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Parties to the Paris Agreement agreed to holding global average temperature increases 
'well below 2 °C above pre-industrial levels' and 'pursuing efforts to limit the temperature 
increase to 1.5 °C above pre-industrial levels'. Monitoring the contributions of human-
induced climate forcings to warming to date is key to understanding progress towards 
these goals. Here we use climate model simulations from the Detection and Attribution 
Model Intercomparison Project (DAMIP), as well as regularised optimal fingerprinting 
(ROF), to estimate that anthropogenic forcings caused 0.9–1.3 °C of warming in global 
mean near-surface air temperature in 2010–2019 relative to 1850–1900, compared to an 
observed warming of 1.1 °C, with greenhouse gases and aerosols contributing changes of 
1.2 – 1.9 °C and -0.7 – -0.1 °C, respectively, and natural forcings contributing negligibly. 
These results demonstrate the substantial human influence on climate to date and the 
urgency of action needed to meet the Paris Agreement goals. 

For more than twenty years, detection and attribution techniques have been used to identify 
human influence in global temperature changes, and to quantify the contributions of individual 
forcings to observed changes1–3. The commitment of parties to the Paris Agreement4 to ‘holding 
the increase in the global average temperature to well below 2 °C above pre-industrial levels, and 
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41 pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels’, and the 
42 Global Stocktake process which aims to monitor progress towards the Paris goals, give new 
43 relevance to efforts to quantify human climate influence to date. While the Paris Agreement is 
44 not explicit about the meaning of either ‘global average temperature’ or ‘pre-industrial levels’, 

much of the climate impacts literature on which assessment of dangerous anthropogenic 
46 interference in climate is based has used globally-complete global mean near-surface air 
47 temperature (GSAT) from climate models to assess future climate impacts. Therefore we 
48 primarily assess human influence on GSAT here. Recent literature demonstrates that in climate 
49 models this metric of global mean temperature warms more than blended sea surface 

temperatures over ocean and near-surface air temperature over land, masked with observational 
51 coverage (GMST)5–7. Previous attribution studies typically estimated attributable trends over the 
52 past 50–60 years in GMST8, but estimates of warming relative to pre-industrial levels are more 
53 relevant to monitoring progress towards Paris Agreement goals. While multiple possible periods 
54 over the Holocene could be chosen as pre-industrial base periods9, we follow the IPCC Special 

Report on 1.5 °C10 (SR1.5) and choose 1850–1900. 
56 

57 Comparison of global mean temperature metrics 

58 Annual mean global mean temperature anomalies in the HadCRUT411 dataset, relative to 1850– 
59 1900, based on an area-weighted global mean of monthly-mean anomalies are shown in Figure 

1a. These are compared with global mean blended sea surface temperature over ocean and near 
61 surface air temperature over land and ice masked with HadCRUT4 coverage5 (GMST, see 
62 Methods) in individual CMIP612 historical simulations merged with SSP2-4.513 simulations 
63 (historical-ssp245 simulations hereafter). The simulated warming in 2010–2019 is 17% (5–95% 
64 range of 10%–24%) stronger in globally-complete GSAT than in HadCRUT4-masked GMST 

(Figure 1a), similar to previous results based on CMIP514,15, demonstrating the importance of the 
66 choice of metric for assessing attributable warming. Comparing globally-complete versions of 
67 GSAT and GMST, the simulated warming in GSAT is only 6% stronger (5–95% range of 2%– 
68 8%). Hence the largest contribution to the enhanced warming in globally-complete GSAT versus 
69 HadCRUT4-masked GMST warming comes from the observational masking.  

71 Multiplying the observed 2010–2019 warming in HadCRUT4 GMST of 0.94 °C (5–95% range 
72 of 0.90–0.99 °C, see Supplementary Table 1), by the ratio of simulated warming in globally-
73 complete GSAT to HadCRUT4-masked GMST (1.17), we infer a best estimate of observed 
74 2010–2019 warming in GSAT of 1.10 °C (5–95% range of 1.01–1.20 °C). Similar calculations 

using GISTEMP16 and NOAAGlobalTemp17 yield estimates of observed GSAT warming in 
76 2010–2019 of 1.18 °C and 1.12 °C respectively (Supplementary Table 1). For the remainder of 
77 the study we primarily report results based on the non-infilled HadCRUT4 dataset, and to ensure 
78 a like-for-like comparison, we use masked and blended model output when comparing with 

https://1.01�1.20
https://0.90�0.99
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79 HadCRUT4 observations, including in all regressions. However, we report attributable warming 
based on simulated globally-complete GSAT. 

