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In this paper we give an overview of state-of-the-art Operations
Research models and techniques used in passenger railway trans-
portation. For each planning phase (strategic, tactical and opera-
tional), we describe the planning problems arising there and discuss
some models and algorithms to solve them. We do not only consider
classical, well-known topics such as timetabling, rolling stock
scheduling and crew scheduling, but we also discuss some recently
developed topics such as shunting and reliability of timetables.
Finally, we focus on several practical aspects for each of these
problems at the largest Dutch railway operator, NS Reizigers.
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1 Introduction

Previous surveys (ASSAD, 1980; CORDEAU et al., 1998) on Operations Research (OR)

methods in railway transportation deal with the whole spectrum from infrastructure
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related issues to passenger and freight transportation. In this paper, however, we focus

only on the models and techniques used in railway transportation by passenger

operators. This is justified by the fact that passenger transportation is completely

different from freight transportation and that, due to the legislation of the European

Union, former national railway companies have been split up into different smaller

companies. For instance, in the Netherlands, the state-owned organization ProRail is

responsible for the infrastructure (see Figure 1 for a map of the railway network in the

Netherlands), while there are several passenger and freight operators. Therefore, we do

not consider decisions related to the construction andmaintenanceof infrastructure. In

the Netherlands, by far the largest passenger railway operator is NS Reizigers (NSR),

which is part of the company NS (Netherlands Railways). The solid lines in Figure 1
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Fig. 1. The railway network of the Netherlands.
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are operated by NS. Within NS, NSR is responsible for operating the domestic lines

(situation June 2005). On the dotted lines, other operators provide passenger services.

Another justification for our focus is that railway operators have been paying much

more attention to the optimization of their processes in the last decades, leading to an

increase in research in this field.

The different planning problems of a passenger railway operator can be classified

in several ways. One way is to look at the planning horizon of the different

problems, as common, strategic, tactical and operational planning phases exist.

Another way of classification, is to look at the physical location of the planning

problems. Some problems only have a local impact, for instance, which train

should leave from which platform at a certain station, while others have a global

impact on the whole railway network. To structure this paper, we have chosen to

use both classifications, where we classify the different planning problems according

to the way they are organized at NSR. As opposed to the standard classification,

the operational level contains two different horizons: the first every two months and

the second daily. Therefore, we use the following convention: by operational we

mean the basic scheduling problems that occur every two months, while by short

term we mean the detailed modifications for the individual days. In Table 1, the

different planning problems at NSR are characterized by planning horizon and

location (either central or local).

Since this survey cannot deal with all these problems in every detail, we choose to

discuss some of them only briefly, while others are discussed more intensively.

Although we realize that this choice is rather subjective, we believe that next to the

classical, well-studied problems, some very promising ones get the most attention.

The paper is organized as follows. In Sections 2–5, we discuss the global planning

problems occurring at the strategic, tactical, operational and short term planning

levels. The local planning problems are discussed in Section 6. Although the focus of

the paper is on planning problems, OR models can also be used during operations.

This topic is discussed briefly in Section 7. Finally, we conclude the paper in

Section 8 with some final remarks.

Table 1. Planning problems at NSR.

Level Time Central Local

Strategic 10–20 years rolling stock management

2–5 years crew planning

every few years line planning

Tactical 1/year timetabling (basic) platform assignment (basic)

1/year 8 o’clock rolling stock assignment

Operational 6/year timetabling (details) platform assignment (details)

6/year rolling stock circulation shunting

6/year crew scheduling crew rostering

Short-term daily timetabling platform assignment

daily rolling stock circulation shunting

daily crew scheduling
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2 Strategic planning

Rolling stock and crew are the main resources of a railway operator. At a strategic

level, decisions need to be taken about the amount of rolling stock units and the

number of crews that are necessary for the coming years. Notice that the planning

horizon for rolling stock is different (longer) than for crew. Another important issue

at the strategic level is the product that will be offered to the passengers. Therefore,

main decisions about the line structure need to be taken at this level. Although the

detailed decisions are normally taken at the tactical level, we decided to discuss this

topic in this section about strategic planning.

2.1 Rolling stock management

Long term rolling stock management is a subject that has not received much

attention in the scientific literature. So far, research has focused more on operational

issues such as rolling stock allocation and circulation. The only exception that we are

aware of is a study at the Danish State Railways (DSB) for the suburban train

network around Copenhagen (FOLKMANN et al., 2004). The authors calculate the

required amount of rolling stock for a certain timetable, where they take different

types of rolling stock into account. Their model is based on the rolling stock

allocation model, which will be discussed in Section 3.3.

Rolling stock has direct implications for the passenger service and involves large

amounts of money. Therefore the availability of appropriate quantitative models for

supporting long term rolling stock management is highly important in practice. The

latter was recognized recently within NSR and research on this topic has started.

Currently, most trains of NSR are operated by electrical train units. For each type

of train unit, several subtypes may exist that can be distinguished from each other by

their lengths. For example, the so-called ��Koploper�� train units, which are mainly

used for intercity trains, can have 3 or 4 carriages (see Figure 2). Train units of the

same type (but possibly of different subtypes) can be combined with each other to

form a longer train. A small number of trains of NSR is operated by locomotive

hauled carriages or by diesel powered train units.

Rolling stock management is a strategic planning process with an extremely long

time horizon. For example, ordering new rolling stock is a process that takes several

years. Moreover, the expected lifetime of rolling stock is typically several decades.

Therefore, rolling stock management requires the application of appropriate long

term demand forecasting models that can deal with the stochastic nature of the

demand for railway transportation. Long term decisions are usually supported by

quantitative methods based on scenario analysis.

Fig. 2. A ��Koploper’ train unit with three carriages.
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Relevant aspects related to the required rolling stock capacity include the total

demand for passenger railway transportation, the difference between peak demand

and off-peak demand, and the difference between first and second class demand. The

required capacity is also influenced by the service level (e.g. seating probability) to be

met. Another important issue to be taken into account is the maintenance strategy to

be applied. A more intensive maintenance strategy requires more rolling stock than a

less intensive strategy. On the other hand, it will probably lead to more reliable

rolling stock resulting in less disturbances during the operations.

Options that have to be decided upon are the following: selection of the types of

rolling stock to be used, acquisition of new rolling stock, temporary hiring or leasing

of rolling stock, upgrading of existing rolling stock, life time extension of existing

rolling stock, selling of redundant rolling stock, and destruction of rolling stock that

has completed its life cycle. For rolling stock to be acquired, the appropriate types,

and first and second class capacities per unit are relevant issues besides all kinds of

technical specifications. Typically, large units may be inflexible in the operations and

small units may be relatively expensive. For all decisions the appropriate timing has

to be determined. Moreover, the decisions have to be applied in such a way that,

given an appropriate service level for the passengers, the expected life cycle costs of

the rolling stock are minimal.

