and hard. To minimise warping the liners were mounted on ¼ inch mild steel 
plates running the whole length of the blocks. 

The calibration experiments on these liners showed that the approximate allowance made for the 
boundary-layer growth was sufficient (see Section 3) and the Mach number distribution in the working 
section was reasonably uniform, AM having a maximum of the order of 0.01. The nozzle calibration 
is shown in Fig. 6. Static pressure measurements were made on the plane side wall along the nozzle 
axis and it can be seen that there is good agreement between the experimental and theoretical results. 
Schlieren photographs of the flow in the test section did not show any wavelets crossing the tunnel. 

The specification of the metal liners is mueh more rigorous for the careful use of an accurate design 
method is to no avail if the manufacturing tolerances are greatly in excess of the aerodynamic tolerances. 
Due to the significance of the slope at a point on the contour upon the properties of the flow along the 
characteristic originating from that point, extreme care in manufacture is necessary to prohibit waviness, 
or, in the case of very small curvature of the contour, the formation of steps. A simple means of reducing 
this type of error is to tilt the liner blocks through a finite angle so that all parts of the contour are inclined 
at an appreciable angle to the milling cutter. The metal liners are being fabricated from aluminium alloy 
to a maximum tolerance of _+ 0-0002 inches. Table I gives the co-ordinates of the boundary-layer- 
corrected nozzle. The surfaces of the completed contours are to be smooth milled and hand finished, 
and as the supersonic wind tunnel uses dry air as a working fluid it has been decided to leave the liners 
free of protective treatment. 
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APPENDIX A 

Equations for the Flow in the Region of the Throat 

Expressions for the velocity magnitude, q and  the flow direction 0 in the throat region of a nozzle 
are given by HalP (1962). If a non-dimensional velocity magnitude q is defined by 

q l + q '  (A.1) q~a ~ 

where a* is the critical speed of sound, Hall's results can be written in the form 

= 1 + q l +  qz  . q3 . q . . . .  
R 

(A.2) 

= ~ ~ - + R - ~ + ~ 5 +  . . . .  } (A.3) 

where R is the ratio of the radius of curvature at the throat to the throat half-height. The G's and 0,'s 
are functions of y and z, the latter being a stretched x co-ordinate defined by 

x = - -  z (A.4) 

The first three coefficients of each series are given in Hall's paper and are reproduced below. These are : 

ql  = yZ- + z (A.5) 

q2 = ~ ]8 y + 2__~_7_0_ + 2_  z -  z = (A.6) 

362~2 + 16297+3357 y6 19472 +9097+ 1737 y4+ 

qa = 12960 2592 

-t 85472+38677+6939y 2 7327z+55237+22887 t- 
12960 272160 

~ 2672 +757+285  y4 2672+752+213 
+ z  [ 288 - 144 yZ+ 

1347 z + 4297 + 1743 
+ 45N j +  

+ z  3 ~ 272-337 + 9  
/ 72 } 

(A.7) 
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and 

1 3 1 
01 = -~ y --~ y +  yz 

227+45 5 57+15 
0 2 -  -~6 Y 54 

347+ 165 
_ _ y 3 h  1080 Y+ 

0 3 = 
6574? 2 + 192577+ 18639 

181440 
y7_ 

225@z+7929y+8739 y5 + 
25920 

502@2+21639? +28917 y3_ 
77760 

7570y2+427357+74817 
544320 Y+ 

f 36272 + 957~+ 1107 
+z ~ yS_ 

2160 l 

19472+6097 +711 y3+ 
648 

854?2+32197+3789 } 
6480 Y + 

" 26?z + 3~,'- 15 y3 
+z2 [ 144 

267 z + 27y + 9 Y "[ + 
144 J 

(A.8) 

(A.9) 

+z 3 ~" ?+1 ] -----~- Y; (A.10) 
( 

If 7:/is calculated from equation (A.2) the Mach number M, the Mach angle # and the Prandtl-Meyer 
angle v can be computed from 

J 

sin 

(A.11) 

(A.12) 
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and 

1 1 v = ~ t an -  (2 cot # ) -  t an-  1 (cot ~) (A.13) 

where 

22 _ ~-1 
y + l  

For  Mach numbers very close to unity it is sometimes more convenient to calculate v from 

' ' { }  ~ 127z-287+39q'3+ .... } 
v = (7+l)~q '~ q '+  q,2+ 112 (A.14) 