81 

82 Attribution of global mean temperature changes 

83 In order to quantify the contributions of individual forcings to observed trends we used the 
84 CMIP612 DAMIP18 simulations from the thirteen CMIP6 models for which the necessary 

simulations were available (Figure 1b, Extended Data Figure 1, Supplementary Table 2): 
86 ACCESS-ESM1-519, BCC-CSM2-MR20, CanESM521, CESM222, CNRM-CM6-123, FGOALS-
87 g324, GFDL-ESM425, GISS-E2-1-G26, HadGEM3-GC31-LL27, IPSL-CM6A-LR28, MIROC629, 
88 MRI-ESM2-030 and NorESM2-LM31. We primarily used output from four experiments: 
89 historical-ssp245 (driven with changes in all anthropogenic and natural forcings), hist-aer (driven 

with changes in anthropogenic aerosol emissions and burdens only), hist-nat (driven with 
91 changes in natural forcings only), and hist-GHG (driven with changes in well-mixed greenhouse 
92 gas concentrations only). The CMIP6 historical-ssp245 simulations show very little net 
93 anthropogenic warming prior to the 1960s (Figure 1b). This is in contrast to the CMIP5 historical 
94 simulations, which showed on average approximately 0.2 °C warming by the mid-20th century8. 

This could be due in part to a stronger aerosol forcing or response in these CMIP6 models. If 
96 these CMIP6 simulations are correct, this would imply that there was very little net 
97 anthropogenic contribution to the early 20th century warming, and that almost all anthropogenic 
98 warming has occurred since the 1960s. We use global mean temperature in our main attribution 
99 analysis, since previous work7,32 has shown that including more spatial detail may not result in 

more robust results, perhaps because model uncertainty in spatial patterns of response is larger. 
101 We use five-year means rather than decadal means32,33, in an attempt to better constrain the 
102 natural forcing response, which includes the short timescale response to volcanic eruptions. 
103 Internal variability was estimated from intra-ensemble anomalies (see Methods). 
104 

Regression coefficients of observed temperature changes against individual models’ simulated 
106 response to natural and anthropogenic forcings are shown in Figure 2a (see Methods). The 
107 anthropogenic response is detected using twelve of thirteen models (the uncertainty ranges on the 
108 ANT regression coefficients are above zero). The only exception is ACCESS-ESM1-5, which 
109 exhibits apparently unrealistic GMST evolution in its historical simulations, with almost no 

warming prior to 198019 (Figure 1a). By contrast, the natural forcing response is only detected 
111 using CanESM5, CESM2, CNRM-CM6-1, FGOALS-g3 and IPSL-CM6A-LR, and its regression 
112 coefficient is significantly less than unity using eight of the thirteen models, meaning that the 
113 simulated NAT response in these models is significantly stronger than observed. The natural 
114 forcing response appears to be somewhat less detectable and consistent based on these CMIP6 

simulations than using CMIP5 simulations8,32–34. Based on this regression the combined 
116 anthropogenic response is of realistic magnitude in ACCESS-ESM1-5, BCC-CSM2-MR, 
117 CESM2, CNRM-CM6-1, FGOALS-g3, GISS-E2-1-G, HadGEM3-GC31-LL, IPSL-CM6A-LR 
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and NorESM2-LM, significantly overestimated by CanESM521, which is also apparent from 
Figure 1a, and significantly underestimated by GFDL-ESM4, MIROC6 and MRI-ESM2-0. Note 
that it is to be expected that significant differences between the simulated climate response in 
models and observations can increasingly be identified as the observational record lengthens.  

The realism of the scaled simulated responses to each set of forcings can be assessed by 
comparing residual observed variability, after subtraction of these responses, with simulated 
internal variability. The results of a residual consistency test32,35 (Figure 2c) indicate that 
residuals are inconsistent with pooled simulated internal variability for ACCESS-ESM1-5, 
CanESM5, CESM2, GISS-E2-1-G, HadGEM3-GC31-LL and NorESM2-LM, for which the 
residual is significantly larger than expected at the 5% level, and similar results were obtained 
for a three-way regression (Figure 2d). This could be related to the cool temperatures through the 
mid-20th century simulated in the historical simulations of these models, with little warming 
apparent before 1975 (Figure 1a). 