2.2 Crew management

Crew management deals with strategic issues related to the long term availability of

drivers and conductors. The main issue to be decided upon involves the capacities of

the crew depots, both for drivers and conductors. Per depot also the balance between

the capacity for drivers and the capacity for conductors is important, in particular if

drivers and conductors are assumed to operate in teams. Another decision that

should be taken from time to time, is the location of the crew depots: at some point

of time it may be useful to open or close one or more crew depots.

The objective of crew management is to establish a long term match between the

required and the available capacities of the crew depots. On the one hand, the

required capacities of the depots depend on the timetable and the rolling stock

circulation, but they also depend on the agreements between management and crews

about duties and rosters. The required capacities can also be influenced by shifting

certain amounts of work from one depot to another. However, the main measures to

be taken involve the available capacities of the depots. Another objective to be

pursued is to establish per depot a balanced composition of the workforce with

respect to age, skills, gender, etc.

Relevant measures to modify the available capacity of a crew depot include: hiring

additional crews, training crews so that they become more flexible, or moving crews

from one depot to another, possibly via secondment. Currently, the crews of NSR

have a work guarantee until the year 2010, meaning that firing them is not an option

until then.
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An important aspect to be taken into account in crew management is the relatively

long throughput time from the process of hiring additional crews until they are fully

operational. This time varies from about one year for conductors to about two years

for drivers. The length of the throughput time is mainly due to the required training

for new employees, both theoretical and on-the-job. Obviously, hiring new

employees has a long lasting effect on the capacities of the involved crew depots.

So far, not much literature has dealt with long term crew management for railway

operators. To the best of our knowledge, only FOLKMANN et al. (2004) describe some

ideas on how the required number of employees can be estimated based on future

timetable information.

2.3 Line planning

A line is a direct railway connection between two end stations that is operated with a

certain frequency and with a certain train type. The usual train types are intercity

trains that stop only at the large stations, interregional trains that also stop at a

number of medium-sized stations and regional trains that stop at nearly all underway

stations.

In determining the line system, one has to make a number of trade-offs. For

example, a railway system with many long lines may lead to a high number of direct

connections. These are important, since a required transfer from one train to another

is usually a threshold for a passenger to travel by train. On the other hand, long lines

may also lead to an instable railway system in which delays spread through the

system over relatively long distances in space and time. Moreover, a long line usually

has the disadvantage of an inefficient rolling stock circulation. The latter is due to the

fluctuations in the demand for railway transportation along the line.

Several models for solving variants of line planning problems have been described

by GOOSSENS et al. (2004) and GOOSSENS (2004). They focus mainly on efficiency

improvements for railway operators. BUSSIECK (1998) and SCHOLL (2001) aim at

maximizing the service for the passengers, e.g. by maximizing the number of direct

connections, or by minimizing the number of transfers.

One of the main complications in line planning problems is the fact that passenger

behavior has to be considered as well. Indeed, the demand for railway transportation

on a certain origin–destination pair is influenced by the quality of the railway

connection between these locations. The latter depends mainly on the line system.

Since passenger behavior is quite hard to model in mathematical optimization

models, the research results so far mainly have a theoretical character.

3 Tactical planning

Since the line system and the timetable determine the main product of a railway

company, the basic timetable structure is determined at the tactical level. Becausemost

European railway companies (includingNSR) have cyclic timetables, we consider only
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this type of timetable here (Section 3.1). However, not only the timetable itself is

important, but the reliability of such a timetable during the operations is even more

important. In other words, the robustness of a timetable is a very important topic. This

is discussed in Section 3.2. Finally, in Section 3.3, we discuss some aspects of rolling

stock scheduling that play a role at the tactical level.

3.1 Cyclic timetabling

In a cyclic timetable, each line has to be operated in a cyclic, or periodic, pattern: the

trains run, for example, every 30, 60 or 120 minutes. Usually the lines are known

beforehand, which is the case for NSR (see Section 2.3). The infrastructure is taken

as given as well. Moreover, the specific layout of the station is considered separately

(see Section 6.1). Usually a timetable has integer departure and arrival times.

Most cyclic timetabling models are based on the Periodic Event Scheduling

Problem (PESP), initially developed by SERAFINI and UKOVICH (1989). The PESP

model aims at cyclically scheduling a number of events e ¼ 1, . . . ,E. In the case of a

railway timetable, the events are the arrivals and departures of the trains at the

stations. The cycle time of the timetable is denoted by T, and the time at which event

e is to be scheduled is denoted by v(e). Then all constraints can be described in the

following form:

L � vðe0Þ � vðeÞ þ T � Qðe; e0Þ � U : ð1Þ

Here e end e0 are two events and the parameters L and U are appropriate lower

and upper bounds, preferably satisfying 0 � L � U � T. Furthermore, Q(e, e0) is an

auxiliary binary decision variable indicating whether event e0 is carried out before

event e in each cycle (Q(e, e0) ¼ 1) or not (Q(e, e0) ¼ 0). The latter variable is needed

to deal with the cyclicity of the timetable, e.g. both from v(e) ¼ 12 to v(e0) ¼ 32 and

from v(e) ¼ 52 to v(e0) ¼ 12 are time intervals of 20 minutes (assuming a cycle time

T of 60 minutes).

For example, if e1 denotes the departure of a train from station s, e2 denotes the

arrival of the same train at the subsequent station s0, and the running time between

stations s and s0 equals r, then the following constraint has to be satisfied (running

time constraint):

vðe2Þ � vðe1Þ þ T � Qðe1; e2Þ ¼ r:

Similarly, if e3 and e4 are the arrival and the subsequent departure of a train at a

certain station s, then the following constraint has to be satisfied to guarantee a dwell

time of at least d at station s (dwell time constraint):

d � vðe4Þ � vðe3Þ þ T � Qðe3; e4Þ � T � d:

Next, if a passenger connection between two trains has to be scheduled at station

s, then this can be accomplished as follows. Let e5 be the arrival of the first train in s,

let e6 be the departure of the second train from s, and let c and C denote the lower
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and upper bounds on the connection time. Then the following constraint needs to be

satisfied (connection constraint):

c � vðe6Þ � vðe5Þ þ T � Qðe5; e6Þ � C:

Finally, if two trains are operated one after another on the same track between

stations s and s0, then a certain headway time should be taken into account between

the two trains. If r and r0 are the running times of the trains, where r > r0, and e7 and

e8 denote the departures of the two trains from station s, then the following

constraint guarantees a headway of at least h plus the positive part of the running

time difference between the trains (safety constraint):

r � r0 þ h � vðe8Þ � vðe7Þ þ T � Qðe7; e8Þ � T � h:

The running time difference has to be included here in order to guarantee that the

faster train does not overtake the slower train somewhere underway between stations

s and s0.

Most other aspects that are relevant in railway practice can be modelled by

constraints of the form (1) as well.

With adequate algorithms, mainly based on constraint propagation, such as

described by SCHRIJVER and STEENBEEK (1994), this kind of models can be

solved to provide a feasible cyclic timetable, if one exists. SCHRIJVER and

STEENBEEK (1994) also describe local optimization techniques to improve a

feasible solution.