Inserting the series expansion for ~/in equations (A.11), (A.12) and (A.13), the following expansions are 
obtained : 

H~ 1 /g/2 /q'I 3 M = 1 + - - + = + ~ +  . . . .  
R R~ R o 

(A.15) 

# = ~--  - -  /21+~-+ . . . .  (1.16) 

{YR1}~ {-~ v2 v3 } 
V = - -  R2 R3 +- . . . .  (A.17) 

where 

7+1  
m l  = ~ -  q l  (A.18) 

~1 = ql 4 (A.19) 

2 (A 20) 
vl  = -5 q S  

(A.21) 

1 q2 2 2 7 - 5  . 1272--287 +39 3 } 
v3 = q l  4- q3+~ - ~ - l + ~ q l q 2 +  l i 2  ql (A.22) 

In the matching of region II to region IIIa the function y = 0 has been used. This can be 

conveniently written 

t,, ] &  ,:o d~ dqt,&J,=o\d~) 
(A.23) 
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where 

(OF/) 1 1 { 1 27-3  } 
~z y=o = / ~ + ~  2 3 z + 

~ {134~+429~+1743 ~ 2~ ~+9 } 
+ ~  4320 I- z+ 24 z2 (A.24) 

dv 2 z -  1 
d# - tan a/~ + 22 (A.25) 

d~ - 1 

dq q~/(q~- 1) (1 - ~ q~) 
(A.26) 

dz {R}~  
d--x = ~ (A.27) 

The ratio, Q, of the mass flow through the throat to that calculated by assuming sonic velocity at the 
plane of the throat is also given by Hall 1 (1962), 

Q =  1-5  

7 + 1 {  1 2y+9 33@z+17037+2733} (A.28) 
= 1 - 7  90 945R ~ 340200R 2 
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APPENDIX B 

The Calculation of  a Characteristic in the Throat Region 

The values of 0 and v at selected points just downstream of the throat could becalculated from the 
equations given in Appendix A and these values used to start the calculation of region IIIa. In general, 
however, these values would not be rounded numbers and interpolation of tables would be necessary 
at each stage of the calculation. A more convenient approach is to invert the equations so that the 
co-ordinates of a point at which specific values of 0 and v have been chosen can be obtained directly. 
If suitably rounded values of 0 and v are taken it is possible to use existing tables of characteristic slopes 
directly. 

The process of inversion to obtain y and z as functions of v and 0 is not straightforward. The series 
for v given in equation (A.17) is not convergent near the sonic line, e.g. ql occurs in the denominator of 
equation (A.22). At first sight it appears that this difficulty can be surmounted by using equation (A.2) 
in place of equation (A. 17) and expressing y and z as functions of ~ and 0. This inversion is.straightforward 
in principle and the method of solution was identical to that detailed below. Unfortunately, the series 
expressions obtained were not convergent in the region of the branch line. A pointer to the method 
eventually used was found by investigating the reasons underlying the difficulty' occurring in the first 
attempt. In this case the objection arose from the incorrect expansion of v near the sonic line. In the 
vicinity of the sonic line it is possible for v to be real even though vl is imaginary. This suggested that 
the function t / =  v 2 might be more appropriate since it is a real and unique function of g/at both subsonic 
and supersonic speeds. 

The series for 0 and t/were inverted as follows. Squaring equation (A.14) and substituting for g/from 
equation (A.2) gives 

t / = ( y + l ) {  t/~ t/2 r/3 ' } 2 x + k ~ + ~ +  . . . .  (B.1) 

where 

4 3 
t/1 = ~ql 

4 
t/2 = ~ ql 

[ 4  z 4 
t/3 = ql ~ q z + ~ q l  q3-] 

(B.2) 

(B.3) 

8(27-5) 9@2-280y+375 } 
15 q~ qz -~ 525 q4 (B.4) 

Thus, the equations to be inverted are (A.3) and (B.1). To a first approximation, these equations reduce to 

Rat/ 
t/1 (Y,Z) - 

(7+ 1) 
(B.5) 

R~O 
01 (y,z) - (~, + 1) ~ (B.6) 
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The right hand sides of both equations (B.5) and (B.6) are constant and known quantities. It is convenient 
therefore to introduce P and Q where 

9 R 3 t /  } 5  

Q = 4(~+ 1) 

R~O 
p - -  _ _  

A further substitution, 

, 

t ~ Z  m - -  
6 

reduces equations (B.5) and B.6) to 

~ y2+t  = Q 

1 
~ y 3 + y t  = P 

from which t can be eliminated to give a cubic equation for y, i.e. 