In order to quantify the separate contributions of greenhouse gases and aerosols to observed 
changes, we show the results of a three-way regression onto the simulated responses to aerosols 
(AER, inferred from hist-aer), natural forcings (NAT, inferred from hist-nat), and greenhouse 
gases (GHG, inferred from historical-ssp245 minus hist-aer minus hist-nat, and including the 
response to well-mixed greenhouse gases, ozone and land-use change) in Figure 2b. The GHG 
response is detected using eleven of thirteen models, and the AER and NAT responses are 
detected using six. Our results suggest that ACCESS-ESM1-5, CanESM5, CESM2 and 
HadGEM3-GC31-LL significantly overestimate the responses to both greenhouse gases and 
aerosols, and that FGOALS-g3 underestimates them. NorESM2-LM appears to overestimate the 
response to aerosols, while MIROC6 and MRI-ESM2-0 underestimate the response to 
greenhouse gases. Regression coefficients from the three-way regression are poorly constrained 
in the case of GFDL-ESM4, which may be because its hist-aer ensemble has only a single 
ensemble member (Supplementary Table 2). Attributable temperature changes in 2010–2019 
from the two-way regression (Figure 2e) are generally consistent between the models, albeit with 
differences in the width of the uncertainty ranges, while individual model attributable 
temperature changes based on the three-way regression are in some cases inconsistent between 
models, which may reflect the effects of model uncertainty, which is not accounted here. Results 
obtained based on a three-way regression of the observations onto the simulated response to 
aerosols and other anthropogenic forcings (inferred from historical-ssp245 minus hist-GHG 
minus hist-nat, and including the response to aerosols, ozone and land-use change), natural 
forcings (from hist-nat), and well-mixed greenhouse gases (from hist-GHG) are less well-
constrained and show larger differences between models (Extended Data Figure 2), which may 
be partly because in this case the weaker aerosol response is estimated from the noisy residual, 
rather than the stronger greenhouse-gas response34. 
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In addition to results based on individual model response patterns, we also present results based 
on an average of responses across models, using all available ensemble members, but giving 
equal weight to each model7,33,34. Since the ROF method does not explicitly account for model 
uncertainty, and previous work has shown that using the multi-model mean could lead to 
overconfident results7, we first evaluate the multi-model mean approach in an imperfect model 
framework7,32,36. We withhold one of the thirteen models from the multi-model average, treat one 
of its historical-ssp245 simulations as pseudo-observations, and use the remaining twelve models 
in a multi-model analysis to calculate the best estimate and 5–95% confidence interval on its 
GHG, AER and NAT response in globally-complete GSAT (Figure 3, y-axis), which can be 
compared with the true ensemble-mean simulated value in that model (Figure 3, x-axis). The 
process is repeated for all 105 historical-ssp245 simulations. The percentages of reconstructed 
attributable changes consistent with the true simulated changes at the 10% level were 91%, 90% 
and 79% for GHG, AER, and NAT respectively. These percentages are close to the expected 
90% coverage ratio, particularly for GHG and AER. These results suggest that under the 
paradigm that these models are statistically indistinguishable from the truth37, the confidence 
intervals for aerosol and greenhouse gas attributable changes are robust.   

Using a multi-model average of all thirteen models, we find a detectable response to 
anthropogenic forcing in a two-way regression, and a detectable response to GHG and AER in a 
three-way regression, with regression coefficients consistent with one and more closely 
constrained than based on most, though not all, individual model analyses (Figures 2a and b). 
However, the NAT response was not detected. We find 0.9–1.3 °C (5–95% range) of warming in 
GSAT in 2010–2019 relative to 1850–1900 attributable to anthropogenic forcings, consistent 
with our estimate of observed warming of 1.10 °C, with GHG, AER and NAT forcings 
contributing changes of 1.2 – 1.9 °C, -0.7 – -0.1 °C and -0.01 – 0.06 °C respectively (Table 1). 
We find consistent residuals (Figures 2c and d), and anthropogenic-attributable warming ranges 
which differ by no more than 0.12 °C when using either GISTEMP or NOAAGlobalTemp in 
place of HadCRUT4 (Extended Data Figures 3 and 4, Table 1), or when using hemispheric 
means in place of global means (Extended Data Figure 5, Table 1). Considered together with the 
imperfect model test, these results give us confidence that our multi-model estimates of 
attributable changes in temperature are robust. As expected, multi-model estimates of GHG-
attributable warming and AER-attributable cooling are both somewhat smaller in magnitude 
when the effects of ozone are grouped with those of aerosols rather than GHGs (Extended Data 
Figure 2, Table 1). Our estimated 5–95% range of anthropogenic-attributable warming in GMST 
in 2010–2019 of 0.8 – 1.1 °C (Table 1) is consistent with the assessed likely range of 
anthropogenic warming of 0.8 – 1.2 °C in 2017 in SR1.514. This was based in part on a study 
which regressed HadCRUT4 GMST onto the simulated anthropogenic response from an 
impulse-response function model and obtained a 5–95% range of anthropogenic warming in 
2017 of 0.87–1.22 °C38. 