The PESP formulation is used in order to minimize the passenger waiting times by,

for example, NACHTIGALL and VOGET (1996), who use genetic algorithms to solve

the problem. ODIJK (1996) uses the PESP on a strategic level to obtain insight into

infrastructure expansions at and around stations.

KROON and PEETERS (2003) describe a PESP formulation that includes variable

trip times. This might result in additional freedom which can be used for extra trains

or more slack for a better punctuality.

Variations on the PESP are used as well. WEIGAND (1983), NACHTIGALL (1999),

LINDNER (2000), and PEETERS (2003) transform the PESP into a Cycle Periodicity

Formulation. They also show that in this formulation the PESP is somewhat easier

to solve. DOMSCHKE (1989) uses a formulation based on the Quadratic Assignment

Problem.

It should be noted that many railway networks are shared by several operators

(see Section 1). Furthermore, in some countries, the infrastructure is not owned by

the operator, but by an independent organization. This means that the timetable has

to be acceptable to multiple parties.

3.2 Reliability of railway timetables

Reliability is the ability of a system or component to perform its required functions

under stated conditions for a specified period of time. Applied to the railway setting,
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it is the ability of the railway companies to bring their passengers (or goods) from

their origins to their destinations according to the timetable.

3.2.1 Measuring reliability of real-world operations

For an individual passenger the reliability is a measure of his or her own experience

of delays. For the evaluation of railway systems, more aggregate and objective

measures are necessary. Besides the delays of individual trains, this also includes the

number of cancelled trains and the number of realized connections between trains.

Additionally, knowledge of the number of passengers on a train and the number of

passengers for certain connections are necessary to determine the average arrival

delay. Furthermore, not only averages, but also the deviations in delays are

important. And last but not least, the perception of passengers is a subjective issue

which needs additional attention.

The above paragraph outlines the complexity of the problems arising from

measuring reliability. Therefore, simplifications have to be made for an objective

evaluation of reliability. A commonly used reliability measure is arrival punctuality.

Punctuality is the percentage of trains that arrives less than x minutes late.

International comparisons are usually based on the 5-minute arrival punctuality.

However, many countries use smaller or larger margins. For example, a 3-minute

margin is used in the Netherlands.

A second important reliability measure is the average arrival delay of the trains.

When passenger counts are known, both punctuality and average delay can be

weighted for these passenger counts, but usually a plain average is taken.

However, an ideal – but almost impossible to compute – reliability measure is the

average delay over the complete journey (including transfers) of each individual

passenger.

3.2.2 Analyzing realization data

The analysis of delays can provide important insights into the structure of, and

dependencies in the timetable. The bottlenecks can be located, and general

disturbance and delay characteristics can be deduced.

Several tools have been developed to facilitate the analysis of realization data in so-

called TNV-logfiles. For example, in the Netherlands, TNV-prepare and TNV-replay

(GOVERDE and HANSEN, 2000) have been developed to deduce arrival and departure

times, and to present them in an orderly manner. Although this looks straightforward,

it is not the case at all. Train arrival and departure times have to be deduced from a

registration system that logs the passing times of trains several hundredmeters outside

the stations. Furthermore, the TNV-logfiles have to be linked to several infrastructure

databases. GOVERDE et al. (2001) and YUAN and HANSEN (2004) describe the use of

these tools for delay analysis at and around selected large stations in the Netherlands.

The data analysis tool Open Timetable (ULLIUS, 2004) is able to present selected

realization data in time–distance diagrams.
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3.2.3 Forecasting the reliability of a given timetable

Max-plus algebra. One of the analytical approaches for timetable evaluation is

max-plus algebra. Some key characteristics, like the minimal cycle time, are easily

calculated with max-plus algebra (SUBIONO, 2000; GOVERDE and SOTO Y KOEL-

EMEIJER, 2000). This minimal cycle time indicates the time needed to complete the

longest cycle of processes in the periodic timetable. The disadvantage of max-plus

algebra is that it is a static approach. Moreover, no literature on the use of

stochastic disturbances in these models can be found. PETER (developed by

ORTEC and TU Delft) is a performance evaluator for timetables based on max-

plus algebra (SOTO Y KOELEMEIJER et al., 2000). HANSEN (2000) uses both

queuing theory and max-plus algebra to study the capacity and stability of the

railway system around stations.

Stochastic analysis. HUISMAN et al. (1998) and HUISMAN and BOUCHERIE (2001)

propose a stochastic analytical model based on a double track line. HIGGINS et al.

(1995) and HIGGINS and KOZAN (1998) developed an analytical model to quantify

the expected delay for individual passenger trains in an urban rail network. They use

simulation as a tool to verify their model.

CAREY and KWIECIŃSKI (1995) mainly focus on recovery times in their stochastic

analysis. CAREY (1999) also uses heuristic measures for timetable reliability.

Furthermore, he includes the behavioural response of drivers in some models

(CAREY, 1998).

These models give a good insight into delay propagation on one line or a simple

network, but become too complicated to handle when dealing with large scale real-

world networks.

Simulation. Other researchers use simulation as a tool to analyze the influence of

delays on the train circulation given some traffic scenario. SIMON is a Swedish

software tool using simulation of an entire railway network (WAHLBORG, 1996;

BERGMARK, 1996). Amongst others, VituOS (KÖNIG, 2001) and SABINE

(FISCHER et al., 1995) are used in Germany, and Open Track (HÜRLIMANN,

2001) is a simulation program developed at ETH Zürich. UX-SIMU is used for

detailed simulation in Denmark (KAAS, 2000). MIDDELKOOP and BOUWMAN

(2000) describe the use of SIMONE for the evaluation of traffic scenarios in

the Netherlands. SIMONE is capable of simulating the entire Dutch railway

network.

One of the advantages of simulation is that, in principle, one can add as many

details to the model as desired, and one can also extend the network to considerable

dimensions. Careful choices have to be made, however, because every extension of

the model leads to longer running times. Especially when many runs have to be

executed by the simulation software, the simulation time can be the bottleneck.

Moreover, the results are more difficult to interpret.
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3.2.4 Optimizing a timetable with respect to reliability

A commonly used method of timetable improvement is trial-and-error. In short, this

is an iterative process of timetable evaluation, improving the timetable with respect

to the bottlenecks, evaluating again, and so on. Most literature described in section

3.2 can be used for this evaluation phase. WOJTKOWSKI (2004) describes an iterative

improvement method using SIMONE. With shorter planned running times in the

timetable, he reaches a considerably higher punctuality.

Another approach is to insert objective functions into the PESP formulation, such

that not only a feasible, but also, according to some function, an ��optimal’’ timetable

is found. GOVERDE (1999) uses convex cost functions of the buffer times to optimize

passenger timetables, aiming at an increased punctuality. PEETERS and KROON

(2001) extend the PESP such that certain time intervals in the timetable can be

optimized. These models do not evaluate the punctuality. They assume that certain

characteristics have a certain influence on delay propagation. These characteristics

are then optimized.