(B.7) 

(B.8) 

y a - 3 Q l y + 3 P  = 0 (B.9) 

The number of real roots of this equation depends upon the sign of the discriminant. A function D 
which is proportional to the discriminant is given by 

9 2  Q 3  9Ra 2 
D = ~P - 4(7~-1)(0 --r/) (B.10) 

Hence, the solution of equation (B.9) can be given in one of the following ways, depending on the sign 
of D. 

(i) D>0,  i.e. ]01 >v. There is only one real root which is given by 

/ ~ 3P'~ ~ / /  3p'~+ 

where the positive root of D is used. If P is positive the corresponding point in the x, y plane lies in the 
lower half plane between the sonic line and the left-running characteristic from the sonic point on the 
axis, as shown in Fig. 7. For negative P the solution lies in the corresponding segment in the upper half 
plane i.e. the mirror image in the x-axis. 

(ii) D = 0, i.e. 101 = v. There are two coincident real roots and one distinct real root. The latter is 

y = T-2Q ~ (B.12) 

and the double root is 

y = _ Q~ (B.13) 
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where the upper signs are taken when P is positive, and the lower when P is negative. The double root 
corresponds to a point on the branch line and the single root to a point on the left-running characteristic 
through the sonic point on the x-axis. 

(iii) D < 0, i.e. 101 < v. There are three distinct real roots given by 

y = 2Q~cos(0 + 120i) (B.14) 

where 

3P 
cos 30 - (B.15) 

2Q ~ 

the positive square root being taken in both equations. When P is positive, two of the solutions lie in 
the upper half plane on the same right-running characteristic, one on either side of the branch line. 
The third root lies in the lower half plane in the narrow sector between the left-running characteristic 
through the sonic point on the x-axis and the line 0 = 0. The locations of roots for all three cases when 
P > 0 are illustrated in Fig. 7. 

It should be noted that any roots which lie outside the range ly[ > 1.0 are valid, because this discussion 
is essentially mathematical  and does not recognise the practical limits imposed by the nozzle contour. 

Several tables are available which enable the roots of equation (B.9) to be found directly. For example, 
if the tables gi#en by Neumark  2° (1962) are used the equation has to be written in the standard form 

4 s 3 - 3 s = A  

which requires the substitution 

y = 2Q~s 

The parameter  A, against which roots are tabulated, is given by 
f"  

3P 
A -  

: 2 Q ~  

It is now assumed that the solutions of equations (B.7) and (B.8) are Y0 and to. The complete solutions 
can be written in the form 

. Y l  . Y 2  . 

y = y o + ~ - + ~ v +  . . . .  
K _K- 

(B.16) 

t l  t2 
t = t o + = + ~ +  . . . .  

R R ,~ 
(B.17) 

where Yl, Y2,. . . .  tl, t2 . . . . .  are conveniently expressed in terms of Yo and to. P~iirs of simultaneous 
equations for y~ and t~ can be obtained by expanding equations (A.3) and (B.1) and collecting the 
coefficients of each power of R. These are of the form: 

\ Oy o + N i  "= 

y~ o+t , [ -~)o+*,  =o (B.19) 
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where 

N 1 -~- t12 

01 = 02 

N2 - y~ 2 

0 2 - Y~ 
2 

2 ~t21 02tll , ~ ~I~2 c32rh ~_~ +Yltl o-~.Ot-t-Yl + tl - ~ + t / 3  Oy a 

0201 ~_~ 0701 0201 002+ 002 
ay 2 - ~ - +  Yltl oy~.Ot + yl Oy t l - ~  -+03 

all terms being evaluated at (Yo, to). The solutions of simultaneous equations (B.18) and (B.19) are 

 01} 
Yi = V-1 ®i - N i ~ -  

{ a01 0 th}  (B.21) t, = V -~ N i - ~ - y -  O , ~ - y  

where 

V =  o \ & / o  o \ ~ t / 0  

4 1 z =-~q2 ~yo_to 

For i = 1 the solutions of equations (B.20) and (B.21) become 

{ Y 9  3 87+15 2 2 '  } 
Yl =Yo - - -  90 Y o - ] ~ t o  (B.23) 