https://0.87�1.22
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198 Discussion 

199 As well as informing us about the contributions of different forcings to observed climate change, 
information from detection and attribution analyses can also tell us about the degree of realism of 
climate models and whether they overpredict or underpredict the responses to particular forcings. 
Such information is useful for interpreting projections from these models. Much attention has 
recently focused on the high climate sensitivity of some CMIP6 models39, and while we find that 
some of the models considered here do overestimate the response to greenhouse gases, on 
average the greenhouse gas response of these models matches the observations closely (the best 
estimate of the multi-model greenhouse gas regression coefficient in Figure 2b is close to one). 
By contrast, while the multi-model mean aerosol response is not inconsistent with the 
observations, the best estimate is that these models overestimate the response to aerosols by 
about 30% (the best estimate of the multi-model aerosol regression coefficient in Figure 2b is 
0.76). Given that future climate change is expected to be dominated by greenhouse gas changes, 
overall these results increase confidence in the ensemble mean magnitude of projected warming 
derived from these models. At the same time, the significant differences in response between 
some models and observations identified here, are consistent with the finding that observational 
constraints may be used to narrow the uncertainty range of projected warming based on CMIP6 
models40,41. 

Estimates of greenhouse gas and aerosol-attributable warming relative to preindustrial have not 
been previously published, but it is notable that our estimated contributions from these forcings 
of 1.2 – 1.9 °C and -0.7 – -0.1 °C are substantially larger for example than their assessed likely 
contributions to 1951–2010 trends in GMST of 0.5 – 1.4 °C and -0.5 – 0.1 °C respectively in 
AR58. This is probably due to our consideration of a longer period starting in 1850 and ending in 
2019, our use of GSAT rather than GMST, and our grouping of ozone with well-mixed 
greenhouse gases, rather than with aerosols. Nonetheless, we suggest that our results give a fairer 
picture of the very substantial, albeit partly compensating, influences of human-induced changes 
in greenhouse gases and aerosols to date. While the Paris Agreement4 is not explicit on whether 
the ‘increase in the global average temperature’ it describes is in GMST or GSAT, nor what the 
appropriate definition of preindustrial is, nor whether it is referring to anthropogenic warming or 
total warming, our analysis suggests anthropogenic warming may already be close to the 1.5 °C 
threshold. 
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232 

233 Methods 

234 We downloaded monthly mean near-surface air temperature (tas), sea surface temperature (tos), 
and sea ice concentration (siconc) from all the CMIP6 models for which the necessary CMIP6 

236 historical12, ScenarioMIP13 SSP2-4.5 and DAMIP18 hist-nat and hist-aer simulations were 
237 available (Supplementary Table 2).  SSP2-4.5 forcings were used in the DAMIP simulations for 
238 the 2015–2020 period18, so we merged CMIP6 historical simulations with SSP2-4.5 simulations 
239 for the period 2015–2019 for consistency. We used ESMValTool42 to preprocess the model 

output, and used Cowtan5 code to calculate masked and blended temperature from the model 
241 output using HadCRUT411 observational masking, and using anomalies and variable sea ice 
242 concentration5. We calculated 5-year mean global means of these data using area-weighting, for 
243 the period January 1850 to December 2019 to give a vector with 34 elements, and then 
244 subtracted the long-term mean to give anomalies. Due to limited availability of the land-sea 

mask from some models, the land-sea mask from CNRM-CM6-1, regridded onto a 5°×5° grid, 
246 was used for all models. 
247 