Little can be found about fully integrated timetabling and evaluation models.

However, VROMANS and KROON (2004) describe a stochastic timetable optimization

model. Given a certain set of disturbances, the described linear programming model

provides a timetable with minimal average delay. For a practical case on one of the

main north–south corridors in the Netherlands (Haarlem–Maastricht, in Figure 1

denoted by Hlm and Mt, respectively), an ��optimal�� timetable is found with, in the

model, a 30% lower average delay than in the current timetable.

3.2.5 Other areas of reliability improvement

Besides timetable optimization, there are other aspects in railway systems that can

help to improve reliability. The reduction of primary delays has a direct influence on

the punctuality. Examples of measures to reduce the number of disturbances are

preventive maintenance of rolling stock and infrastructure, and the construction of

level free crossings for road traffic.

Secondly, new technologies can help to improve the reliability. An example is the

development of GPS-based safety systems. These systems not only allow for shorter

headways between trains, but can also anticipate conflicts. Furthermore, technolo-

gical developments in rolling stock and infrastructure create new possibilities to

increase reliability.

Finally, new planning and operational principles can help to improve the

reliability. SCHAAFSMA (2001) describes the situation where the timetable may

include conflicts which are solved during the operations (dynamic traffic manage-

ment).

3.3 8 o’clock rolling stock allocation

A first step in the planning process of the rolling stock is the allocation of the rolling

stock to the trains that are operated around 8 o’clock in the morning. Usually, this is

done for a standard day of the week, such as a Tuesday. This step is based on the
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idea that, if it is possible to determine an appropriate allocation of the rolling stock

to the trains during the morning peak, then this allocation will be appropriate during

the other hours of the day as well. This is reasonable, since the required capacity

during the evening peak is usually less than that during the morning peak: the

evening peak lasts longer than the morning peak, and it has a lower demand per unit

time.

In determining the 8 o’clock rolling stock allocation, the question is: which types

and subtypes of rolling stock need to be allocated to each line, and how many units

of each type and subtype need to be allocated to the trains around 8 o’clock in the

morning. The objective is to find an allocation of the rolling stock to the trains

around 8 o’clock that results in an optimal matching between the required and the

provided capacity of these trains.

When solving this problem, one has to take into account the preferences for

certain rolling stock types on certain lines. For example, on an intercity line, one

may prefer comfortable rolling stock, and on a regional line one may prefer rolling

stock that can accelerate and decelerate quickly. Further relevant constraints

concern the available numbers of rolling stock units of the different (sub)types, and

the fact that the trains� lengths should not exceed the lengths of the platforms

along their routes. Moreover, in order to get a robust rolling stock circulation that

can be restored relatively easily in the case of disturbances of the railway system,

only a limited number of rolling stock types and subtypes should be allocated to

each line.

ABBINK et al. (2004b) describe a model that was developed to solve this

problem. In their model, the lines are denoted by l ¼ 1, . . . ,L, and the relevant

trains of line l around 8 o’clock are represented by t ¼ 1, . . . ,Tl. The expected

number of passengers in class c ¼ 1, 2 on train t of line l is given by Pl,t,c. The

different rolling stock types and subtypes are represented by s ¼ 1, . . . , smax, and

r ¼ 1, . . . , rs, respectively. The parameters kr and Cr,c denote the length of each

train unit of subtype r, and the capacity for passengers in class c of each train

unit of subtype r. The available number of train units of subtype r and the type

to which subtype r belongs are denoted by Nr and sr. The length of the shortest

platform along the route of line l is described by Ll. Finally, for line l, the

parameters Yl and Zl denote the maximum allowed number of rolling stock types

and subtypes.

The main decision variables of the model are the variables Nl,t,r and Sl,t,c. The

decision variables Nl,t,r denote the number of train units of subtype r that are

allocated to train t of line l. The decision variables Sl,t,c represent the number of

seat shortages in class c on train t of line l. Other decision variables in the model

are the binary allocation variables Al,t,s, ~Al;t;r, Bl,s, and ~Bl;r. For example, the

variables Al,t,s have the following meaning: Al,t,s ¼ (1/0) if rolling stock type s (is/is

not) allocated to train t of line l. The variables ~Al;t;r, Bl,s, and ~Bl;r have a similar

meaning.

Now the main constraints of the model can be described as follows:
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Pl;t;c �
X
r

Cr;cNl;t;r � Sl:t:c 8 l; t; c ð3Þ

X
r

Nl;t;r � 1 8 l; t ð4Þ

X
s

Al;t;s ¼ 1 8 l; t ð5Þ

X
r

krNl;t;r � Ll 8 l; t ð6Þ

X
l

X
t

Nl;t;r � Nr 8r ð7Þ

X
s

Bl;s � Yl 8 l ð8Þ

X
r

~Bl;r � Zl 8 l ð9Þ

~Al;t;r � Nl;t;r � M ~Al;t;r 8 l; t; r: ð10Þ

The objective function (2) specifies that the objective is to minimize the number of

seat shortages on the trains around 8 o’clock. Constraints (3) provide the link

between the forecasted passenger demand per train, the allocated numbers of train

units, and the resulting numbers of seat shortages. Next, constraints (4) specify

that at least one train unit should be allocated to each train. Constraints (5) state

that exactly one train type must be allocated to each train. Constraints (6) describe

that the total length of the train units allocated to a train should not exceed the

length of the shortest platform along the route of the train. Next, constraints (7)

describe that for each subtype the total number of allocated train units should not

exceed the available number of train units. According to constraints (8) and (9),

the number of types and subtypes allocated to each line l should not exceed the

upper bounds Yl and Zl, respectively. Constraints (10) describe that a positive
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number of train units of a certain subtype can be allocated to a certain train if and

only if the corresponding subtype has been allocated to that train. Here M is a

sufficiently large number.

Further constraints of the model are those specifying the binary or integer

character of the decision variables, and several logical constraints. Since these are

rather straightforward, they have been omitted. The logical constraints guarantee

(i) that a certain subtype can be allocated to a certain line only if the

corresponding type has been allocated to that line, (ii) that a certain subtype

can be allocated to a certain train only if the corresponding type has been allocated

to that train, (iii) that a certain type can be allocated to a certain train only if this

type has been allocated to the corresponding line, and (iv) that a certain subtype

can be allocated to a certain train only if this subtype has been allocated to the

corresponding line.

ABBINK et al. (2004b) solve the above allocation problem by applying the

commercial mixed integer solver CPLEX. Their computational experiments show

that, by using appropriate CPLEX options and parameters, practical instances of

NSR can be solved in a short time.

4 Operational planning

At the operational level, the final details of the timetable are planned. For instance,

during the non-peak hours some trains do not run, and in the early morning (late

evening), the timetable should start (finish).

Furthermore, the rolling stock and crew schedules are constructed. The last two

topics are discussed in this section.