2 7 - 1 5  27+5  4 27+15 2t y + 3  27 2 
t l  = 360 i ~  Yo ~-~ Yo o+~--to+-~to (B.24) 

In view of the complexity of the algebra it was decided to calculate Yz and t2 numerically for a particular 
value of y. For y = 1-4, the results are 

Y2 = Yo{( 0"0254 Yo 4 -  0-2476) + t o ( -  0.1554 y~ + (B.25) 

+0.7622) +0.8843 t~} 

t 2 = ( -  0.0262 y~ + 0.0746 yo 4 + 0.0098) + 

+ to(-0.0176 yo 4 + 0"1356 yo z - 0.2478) + 

+ t~(-  0.2748 yo z + 0.5177) + 0.3505 tg (B.26) 

For i = 1 and 2, the factor V has been extracted from the numerator so that the question of convergence 

2 to of these functions in the region where to -~ YS). does not arise. Along the branch line = , however, 

and the problem is trivial in solution because ]01 = v. 

( 
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APPENDIX C 

Equations for the Method of Characteristics 

The main equations necessary for the solution of a two-dimensional, isentropic, steady supersonic 
flow by the method of characteristics are set out below. The characteristics are defined by the following 
equations 

vd__~_~ = t a n ( # + 0 )  ( C . 1 )  
dx 

dy 
- t a n ( # -  O) (C.2) 

dx 

for left-running and right-running characteristics respectively. Along a left-running characteristic 

v -  0 = oc = constant (c.3) 

and along a right-running characteristic 

v + 0 =/~ = constant (C.4) 

Fig. 8 shows a sketch of a typical characteristic mesh. It is assumed that conditions at co-ordinates 
(xl, Yl) and (x2, Yz) are known and (x3, Y3), which lies at the intersection of the characteristics v +0  = ~2 
and v - O  = OCl, is the point that it is desired to compute. Using this figure, equations (C.1) and (C.2) 
can be replaced by 

Y 3 - - Y l  
- -  -- rrtl3 (C.5) 
X 3 - - X  1 

Y 3 - Y 2  (C.6) 
_ _  - -  m 2 3  
X 3 - - X  2 

where m l 3 and m23 are mean values of tan(# + 0) and t a n ( # - 0 )  suitably defined in the relevant intervals; 
a discussion on the best values to use is given below. 

Equations (C.5) and (C.6) can easily be solved for x3 and Y3- It appears, however, that the expressions 
given in most textbooks are not in their most satisfactory form. The following scheme is suggested since 
fewer significant figures need be used in the calculations ; 

Ax = x 2 - x l  (C.7) 

Ay = Y2--Yl (C.8) 

_ Ay + m23 Ax (C.9) 
/3"/13 -I- D223 

giving 

x3 = x~ +6  (C.10) 

Y3 = Y l  + m 1 3 ~  (C.11) 
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( 
In general, to estimate m13, three simple methods are recommended*. These are 

(i) m t3~ t an  +00+~(#3+03)  

which corresponds to replacing the exact characteristic by a circular arc, 

1 
( i i )  ml3~--~{tan(12l+O1)+tan(t~a+03) } 

which is equivalent tO integrating equation (C.1) using the trapezium rule, and 

(C.12) 

(c.13) 

(iii) m 13 -~ tan (# + 0)m (C. 14) 

where the 'subscript of 'm' refers to the value of (# + 0) at the point where 

~=~ 

The last method, suggested by Temple 2t (1944), is the most convenient in some respects, and trial 
calculations using the exact solution for a radial source flow as a comparison show that it appears to 
give slightly better results than the other two. In mathematical terms, however, the three estimates are 
all of the same order of accuracy arid there is no' priori reason why anyone of them should be the most 
appropriate in any particular case. 

Equation (C.12) cannot be used in conjunction with tables of characteristic slopes "and is therefore 
discarded at this stage. Further consideration of the other two estimates is given below. 