248 Observed GMST was calculated from HadCRUT411 monthly anomalies by area weighting, 
249 taking 5-year means, and subtracting the long-term mean to give anomalies. The median dataset 

was used for the main analysis results, and each of the 100 members of the ensemble dataset 
251 were treated in the same way and used to derive uncertainties in the multi-model attributable 
252 warming estimates (see also Extended Data Figure 6). The uncertainty range in inferred observed 
253 GSAT warming was obtained by randomly sampling a HadCRUT4 ensemble member, and the 
254 ratio of GSAT to GMST warming from an individual historical-ssp245 simulation, taking the 

product, and repeating 10000 times, with equal weight given to each CMIP6 model. The 
256 NOAAGlobalTemp17 (v5) dataset starts in 1880, but our analysis required data from 1850, so we 
257 concatenated HadCRUT4 anomalies relative to the NOAAGlobalTemp 1971–2000 base period 
258 over the 1850–1879 period with NOAAGlobalTemp, and then calculated global mean 5-yr mean 
259 anomalies as for HadCRUT4. The GISTEMP16 (v4) data are available on a 2°×2° grid, so we 

first interpolated onto the HadCRUT4 5°×5° grid. We then concatenated with HadCRUT4 
261 anomalies relative to the GISTEMP base period of 1951–1980 over the period 1850–1879, since 
262 GISTEMP starts in 1880. We then calculated global-mean 5-yr anomalies as for the other 
263 datasets. Five-year mean hemispheric means (Extended Data Figure 5) were calculated in the 
264 same way from gridded anomalies in masked and blended model output and observations. 

266 An optimal detection analysis was performed using the Regularised Optimal Fingerprinting 
267 algorithm32,35, implemented in Python43. This technique is a variant of linear regression, in which 
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268 the time-series of observed GMST changes Y is regressed onto the simulated responses to sets of 
269 forcings Xi, i.e. ܻ =෍ߚ௜ ௜ܺ + ߳,  

where ϵ denotes internal variability. A total least squares algorithm was used to account for noise 
271 in the regressors Xi, i.e. the fact that simulated responses to forcings are affected by internal 
272 variability (due to small ensemble sizes)35. Key detection and attribution diagnoses were derived 
273 from the inferred scaling factors βi. The response to forcing i is detected if βi is significantly non-
274 zero. Attribution further requires βi being consistent with unity (i.e., consistency between the 

observed and simulated responses). Optimal estimation within this statistical model requires an 
276 estimate of the covariance matrix of ϵ, Σ, which is estimated from a sample of internal variability 
277 realisations simulated by the available climate models. Realisations of internal variability were 
278 calculated from all available ensembles of size greater than one (Supplementary Table 2), by 

279 subtracting the ensemble mean, and then inflating anomalies by ට ܰ where N is the ensemble ܰ−1 

size, to account for the subtraction of the ensemble mean. Note that some of the models included 
281 here, particularly BCC-CSM2-MR, CNRM-CM6-1 and IPSL-CM6A-LR, have very high 
282 internal variability44, which will tend to inflate uncertainties compared to similar studies 
283 performed using CMIP58. For an ensemble of size N, N-1 anomaly segments were calculated, 
284 since the Nth sample calculated in this way is a linear combination of the other N-1 segments. 

This gave rise to 478 realisations of internal variability, which were used in all attribution 
286 analyses shown in this study. After pooling realisations across simulation type and model, half of 
287 these realisations (239 realisations, which is much more than the size of our detection vector), 
288 sampled alternately, were used to estimate the covariance matrix of internal variability for 
289 optimization, and the remaining half were used for the residual consistency test. All analyses 

were performed using a multi-model mean estimate of internal variability.  The main analyses 
291 presented used historical-ssp245 and hist-nat simulations for the two-way regressions, and 
292 historical-ssp245, hist-nat, and hist-aer simulations18 for the three way regressions. Regression 
293 coefficients corresponding to natural forcings, greenhouse gases and aerosols were then 
294 calculated from these regression coefficients2, and are shown in Figures 2a and b. 