4.1 Rolling stock circulation

In the rolling stock circulation problem, one has to determine an appropriate

allocation of rolling stock units to the trips to be operated. Relevant objectives to be

pursued are service to the passengers, efficiency, and robustness. Service to the

passengers means that on each trip the provided capacity should be sufficient to

transport the expected numbers of first and second class passengers according to

given norms. Note that the actual numbers of passengers are stochastic, so that, in

the absence of a reservation system, a seat for each passenger cannot be guaranteed.

Efficiency means that the costs involved are as low as possible. These costs are

mainly due to power supply and maintenance. They are strongly correlated with the

number of carriage kilometers. Robustness means that potentially disturbing

processes should be avoided as much as possible. For example, coupling and

uncoupling rolling stock units to change the capacity of a train are usually

considered as potentially disturbing processes.

Note that there is a large difference between the rolling stock circulation of

locomotive hauled carriages and that of train units: due to their shorter shunting
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time, train units are far more flexible than locomotive hauled carriages. Therefore,

the composition of a train with locomotive hauled carriages is usually changed quite

rarely. The latter simplifies their rolling stock circulation planning. In this paper, we

focus on the rolling stock circulation of train units, since NS Reizigers mainly

operates this kind of rolling stock. Papers devoted to this subject are SCHRIJVER

(1993), BEN-KHEDHER et al. (1998), ALFIERI et al. (2002), and PEETERS and KROON

(2003). Papers on the rolling stock circulation of locomotive hauled carriages are

BRUCKER et al. (1998), CORDEAU et al. (2000, 2001), and LINGAYA et al. (2002).

In the Netherlands, the rolling stock circulation problem is usually solved on a

line-by-line basis and per day of the week. Recall that the train units have been

allocated by the 8 o’clock allocation to the different lines. The reason for a

line-by-line allocation is to reduce the well-known snowball effect of delays. So the

rolling stock circulation is determined on a line-by-line basis as well. After a rolling

stock circulation for each single day of the week has been determined, these single

day rolling stock circulations are modified in a second step so that they fit after each

other. In this second step, one has to guarantee that the rolling stock circulation is

balanced over the week. For example, the rolling stock circulations on Monday

evening and on Tuesday morning should be such that all train units needed in the

trains that start from a certain station on Tuesday morning arrive there on Monday

evening.

The main input for the rolling stock circulation problem for a certain line on a

certain day of the week consists of the timetable, the expected numbers of passengers

on the involved trips, and the numbers of train units (per subtype) that can be used.

Other relevant data are the maximum train length per trip and the lengths and the

capacities of the different subtypes.

The kernel of a model that can be used to find an appropriate rolling stock

circulation on a certain line is an integer multi-commodity min-cost flow model. The

commodities represent the different train unit types and subtypes that can be

allocated.

However, if train units of different subtypes can be combined in one train on a

single trip, then a relevant issue to be taken into account is the order of the train

units in the trains. For example, in Alkmaar, a train unit can be uncoupled from a

northbound intercity train, but the uncoupled train unit can only be the train unit in

the rear position of the train.

This issue cannot be handled by an ordinary multi-commodity flow model. In

order to deal with this issue, ALFIERI et al. (2002), and PEETERS and KROON (2003)

introduced the concept of a so-called transition graph. A transition graph of a train

represents the feasible transitions from one composition to another at the successive

locations along the journey of the train.

Figure 3 shows part of a transition graph of a train on the intercity line between

Den Helder (Hdr) and Nijmegen (Nm). This line connects the Northwestern part of

the Netherlands via Amsterdam (Asd) and Utrecht (Ut) to the Eastern part of the

country (see Figure 1). Here ��4�� and ��6�� denote double-deck train units with four
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and six carriages, respectively. Moreover, ��46�� denotes a train consisting of two train

units with the train unit with six carriages in the front position. The first trip shown

in the graph is a trip from Den Helder to Alkmaar (Amr). On this trip, only

compositions with at most eight carriages can be chosen due to the platform lengths

along the trip. On the other trips, all compositions with at most 12 carriages can be

chosen. The feasible transitions in Alkmaar are represented by the arcs between the

compositions on the trip from Den Helder to Alkmaar and on the next trip from

Alkmaar to Arnhem (Ah). These transitions represent the fact that in Alkmaar train

units can only be coupled onto the front or uncoupled from the rear of a train. The

transitions in Arnhem represent the fact that in Arnhem the physical composition of

a train cannot be changed, but the train leaves in the same direction as it arrives. The

transitions in Nijmegen represent the fact that in Nijmegen the train reverses

direction, since Nijmegen is the endpoint of the line. Moreover, for the return trip to

Arnhem, train units can be uncoupled or coupled only at the rear of the leaving

train. The next trips of the train have not been represented in the graph.

The rolling stock circulation problem can thus be described as an integer multi-

commodity min-cost flow problem, where, at the same time, for each train a feasible

path through its associated transition graph has to be found.

Numerical results reported by ALFIERI et al. (2002) show that, after some

preprocessing steps in order to eliminate the redundant nodes from the transition

graphs, this problem can be solved in a relatively short time by CPLEX. PEETERS

and KROON (2003) describe a Branch-and-Price approach to solving the same

problem. The columns that are generated in this approach are the paths through the

transition graphs. This Branch-and-Price approach usually outperforms CPLEX

with respect to the running time.

The model based on transition graphs assumes that each train travels up-and-

down between the endpoints of its line. The latter property is lost when trains may be

split or combined underway, as happens on the intercity North-East connection in

the Netherlands. FIOOLE et al. (2004) describe an extension of the transition graph

model that can also deal with underway combining and splitting of trains.

4.2 Crew scheduling

Crew scheduling is one of the most successful OR applications in the transportation

industry. After the introduction of OR in airline crew and bus driver scheduling in

Fig. 3. Part of the transition graph of an intercity train.
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the seventies and eighties (see e.g. BODIN et al. (1983) and DESROSIERS et al. (1995)

for overviews on this topic), it has also been applied to railway crew scheduling

during the last decade. Most major railway companies in Europe use crew scheduling

software nowadays to make their operational schedules. Some well-known packages

are CARMEN (KOHL, 2003) used at among others the German Railways, TRACS II

(FORES et al., 2001) used at several operators in the UK, and TURNI used at NSR

(KROON and FISCHETTI, 2001; ABBINK et al., 2004a).

In the rest of this section, we consider the crew scheduling problem for train

drivers at NSR. However, notice that there is a more or less similar problem for

conductors.

All tasks must be assigned to train drivers such that each task is covered and each

train driver has a feasible duty. Tasks can be either passenger train movements,

empty train movements, or shunting activities. In this case, a duty is a sequence of

consecutive tasks that can be carried out by a single employee on a single day. A duty

is feasible if a large set of constraints is fulfilled, e.g. the length of the duty does not

exceed the maximum spread time, there is a meal break in a duty with a certain

minimum length, and so on. Furthermore, for drivers there are extra requirements

with respect to their knowledge about specific rolling stock types and routes.