Estimates of the mean value of tan(#+0) between the points (xl, Yl) and (Xa, Ya), in Fig. 8, can be 
obtained by integrating equation (C.1) using standard finite difference formulae. Putting 

equation (C.1) gives 

f(x) = tan(#+0) = tano) 

X3 

Ya-Yl = I f!x)dx 
x1 

(c.~5) 

(C.16) 

= ~ X1)q-f(x3 +63L+0(65) (C.17) 

where 

1{ } 
L=--~ '~  fll(X1)q-fll(X3) (C.18) 

1 
= _ 1~/~i(~)+ 0(5 2) (C.19) 

and ~ is the arithmetic mean of xl and x3. The derivatives are taken along the characteristic. Equation 
(C.17) shows that the error in mla as given by equation (C.13) is O(6 z) or, to be more precise, 52L. 

*A similar argument also applies to m23. 
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where 

Hence, 

where 

An alternative approach is to rewrite equation (C.16) as 

fl 

Y3 - - Y l  = g ( f l ) d f l  

fll 

y,3 

Y3 - Yl = ) g(fl,,,) + = 9 1  l(fl,.,) + O(ZS) 
, ,&. .a  z.q- 

2 = f13-  31 

and fl,. is the arithmetic mean of fil and 33. The variables x and fl c~n be related by 

2/dx\ E 3/d3x\ 

where subscript 'm' refers to values taken at tim. Equation (C.22) can be re-written 

Y 3 - Y l  = 6tanco+63 M +O(65) 

where 

M = -~  \ ~ 7  ,, f l(fl,,)-tano),. \df la] , ,  

Equation (C.25) shows that the error in m13 as given by equation (C.14) is also of 0(62). 

(c.2o) 

(c.21) 

(C.22) 

(c.23) 

(C.24) 

(C.25) 

(C.26) 
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APPENDIX D 

A Method to Reduce the Error in the Mean Slope of  a Characteristic 

D.1. Estimation of Mean Slope at a General Point. 
It has been shown above that for given values of xl and xa the error in Y3 is 0(63). In practice, x3 is 

unknown and is determined from the starting conditions at (xl, y~) and (x2, Y2). It is easily seen, however, 
that the resultant errors in x3 and Ya are still 0(63); a detailed discussion is given by Hall 22 (1956). In 
many cases these errors are small enough to be of no importance but they can be quite significant, 
particularly when the Mach number is close to unity. When the errors are thought to be significant the 
standard method of checking is to repeat the calculation with a step size equal to half the original one, 
and to repeat the process until successive calculations give the same result to the accuracy required. 
However, this process is rather unsatisfactory because it converges only slowly. Halving the step size 
approximately quadruples the number of steps in the characteristic mesh so that the final error is only 
slightly less than half the original one. It would seem worth while, thereforb, to develop a method which 
would reduce the order of magnitude of the error'; this has been done by combining two of the estimates 
for m13 in such a way that the terms of 0(53) are eliminated. 

To combine equation (C.17) and (C.25) a function q~ is introduced which is dependent upon the con- 
ditions that exist along a particular characteristic. Multi151ying equation (C.17) by (t-~b), equation 
(C.25) by q~ and adding the results gives 

{(1-q~) tanc°* +tango3 +- q~tan co,. } 
Ya--Yl = 6 2 

+ 5 a {(1 - q~)L + q~M} + 0(6 5) (D.1) 

Therefore,~if ~b is chosen so that 

(1 - q~)L + q~M = 0 

an estimate of m13 can be obtained which is in error by 0(64), i.e. 

(D.2) 

tl  ,~tancol+tancoa t-~,btancom (D.3)  
m13 "~t3 - -  '-F.Y 2 

Substituting in equation (D.2) from equations (C.19) and (C.26) gives, after some reduction, 

2 d de:  

dfl" dfi 2 .I 

(D.4) 

where f ( x )  -- tan co and the derivatives are evaluated at the mid-point Of the interval. In general, cal- 
culations are made at equal intervals of fl so that the differential terms can be easily evaluated. Along 
any characteristic it can be shown that 

&o i tan 2 p + 222 - 1 (D.5) " 
dfl - 2 22 - 1 
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and 

d2co tan#sec2#(tanZ#+ 2 z ) 
dfl 2 = 2(). 2_  1) 2 (D.6) 

df dF 
Thus, functions dependent upon equations (D.5) and (D.6), e.g. ~-~ and fiT, can be evaluated without 

knowing the space co-ordinates of a characteristic mesh. 
The calculation of ~b increases the time required for each stage of a characteristic mesh but this is 

offset to some extent because relatively large step sizes may be used. It is estimated that the total time 
required to compute a characteristic network to a given accuracy can be as little as one sixth of the time 
required when the first approximation to "13 is used., 

D.2. Estimation of Mean Slope near a Branch Line. 