296 Estimates of attributable warming in GSAT in 2010–2019 were calculated by multiplying these 
297 regression coefficients by the corresponding ensemble mean globally-complete GSAT response 
298 in 2010–2019 to each of the forcings concerned, with the anthropogenic response inferred by 
299 subtracting hist-nat from historical-ssp245 and the GHG response inferred by subtracting hist-aer 

and hist-nat from historical-ssp245. Since uncertainty in the attributable warming arises both 
301 from uncertainties in the regression coefficients and uncertainties in the ensemble mean 
302 simulated response to each forcing due to internal variability, we added uncertainty components 
303 from the regression coefficient and ensemble mean simulated warming in quadrature, treating 
304 positive and negative departures from the best estimate separately, to allow for skewness in the 

distribution of the regression coefficients. This approach is valid under the assumption that the 
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uncertainties in the regression coefficients and the uncertainty in the simulated warming in 
2010–2019 are Gaussian, uncorrelated and small compared to their respective means, though as 
noted we do make a first order correction for non-Gaussian regression coefficient distributions 
by treating positive and negative departures separately.  

Since the ratio of warming in GSAT to HadCRUT4-masked GMST varies between models 
(Extended Data Figure 7), in the multi-model analysis we added an uncertainty contribution 
based on the spread in this ratio across models in place of the contribution from internal 
variability in the ensemble mean response to each forcing in an individual model. Further in the 
multi-model analyses based on HadCRUT4, we added an additional uncertainty component to 
account for observational uncertainty, based on the spread in regression coefficients across the 
100-member HadCRUT4 ensemble (Extended Data Figure 6). These contributions were added in 
quadrature to the uncertainties arising from the uncertainty in the regression coefficients, in the 
same way as described for individual models in the previous paragraph. Attributable warming 
ranges calculated in this way were very similar to those calculated based only on the uncertainty 
in the regression coefficient in the multi-model analysis and for models with large ensembles, 
and exhibited somewhat larger ranges for most models with smaller ensemble sizes (Extended 
Data Figure 8), and substantially larger ranges for BCC-CSM2-MR due to its small ensemble 
sizes (Supplementary Table 2) and large internal variability44. For the multi-model analyses, 
response patterns for each forcing were calculated by averaging individual response patterns over 
the thirteen models used (Supplementary Table 2). Individual response patterns were averaged 
with equal weight given to each model, and the corresponding effective ensemble size was 
calculated and used in the analysis. Attributable changes in GMST (Table 1) were calculated in 
the same way as for globally-complete GSAT, but used HadCRUT4-masked GMST from the 
models in place of globally-complete GSAT. 

The imperfect model test was carried out by withholding one model at a time from the multi-
model analysis, and using each of its historical-ssp245 simulations in turn as pseudo-
observations. Masked and blended temperatures (using the HadCRUT4 observational mask) 
from this simulation were then treated as observations, and a multi-model analysis using the 
remaining twelve models was used to infer that model’s ensemble mean 2010–2019 warming in 
response to natural forcings, greenhouse gases and aerosols, and associated 5–95% confidence 
ranges, using the same approach as that used to derive the multi-model results presented in 
Figure 2. Uncertainties in the attributable warming calculation were calculated as in the main 
analysis, and uncertainties in the ensemble mean response to each forcing (shown on the x-axis 
of Figure 3), were additionally accounted for when assessing consistency.  
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364 CESM2: 10.22033/ESGF/CMIP6.2185, 10.22033/ESGF/CMIP6.2187, 

10.22033/ESGF/CMIP6.2201; CNRM-CM6-1: 10.22033/ESGF/CMIP6.1375, 
366 10.22033/ESGF/CMIP6.1376, 10.22033/ESGF/CMIP6.1384; FGOALS-g3: 
367 10.22033/ESGF/CMIP6.1783, 10.22033/ESGF/CMIP6.2048, 10.22033/ESGF/CMIP6.2056; 
368 GFDL-ESM4: 10.22033/ESGF/CMIP6.1407, 10.22033/ESGF/CMIP6.1408, 
369 10.22033/ESGF/CMIP6.1414; GISS-E2-1-G: 10.22033/ESGF/CMIP6.1400, 

10.22033/ESGF/CMIP6.2062, 10.22033/ESGF/CMIP6.2074; HadGEM3-GC31-LL: 
371 10.22033/ESGF/CMIP6.419, 10.22033/ESGF/CMIP6.471, 10.22033/ESGF/CMIP6.10845; 
372 IPSL-CM6A-LR: 10.22033/ESGF/CMIP6.1534, 10.22033/ESGF/CMIP6.13801, 
373 10.22033/ESGF/CMIP6.1532; MIROC6: 10.22033/ESGF/CMIP6.881, 
374 10.22033/ESGF/CMIP6.894, 10.22033/ESGF/CMIP6.898; MRI-ESM2-0: 