Moreover, there are requirements on the complete set of duties at each depot, such as

a maximum average working time for all drivers and a fair division of the work over

the depots. These last constraints are very typical for the Dutch situation and are

known as ��Sharing Sweet & Sour�� rules. They aim at allocating the popular and the

unpopular work as fairly as possible among the different crew depots. For instance,

some routes are more popular than others and intercity trains are preferred over

regional trains. For a detailed description of these rules, we refer to ABBINK et al.

(2004a).

In Figure 4, three examples of duties are shown for the depot Rotterdam (Rtd).

In the first duty, the driver starts with driving train 2246 to Amsterdam (Asd).

There he has a break, and afterwards he drives train 2167 to Vlissingen (Vs). After

a second break (at least one is required) he drives train 2174 back to Rotterdam.

The other duties can be explained in the same way, where the dark shaded task in

the second duty means travelling as passenger between Utrecht (Ut) and Zwolle

(Zl). In the last duty the driver needs to go three times from Rotterdam to Hoek

van Holland (Hld) and back. Such a duty is very unpopular, while the first two are

15.00
rtd

rtd

rtd

rtd

rtd rtdhld hld hld

ut zl
36 27 59

vs vs

rtd
22

10 32 03 37

4054
11 21 43 41 10 32 03 11 40 41 10 32 0302 33

01

41

49
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asd asd
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13 22 15 19 14 18
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Fig. 4. Example of three duties for the depot Rotterdam.
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quite popular ones. All stations in these duties are explicitly indicated in the map of

Figure 1.

The crew scheduling problem as described can be formulated as a generalized set

covering problem, where the decision variables correspond to selecting a feasible

duty or not. The advantage of such a formulation is its strong relaxation. However,

the number of variables is usually exponential in the input size. Therefore, column

generation techniques are needed to solve the relaxation. Mostly, the LP-relaxation

is solved, but also Lagrangian relaxation can be applied. To find the optimal integer

solution, a Branch-and-Price algorithm is used where in each node of the Branch-

and-Bound tree column generation is used (see e.g. BARNHART et al., 1998).

Alternatively, heuristics can be applied to find a feasible integer solution. A very

successful heuristic can be found in CAPRARA et al. (1999) and is used in the TURNI

software with some local improvement heuristics.

Returning to the situation at NSR, especially the ��Sharing Sweet & Sour�� rules
make the problem very complex to solve. Setting the parameters in the TURNI

package is a complicated task, where a lot of practical and OR knowledge is

necessary. Moreover, some small adjustments and improvements have still to be

made after a run with TURNI. Nevertheless, savings of about 2% in costs were

realized by using TURNI (ABBINK et al. 2004a).

5 Short-term planning

Every day there are minor modifications to the timetable due to some extra trains

(charter trains, extra trains for e.g. sport events) or speed limitations on some parts

of the infrastructure due to track maintenance. In general, these minor modifications

have no influence on the rolling stock and crew schedules. However, almost every

weekend there are large parts of the networks out of service due to large maintenance

projects or construction works on the extension of the network. For instance,

currently (i.e. 2005), due to the quadrupling of the Amsterdam – Utrecht line, about

five weekends a year no train traffic is possible on this heavily used line. In such

cases, the timetable is usually modified locally. However, such local modifications of

the timetable may destroy rolling stock and crew schedules on a global level. The

rolling stock circulation and the crew schedules need to be repaired then as well.

Since – to the best of our knowledge – these problems have not been studied in the

literature, we give only a short problem description here.

Finally, we discuss in this section another short-term planning problem, which is

the maintenance routing of rolling stock.

5.1 Rolling stock circulation

The problem of restoring the rolling stock circulation can be split into two steps. In

the first step, the number of train units of each type and the order of these units in

the train should be determined for each individual trip. In the second step, the rolling
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stock should be balanced at the stations at the end of each day such that at the next

day the correct amount of rolling stock of each type is available at each station. This

can be done in several ways. For instance, a few modifications are made in the

assignment of the first step, or some extra rolling stock can be added to a few trips,

or as a final option empty train movements can be added. Since this last option is

very expensive, it is only used if the other two are not possible. Moreover, in the first

two options, the demand of each trip and the maximum train length should be taken

into account such that the train is not too short or too long. The required number of

conductors, which in itself depends on the train length, should be taken into account

as well.

5.2 Crew scheduling

Due to changes in the timetable and the rolling stock circulation, the crews need to

be rescheduled as well. Since each individual day is different, it does not make sense

in this planning phase to minimize the number of duties or any other objective that is

normally used. In fact, the problem is more a matter of feasibility and can be defined

as follows. Given the number of crews available and their original duties which can

be slightly modified, find a schedule such that all tasks are covered. Since this is not

always possible, some rules can be relaxed and extra duties can be generated.

Moreover, the crew can use buses or taxis to go from one location to another one

when there is no train traffic possible.

5.3 Maintenance routing of rolling stock

Each rolling stock unit has to visit a maintenance facility regularly in order to be

checked and repaired, if necessary. These visits of the rolling stock units to a

maintenance facility may already be incorporated in the rolling stock circulation.

This is usually done in relatively ��sparse�� railway systems involving long distance or

international trains. Also airlines usually use such a method for routing their planes

to their maintenance facilities.

However, in more ��dense�� systems, such as the Dutch railway system of NS

Reizigers, the rolling stock units are usually routed to a maintenance facility on a

day-by-day basis. That is, each day it is determined which rolling stock units need to

be taken away from the operations in order to undergo a maintenance check, and

how these units are routed towards the maintenance facility. The latter is done

preferably with a minimum number of additional train movements, since these are

usually expensive. Rolling stock units that need to be routed towards a maintenance

check are called urgent.

Usually, each rolling stock unit has been assigned to a chain of duties for the next

days. Here, each duty is a set of trips that can be carried out by one rolling stock unit

on a single day. Some of these chains of duties pass along the maintenance facility

during the next days, and others do not. Now the problem is to find appropriate

swaps of the chains of duties such that each urgent unit gets to serve on a chain of

duties that passes along an appropriate maintenance facility at the right time. If two
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identical rolling stock units of the same rolling stock type have overlapping

standstills at the same station, then they may be swapped. That is, each of the rolling

stock units continues on the other’s chain of duties. A swap may also involve more

than just two rolling stock units. Each swap usually leads to additional shunting

effort at the involved station.

Figure 5 shows an instance of the maintenance routing problem, where one urgent

train unit, initially assigned to duty 1, has to be routed to the maintenance facility

that is located at the end of duty 3. By carrying out two swaps, one in station A and

another one in station B, the urgent unit indeed arrives in the maintenance facility.

In order to solve the problem of efficiently routing the urgent train units to a

maintenance facility, an integer multi-commodity min cost flow model has been

developed by MARÓTI and KROON (2004a). The underlying network is similar to the

usual time–space network that one encounters when dealing with timetabled trips in

public transportation. The nodes in the network correspond with the trips to be

carried out. The planned connections from one trip to another are represented by

arcs in the network. These arcs have cost zero and capacity one.