In cases where a branch line exists in the flow field allowance can be made in the computations by 
using a similar procedure to that described above. If the branch line is a left-running characteristic no 
allowance is necessary along left-running characteristics. However, m23 has a maximum on each right- 
running characteristic where it crosses the branch line and the mean value given in section D.1 is 
inappropriate. 

Consider a section of the characteristic network as shown in Fig. 8 but such that the 1-3 characteristic 
is now a branch line. Then, because m23 has a maximum at (x3, Y3), 

(X--X3)2 t~X3)3-~0((~ ) + ~ d ~ 4 (D.7) 

Hence, 

x 

3 

Y3--Y2 = I f(x)dx 

x2 

(D.8) 

= 6 f ( x 3 ) + 6  - lkdx2J3 24 \dxaJa + O(6S) (D.9) 

where 

(~ ~ X3--X 2 

But, 

6 ~ d F  
6 \dxaJ a + O(a4) 

so that the term of 0(6 a) in equation (D.9) can be eliminated giving 

Y3-Y2 = ~ tanc%+2tanco3 +~4E+O(85) 

(D.IO) 

(D.11) 
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where 

\dx3 ) 3 (D.12) 

Thus, to a first approximation 

1{ } 
m23 = ~ t a n c o 2 + 2 t a n c %  (D.13) 

To obtain the relevant form of "Temple's method" account is taken of the fact that the characteristic 
co-ordinate oc has a minimum at x 3 i.e. 

( x - x ~ )  ~ ( x - x ~ )  ~ 
( d 3 ~  0(5 4 ) (D.14) 

~: = ~: 3-~ 2 t, dx2 ) 3 6 \ dx3 ] a 

Writing 

where 

f ( x )  = F(oc) 

= F(oc3)+(oc-oc3) d()7<) 3 +o(y}) 

: 0 C 2 - -  0~ 3 

equation (D.14) can be used to give 

+ - - U -  k dx 3 ) ~ 3 + 0(5") 
Hence, 

+~st, aT)~ +o(55) 

If a constant ~ (0 < ~ < 1) is introduced such that 

.F(oca+ Z) = F(oc3)-t- 
(dF '~  + 

:c \doc]  3 0(22) 

= + 

+ - U t , ~ ]  3 ~ +o(a') 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

(D.19) 
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then equation (D.17) can be written 

Y3-Y2  = c5F(0c3-t- 33 (a~oc'~ a(aT) 
]E) +-~- ~Xz- ) 3 3 (1-3 )+ 

The term of o(a 3) can be eliminated by choosing 

1 
3 

so that 

) + 0 ( 5  s) (D.20) 

Y 3 - - Y 2  = 6F 3"~ +64M'+0(65)  (D.21) 

where 

M'- 1 (d3~ d(~__~) 
72 \ d x  3 ] 3 3 (D.22) 

Hence, to a first approximation, 

(D.23) 

In a similar manner to that described above the two first approximations can be combined so that 
the error terms of the highest order are eliminated. Introducing ~k, in place of the original function ~b, 
an identical procedure gives 

m23 -- 3 tano92 + 2tancos +Otan °)2 +32o93 (D.24) 

where 

d3co 
dx3 (D.25) 

~k=d3o9 do9 d3oc 
dx 3 ~ doc dx 3 

doc 
the derivatives being evaluated at the branch line. Since ~ = 0 at the branch llne, this equation 

reduces to 

~9-  1 (D.26) 
2 

Therefore equation (D.24) becomes 

1 1 { O)2 ~2093 } 
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APPENDIX E 

Determination of the Nozzle Contour by Integrating along a Characteristic 

The nozzle contour in regions IIIa and IVa is determined by equating the mass flow across a character- 
istic to the mass flow through the throat. The mass flow across a characteristic, made non-dimensional 
by dividing by the mass flow calculated from one-dimensional considerations, is Q1 where 

Y 

QI(Y) = f Wdy 
0 

(E.1) 

and along a right-running characteristic, 

W = p a c o s e c ( # -  O) 
p'a* (E.2) 