10.22033/ESGF/CMIP6.621, 10.22033/ESGF/CMIP6.634, 10.22033/ESGF/CMIP6.638; 
376 NorESM2-LM: 10.22033/ESGF/CMIP6.502, 10.22033/ESGF/CMIP6.580, 
377 10.22033/ESGF/CMIP6.604. HadCRUT4 data (version 4.6.0.0 downloaded March 24th 2020) 
378 are available here (https://www.metoffice.gov.uk/hadobs/hadcrut4/), GISTEMP data (version 4 

https://www.metoffice.gov.uk/hadobs/hadcrut4
https://node.llnl.gov/projects/cmip6
https://esgf
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390 

395 

400 

405 

410 

415 

420 

379 with 1200-km smoothing, downloaded April  13th 2020) are available here 
(https://data.giss.nasa.gov/gistemp/), and NOAAGlobalTemp data (version 5.0.0 downloaded 

381 April 13th 2020) are available here (https://www.ncdc.noaa.gov/noaa-merged-land-ocean-global-
382 surface-temperature-analysis-noaaglobaltemp-v5). 

383 Code availability 

384 The analysis code used in this study is based on ESMValTool and is available here 
(https://github.com/ESMValGroup/ESMValTool/tree/gillett20). 

386 

387 Additional information 

388 Correspondence and requests for materials should be addressed to N.P.G. 
389 
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500 

Two-way regression Three-way regression 

ANT NAT GHG AER NAT 

Main analysis 0.92 – 1.30 -0.02 – 0.05 1.16 – 1.95 -0.73 – -0.14 -0.01 – 0.06 

hist-GHG 1.06 – 1.94 -0.71 – -0.03 -0.01 – 0.07 

Hemispheric 0.94 – 1.29 -0.02 – 0.04 1.36 – 2.04 -0.84 – -0.29 -0.02 – 0.05 

GISTEMP 1.04 – 1.42 -0.05 – 0.02 1.34 – 2.12 -0.78 – -0.19 -0.04 – 0.03 

NOAA 1.02 – 1.39 -0.03 – 0.05 1.37 – 2.15 -0.85 – -0.25 -0.05 – 0.05 

GMST 0.80 – 1.10 -0.02 – 0.04 1.04 – 1.69 -0.65 – -0.14 -0.01 – 0.04 

501 

502 Table 1 Multi-model estimates of attributable temperature change between 1850–1900 and 
503 2010–2019 in °C. The table shows 5–95% confidence ranges in attributable warming from the 
504 main multi-model analysis (first row), from an equivalent analysis in which the GHG signal is 
505 derived from hist-GHG, and the AER signal is derived from historical-ssp245 minus hist-GHG 
506 minus hist-NAT (in this case ozone and land-use change are grouped with AER instead of GHG) 
507 (second row), from an analysis identical to the main analysis except using 5-yr mean Northern 
508 and Southern Hemispheric mean temperature instead of GMST (third row), from analyses 
509 identical to the main analysis, except using GISTEMP (fourth row), and NOAAGlobalTemp 
510 (fifth row) in place of HadCRUT4, and from an analysis identical to the main analysis, except for 
511 HadCRUT4-masked GMST instead of globally-complete GSAT (sixth row).  
512 
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Figure 1: Comparison of 1850–2019 global mean temperature evolution in observations 
and CMIP6 simulations. Coloured lines in the top panel show HadCRUT4-masked blended 
GMST5 anomalies relative to the 1850–1900 base period in one historical-ssp245 simulation 
from each model. The thick brown line shows the multi-model mean, using all ensemble 
members, but with equal weights given to each model. The thick red line shows the 
corresponding multi-model mean of globally-complete GSAT. The thick black line shows 
HadCRUT411. The lower panel compares HadCRUT4 GMST with simulated GMST from 
CMIP6 historical-ssp245 simulations with anthropogenic and natural forcings, natural forcing 
simulations, well-mixed greenhouse gas only simulations, and aerosol only simulations. The 
multi-model mean and 5–95% ensemble range are shown, both calculated with equal weight 
given to each model. 