Furthermore, there are arcs that represent the potential swaps of duties in the

network. If one unit of flow passes such an arc, then this means that the

corresponding rolling stock unit is swapped from one duty to another, in order to

bring it onto the right track towards the maintenance facility. The costs of these arcs

represent the complexity of the involved swap. For example, swapping the duties of

two single train units that are standing at the same time at the same shunting area for

more than one hour can be considered as easy. However, swapping two train units

that are both the middle train unit of two trains consisting of three train units is

nearly impossible, in particular if only a small amount of time overlap is available.

Each urgent unit is represented by its own commodity. One unit of such a

commodity has to be routed from the start of the duty that is currently served by the

urgent unit to an appropriate maintenance facility. Furthermore, there is an

additional commodity that represents all non-urgent units. The amount of flow of

this commodity to be routed equals the number of non-urgent units. The non-urgent

units have to be routed through the network in order to guarantee that an overall

feasible solution exists.

Fig. 5. An instance of the maintenance routing problems.
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Now the problem is to find an integer multi-commodity min cost flow in the

constructed network. A solution to this problem can be interpreted as a set of node-

disjoint paths for the urgent train units in which the complexity of the required

swaps is as low as possible. Since, usually, the number of urgent units that need to be

routed simultaneously is small (1 to 5), this model can be solved with a standard

solver such as CPLEX.

MARÓTI and KROON (2004b) describe an alternative model which takes into

account several details of the local shunting processes. However, a drawback of this

model is that it may be hard to collect all the required input data.

Note that planners in practice usually route urgent units one-by-one to their

maintenance checks. Therefore, the research carried out also focused on one-by-one

routing of rolling stock units. Indeed, experiments carried out to investigate the gains

of simultaneously routing several urgent units lead to the conclusion that, if the

railway system is sufficiently dense, then there are just minor advantages of

simultaneous routing over one-by-one routing.

6 Local planning

After a timetable of trains through the railway network has been determined

according to Section 3.1, a subsequent problem arises: how to route the trains

through the railway infrastructure of a specific station? In Section 6.1, we look at

this problem in more detail. The shunting problem, which takes place at individual

stations, following from the rolling stock circulation is discussed in Section 6.2.

Finally, the crew rostering problem is discussed in Section 6.3.

6.1 Routing trains through stations

The infrastructure of a railway station is bounded by so-called entry points and

leaving points. Between these points, it consists of a large number of track sections

and platforms. An arrival time in the timetable represents the arrival time at the

platform, after traveling from an entry point to the trains� platform. In practice, the

safety system ensures that two routes are without conflicts. For an arriving train, the

safety system reserves an inbound route from the entry point to a platform. The

system releases a part of this route after the train has passed the section and some

buffer time has passed. Procedures for a departing train and a train that does not

stop at a station are similar.

The routing problem aims at routing all trains in the most appropriate way, given

the timetable of arrivals and departures, the station’s railway infrastructure, and the

safety system. In this problem, one needs to take into account coupling and

decoupling of trains, i.e. finding two inbound routes to and one outbound route

from the same platform and vice versa. Moreover, allowing extra movements

increases the flexibility and capacity of the station at the cost of additional resources

and could be useful for finding a solution. Finally, several service considerations
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have to be taken into account. Here one should think of transfer possibilities for

passengers, and groups of trains leaving from the same platform, e.g. because these

are leaving in the same direction. If it is impossible to route a certain train, small

deviations in planned arrival and departure times might be allowed. An in-depth

introduction to the problem as well as more details on the algorithm described here

can be found in ZWANEVELD et al. (1996) and ZWANEVELD (1997).

In order to give a mathematical representation of the routing problem, we

introduce the set T as the set of trains. The set Ft consists of routing possibilities for

train t 2 T, and is split in the inbound routing possibilities Fi
t , the platform options

F
p
t , and the outbound possibilities Fo

t , i.e. Ft ¼ Fi
t [ Fo

t [ Fo
t . Moreover, the set Ft,t0

contains all pairs of routing possibilities (f, f 0) for trains (t, t0) which do not result in

a conflict. Note that this set contains possibilities (f, f 0) for train t if f; f 0 2 Fj
t with

j 2 fi, o, pg and f 6¼ f 0. The parameters qt,f represent, amongst others, the wish to

route as many trains as possible and the earlier mentioned service considerations. We

define the decision variables as:

xt;f ¼ 1 if train t 2 T uses routing possibility f 2 Ft,
0 otherwise:

n

Now, the problem is stated as follows:

max
X
t2T

X
f2Ft

qt;f xt;f ð11Þ

X
f2F i

t

xt;f � 1 8t 2 T ð12Þ

X
f2F p

t

xt;f � 1 8t 2 T ð13Þ

X
f2F o

t

xt;f � 1 8t 2 T ð14Þ

xt;f þ xt0;f 0 � 1 8t; t0 2 T ; f 2 Ft; f 0 2 Ft0 ; ðf ; f 0Þ j2 Ft;t0 ð15Þ

xt;f 2 f0; 1g 8t 2 T ; f 2 Ft: ð16Þ

In the objective function (11), one typically focuses on routing as many trains as

possible. As a secondary objective, maximizing service to passengers and/or

minimizing undesired characteristics of the routes can be considered. Restric-

tions (12) ensure that at most one inbound route is selected for each train. The same

holds for platform routes and outbound routes by restrictions (13) and (14),
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respectively. Restrictions (15) prohibit route conflicts, and restrictions (16) define the

decision variables as binary.

The success of an algorithm based on this approach lies for a large part in the

powerful preprocessing phase, where the number of routing possibilities for a train is

reduced strongly by the application of appropriate dominance techniques. For these

techniques one considers only relevant sections of the station railway infrastructure.

The relevant sections are sections: (i) containing a switch, (ii) corresponding with an

entry or leaving point, (iii) corresponding to a platform, or (iv) corresponding to a

crossing of routes. In ZWANEVELD et al. (1996), several dominance techniques have

been implemented to speed up the algorithm. A second strength of this algorithm is

the aggregation of the restrictions (15) and the ability to improve the LP-relaxation

of the problem by introducing valid inequalities. Note that the aggregated

restrictions are clique inequalities. The computation time for generating all maximal

cliques as well as the number of such cliques, grows exponentially in the problem

size. Therefore, only a well-chosen subset of valid inequalities is generated. A

Branch-and-Cut algorithm finds the optimal integral solution. In the nodes of the

Branch-and-Bound tree new valid inequalities are sought and an efficient dominance

technique is applied.

Real-life instances can typically be solved in less than a minute with this model.

For typical cases, the size of the Branch-and-Bound tree remains fairly small.

Computational results are reported in ZWANEVELD et al. (1996).