An equivalent form which is more convenient for calculation is 
LI 

W= {Mf(M) sin(/~-O)} -1 

wheref (M)  is the one-dimensional area ratio defined by 

(E.3) 

f ( m )  = ~ 1 + M 2 2(~- 1) (E.4i 

and tabulated in detail by Riise 23 (1953) and others. The function Wcan be evaluated at each point of 
the characteristic network and Q1 can be obtained at these points by numerical integration. In general 
the trapezium rule is not sufficiently accurate for the evaluation of Q1 from equation (E.1) and recourse 
must be made to more refined integration formulae. Some suitable formulae for unequal intervals of 
Ay have been derived by Hartley 24 (1953); the required formula when Wis given at Yl,Y2 and 23 is 

Y3 

I Wdy - Y3- Yl 
6 

Yl 

{ KI WI + K2W2 + K3W3 } (E.5) 

where 

and 

K r  = 2 - F  

K2 = 2 + F + F  -1 

Ka = 2 - F  -1 

F - Ya-Y2 
Y2--Yl 

(E.6) 

(E.7) 

(E.8) 

(E.9) 
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An equivalent formula for calculating the integral over one interval of Ay can be derived. This is 

Y3 

I Wdy - Ya-Y2 6 
Y2 

{ K~ WI + K2W2 + K3W3 } (E.10) 

where, with F defined as above 

1"2 
K1 - (E.11) 

I + F  

K z = F + 3  (E.12) 

3 + 2 F  
K3 = - -  (E.13). 

I + F  

The ratio of the mass flow through the throat to the mass flow obtained by one-dimensional con- 
siderations is Q, where Q is given by equation (A.28); for R = 5.0 

Q = 0.99911 (E.14) 

Therefore, yo, the value of y at the point where the characteristic intersects the nozzle contour is given 

Q l(y,o) = 0.99911 (E. 15) 

The value of Y,o is found by interpolation; again, great care must be taken to avoid a significant loss of 
accuracy. Suppose, for example, that Q1 attains the required value between points S and T on the 

characteristic. Then y, Qt and ~ = Ware known at both points, enabling a cubic variation of y with 

Q to be defined in the interpolation region. The equation to this cubic can be written 

Y = Ys+ d0-Q-~ ) s(QI-Q~)+B(Q1-Q02+C(Q1-Q~)as  s s (E.16) 

where 

1 dy B-(Ql_Q1)Z {3(yT-Ys)-(Q~-Q.~) [2(d~l)s+ (-~-~)T] } (E.17) 
T S 

and 

1 dy 
C-(QI_Q1)~ {-2(yT-ys)+(Q~-Q~) [(d--~l)s+(d-~x)T]} (E.18) 

T S 

In the region near the throat Wis approximately equal to unity and it is convenient to work with the 
function k where 

k -- 1 -  W (E.19) 
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This step reduces the number of significant figures in each calculation. Using this function, equation 
(E.1) becomes 

yo-Q~(y,o) = l" kdy 
0 

(E.20) 

Another function Q2 is defined by 

Q2= f kdy= y -  I Wdy 
0 0 

(E.21) 

Therefore, 

dQ2 k 
dQ~ - 1-k (E.22) 

and 

dk 
d2Qz dy 
dQ 2 ( l - k )  a (E.23) 

It is therefore possible to use the known value of Q2 and ~ 2  at each end of each interval to prescribe 

a cubic variation of Q2 as a function of Q1 and, hence, to find the value of Q2 at which Q1 = 0-99911. 
If either of the points S or T lies on the branch line a further condition can be stipulated. Along any right- 
running characteristic, v has a minimum at the branch line. F rom equation (E.3) it can be shown that 
the function k also has a minimum at this point. Hence, equation (E.23) shows that at the branch line 
the variation of Q2 with Q1 has an inflection point. This enables a quartic variation of Q2 as a function 
of Q1 to be prescribed and Q2 determined at the point where Q1 = 0.99911. 
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x, y 

SYMBOLS 

Speed of sound 

Cross-sectional area 

Function dependent upon discriminant of equation (B.9) 

Throat half height 

Defined by equation (E.19) 

Distance measured along nozzle axis between throat and nozzle run out position 

Length along a characteristic in the simple wave flow region 

Defined by equation (C.19) 

Defined by equation (D.12) 

Mean values of tan (# + 0) and tan (/~- 0) respectively 

Defmed by equation (C.26) 

Defined by equation (D.22) 

Mach number 

Defined by equation (B.18) 