Figure 2: Results of a regression analysis applied to CMIP6 models. The left column shows 
the results of a two-way regression of observed 5-year mean GMST onto the simulated response 
to anthropogenic (ANT) and natural (NAT) forcings from each model individually, and the right 
column shows the results of a corresponding three-way regression of observations onto the 
simulated response to aerosols (AER), natural forcings (NAT) and well-mixed greenhouse gases, 
ozone and land-use change (GHG). The top row shows regression coefficients and their 5–95% 
confidence ranges. Regression coefficients inconsistent with zero indicate a detectable response 
to the corresponding forcing, and regression coefficients consistent with one indicate a consistent 
magnitude of response in model and observations. The middle row shows the p-value resulting 
from a residual consistency test35. The bottom row shows the 2010–2019 change in global mean 
near-surface air temperature relative to 1850–1900 attributable to each forcing (5–95% 
confidence ranges). The horizontal black line indicates an estimate of the observed change in 
GSAT based on HadCRUT4.  

Figure 3: Imperfect model test of multi-model attributable warming calculation. The x-axis 
shows the simulated ensemble mean 2010–2019 temperature change relative to 1850–1900 in 
response to aerosols only (hist-aer simulations) (blue), natural forcings only (hist-nat 
simulations) (green) and greenhouse gases, ozone and land-use change (historical-ssp245 minus 
hist-nat and hist-aer) (grey) in each of the thirteen models used. Each historical simulation from 
the corresponding model was in turn treated as pseudo-observations, and the remaining twelve 
models were together used to provide estimates of response patterns to aerosols, natural, and 
greenhouse gas forcing in an optimal regression. The estimated attributable warming is shown on 
the y-axis. Crosses show best estimates, and vertical bars show 90% confidence ranges. For 
models with more than one historical-ssp245 simulation, confidence bars are offset along the x-
axis, to make them visible.  
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Extended Data Figure 1: Global mean surface temperature (GMST) anomalies in all 
DAMIP historical simulations. The multi-model mean and 5–95% ensemble ranges, based on 
all available simulations with equal weight given to each model, are shown. HadCRUT4 GMST 
is shown in black on the top graph. 

Extended Data Figure 2: Results of a regression in which observed changes are 
decomposed into the response to natural forcings, well-mixed greenhouse gases, and other 
anthropogenic forcings. As Figure 2, except that the right panels show the results of a three-
way regression of observations onto the simulated response to natural forcings (NAT), well-
mixed greenhouse gases only (GHG), and other anthropogenic forcings (OTH), consisting of 
aerosols, ozone and land-use change. In this figure ozone and land-use change are grouped with 
aerosols, instead of with well-mixed greenhouse gases, as in Figure 2. 

Extended Data Figure 3: Regression results based on GISTEMP. As Figure 2, except using 
GISTEMP in place of HadCRUT4. 

Extended Data Figure 4: Regression results based on NOAAGlobalTemp. As Figure 2, 
except using NOAAGlobalTemp in place of HadCRUT4. 

Extended Data Figure 5: Regression results based on hemispheric means. As Figure 2, 
except using 5-yr mean hemispheric means in place of 5-yr mean GMST in the regressions. 

Extended Data Figure 6: Regression coefficients derived using each of the 100 ensemble 
members of HadCRUT411 . Results are shown for two-way (a) and three-way (b) multi-model 
regression analyses, as shown in Figure 2a and b, except using each of the 100 members of the 
HadCRUT4 ensemble dataset in turn. 

Extended Data Figure 7: The ratio of 2010–2019 warming relative to 1850–1900 in GSAT 
to HadCRUT4-masked GMST and globally-complete GMST. The ratio of changes in GSAT 
to HadCRUT4-masked GMST is shown in (a), and the ratio of changes in GSAT to globally-
complete GMST is shown in (b) for each individual historical-ssp245 simulation of each model. 

Extended Data Figure 8: Comparison of uncertainty calculation approaches. As Figures 2e 
and f, except that in each case uncertainties in attributable temperature change are calculated in 
two ways. Bars show confidence intervals calculated, as in the main analysis, accounting for 
uncertainty in the ensemble mean simulated 2010–2019 GSAT changes in the case of the 
individual model analyses, and accounting for uncertainties in the ratio of GSAT to GMST and 
observational uncertainty, in the case of the multi-model analysis. Horizontal ticks show 
confidence ranges neglecting these sources of uncertainty. The latter calculation corresponds to 



 
591 multiplying the 5–95% confidence range on the regression coefficient by the corresponding 
592 ensemble mean simulated 2010–2019 GSAT change. 
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