R~-O 
(y + 1) t 

Velocity magnitude 

Defined by equation (A.1) 

9R3t/ + 

Ratio of the mass flow through the throat to that calculated by assuming sonic 
velocity at the plane of the throat 

Ratio of the mass flow across a characteristic to that calculated by assuming sonic 
velocity at the plane of the throat 

Defined by equation (E.21) 

Radial distance from source point in radial flow 

Ratio of radius of curvature at throat to the throat half height 

Reynolds number 

Y 
2Q ~ 

1 
z - -  

6 

Width of supersonic tunnel 

Defined by equation (E.2) 

Two-dimensional Cartesian co-ordinates 
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SYMBOLS--continued 

Arithmetic mean of xl and x a 

Z X 

oc Constant of integration for a left-running characteristic 

, fl Constant of integration for a right-running characteristic 

Ratio of specific heats 

F Defined by equation (E.9) 

6 x 3 - x l  a measure of the step size in a characteristic network 

3P 
A 

2Q ~ 

V Defined by equation (B.22) 

5~ Boundary layer thickness 

5* Boundary Layer displacement thickness 

s 1 - Q  

Z f13- fi~ a measure of th, e step size in a characteristic network 

22 ~;- 1 
?+1 

0 Flow deflection relative to nozzle axis 

19 Defined by equation (B.19) 

r/ v 2, defined by equation (B.1) 

p Fluid density 

# Mach angle 

v Prandtl-Meyer angle 

co Inclination of a characteristic to the nozzle axis 

~b Defined by equation (D.4) 

~k Defined by equation (D.25) 

The following symbols are used to represent points in the flow field and also as subscripts to denote 
the value of a flow variable at a particular point: 

B, P, C, D Intersection points of certain left-running and right-running characteristics with the 
nozzle axis 

I Conditions at the inflection point 

Q, R Upstream and downstream end points, respectively, on a radial flow streamline (Fig. 2) 

S, T Upstream and downstream end points, respectively, of a characteristic crossing the 
simple wave flow region (Fig. 2) 
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subscripts : 

(,0 

m 

superscript: 

SYMBOLS--cont inued 

Conditions along the contour 

Arithemetic mean 

Conditions at throat 
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t ~  

0-0000 2-6360 

0'5000 2"4097 

1"0000 2.1848 

1"5000 1.9618 

2"0000 1-7414 

2"5000 1"5248 

3-0000 1-3138 

3"5000 1"1117 

4"0000 0"9241 

4-5000 0-7616 

4"6000 0-7336 

4'7000 .0"7075 

4-8000 0"6835 

4"9000 0"6619 

5"0000 0"6428 

5-1000 0"6265 

5'2000 0"6131 

3-3000 0'6029 

5-4000 0"5960 

TABLE I 

Boundary-Layer Corrected Nozzle Co-ordinates 

All Dimensions in Inches 

.~/ yl 

5-5000 0"5924 

5"5957 0"5962 

5"6823 0"6033 

5-7812 0-6122 

5"9096 0-6289 

6"0159 0"6478 

6"1438 0'6747 

6-2892 0-7085 

6'4291 0"7434 

6-5755 0"7836 

6-6636 0"8082 

6"8324 0"8574 

6'9493 0"8924 

7-0804 0"9330 

7'3283 1'0104 

7"5008 1"0645 

7-5807 1-0897 

7"7265 1"1357 

7"8414 1"1719 

Xr yl 

8.0561 1.2395 

8-3488 1-3294 

8-5615 1.3928 

8.9019 1.4897 

9.2759 1.5893 

9.6865 1-6911 

10.1373 1.7946 

10.6322 1.8992 

11-1753 2-0042 

11.7716 2.1088 

12.4262 2.2119 

13.1447 2-3123 

13.9339 2.4086 

14.8006 2.4992 

15.7529 2-5819 

16.7996 2.6545 

17.9504 2.7142 

19.2166 2-7577 

20.0316 2.7759 
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FIc. 1. The principal regions of a supersonic nozzle. 
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FIG. 2. The particular regions relevant to the nozzle design. 
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FIG. 4. 
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Sketch of streamlines and characteristics relevant to discussion on minimum-length nozzle. 
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FIG. 7. 
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Sketch illustrating locations of roots of equation (B.9). P >  0. 

FIG. 8. 
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Sketch of a typical characteristic mesh. 
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