A sequential train-by-train routing algorithm is described by CAREY and

CARVILLE (2003). This algorithm determines platforms and arrival and departure

times of trains at a given station. This decomposition requires coordination of the

arrival and departure times of a specific train at different stations. Moreover, CAREY

(1994) integrates the routing problem with the PESP (see Section 3.1). However,

computational results indicate that real-life instances cannot be solved satisfactorily

in a reasonable amount of computation time. BILLIONNET (2003) is able to find

platforms for a set of timetabled trains within 2 minutes for real-life cases using an

integer programming formulation, which is very similar to the one described in this

section. A sequential train-by-train heuristic with backtracking is proposed by

GALAVERNA et al. (1994) for a similar problem.

6.2 Shunting

Shunting focuses on train units that are temporarily not necessary to operate a

timetable. In order to use the available infrastructure as efficiently as possible, it is

appropriate to park such units at shunt yards. For the corresponding planning

problem, we look at one station at a time and assume that timetabled trains are

routed through the station conform Section 6.1. The planning period is typically a

24-hour period starting around the morning peak. The aim of this operational

problem is to choose the configurations and locations of the trains at the shunt

tracks in such a way that the railway process can start up as smoothly as possible the

next morning.
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The Train Unit Shunting Problem (TUSP) consists of (i) matching the arriving

and departing shunt units, and (ii) parking these shunt units at the shunt tracks, such

that the total shunting costs are minimal and no crossings occur. These costs consist

of routing costs from each platform track to each shunt track, train unit dependent

penalties for certain shunt tracks, and penalties for not parking shunt units that

should be parked. A crossing occurs whenever a train unit i obstructs a train unit j

during the departure or arrival of train unit j.

In the TUSP, arrivals and departures of train units might be mixed in time. This

implies that, within the planning horizon, the first departure might take place

before the last arrival has taken place. Furthermore, shunt units might belong to

different types and subtypes (and thus lengths). The type of a unit might restrict the

set of shunt tracks where the unit can be parked. For example, electrical train units

can only be parked on a track with catenary. Shunt tracks might have different

types and lengths as well. The type of a track determines how a unit can approach

the track. Some tracks can be approached from one side only. These tracks are

called Last In First Out (LIFO) tracks. Other tracks can be approached from both

sides. These tracks are called free tracks. Finally, trains have fixed arrival and

departure times, but flexible arrival times at and departure times from the shunt

tracks. For example, the departure time of an arriving shunt unit from a platform

to a shunt track is flexible within a time interval starting at the arrival time of the

unit at the platform and ending some time before the next arrival of another train

at the same platform.

For practical instances, the TUSP usually becomes too large to be solved as one

integrated optimization problem. Therefore, it is decomposed into four parts. Based

on this decomposition, LENTINK et al. (2003) describe a four-step algorithmic

solution approach. The four steps are:

Step 1: Matching arriving to departing train units.

Step 2: Estimating routing costs of train units.

Step 3: Parking of train units at shunt tracks.

Step 4: Routing of train units.

In the first step, arriving train units are matched to departing ones. The

configurations of the trains are given by the timetable and have been decided in the

rolling stock circulation planning phase. The matching step results in a set of blocks,

where a block is a set of train units that remain together for the entire planning

period. The main objective here is to create a minimum number of blocks, since this

implies a minimum amount of required resources, e.g. crew and railway infrastruc-

ture.

In the model for this step, a network for each train is created, where each train can

be split into a number of parts. A part is a set of units from the same train that

remain together. All networks are connected via an assignment problem of the

arriving parts to the departing parts. Thus, an optimal solution of this model results

in the decomposition of all trains into parts and an assignment of the arriving parts
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to the departing parts, such that the number of parts is minimal. The model is

formulated as an integer program and real-world problems can be solved within a

minute by standard IP-solvers. Additional information as well as the exact

formulation can be found in FRELING et al. (2005).

In Steps 2 and 4, routes of blocks over the local railway infrastructure are

determined. In the second step, one is interested in estimates for the routing costs

associated with routing blocks to shunt tracks, while the last step focuses on

determining actual routes for the units that need parking. The main objective is

routing as many blocks as possible without conflicts with other trains. In LENTINK

et al. (2003), a sequential train-by-train heuristic is used to solve this problem with a

2-opt improvement procedures afterwards. The problem for one train is solved by a

tailor-made extension of A*-search on a specific network of the railway infrastruc-

ture. A*-search is a search algorithm that takes into account both the estimated cost

of the current path to the goal and the actual cost for the path so far. Practically all

cases are solved within one minute for medium sized stations. More details can be

found in LENTINK et al. (2003).

The third step can be modelled as a set partitioning problem. This model is solved

by a column generation heuristic. In the master problem, FRELING et al. (2005) select

a set of track assignments, where a track assignment is an assignment of blocks to a

specific track for parking. For each block, this assignment also describes the arrival

and departure side of the shunt track to use. In the pricing problem track assignments

for individual tracks are generated, based on dual information of the master

problem. Pricing problems are only solved at the root node of the Branch-and-

Bound tree. Computations for real-life applications require 20 to 60 minutes,

making this step the most demanding one from a computational point of view. More

details of the pricing problem are reported in FRELING et al. (2005).

Elements that are also important for the shunting processes, but are not discussed

here, are crew planning for the local tasks resulting from the shunting activities and

other local processes such as cleaning and maintenance checks of rolling stock.

Some special cases of the TUSPhave been described byWINTER (1999),WINTER and

ZIMMERMANN (2000) and BLASUM et al. (2000) for dispatching trams in a depot.

Furthermore,GALLO andDIMIELE (2001) discuss an application for dispatching buses

in a depot. Another application of bus dispatching is described in HAMDOUNI et al.

(2004). Here, robust solutions are emphasized by having as few different types of buses

as possible in one lane, and within one lane by grouping together the buses of the same

type as much as possible. Finally, TOMII et al. (1999) and TOMII and ZHOU (2000)

propose a genetic algorithm that takes into account some related processes of the

TUSP. However, their parking problem is of a less complex nature, since in their

context at most one train unit can be parked on a shunt track at the same time.

6.3 Crew rostering

In the crew rostering problem, the duties resulting from the crew scheduling step (see

Section 4.2) are combined into a number of rosters for a certain period. This problem
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is solved per depot. Rostering can be done in several ways: (i) a roster for individual

crew members can be created where crew specific characteristics (e.g. their vacations)

can also be taken into account, (ii) a bid line can be constructed for which individual

crew members can bid, or (iii) a cyclic roster can be constructed. The first two roster

approaches are mainly used in the airline industry (see KOHL and KARISCH, 2004, for

an overview). However, most European public transport companies, including NSR,

use the concept of cyclic rosters on which we will focus in the remainder of this

section.

In the cyclic crew rostering problem (CCRP), rosters are created for a group of

crew members, where drivers are in the same group if they have the same

characteristics (e.g. all full-time employees, same route knowledge). For such a

group, one roster is constructed with a length (in weeks) equal to the number of

crews in such a group. Schematically, a roster can then be seen as a set of rows and

columns, where the columns corresponds to the different days and the rows to the

different weeks. Crew member 1 starts in week 1 with the duties in the first row, while

crew member 2 starts in the first week with the second row (the one that crew

member 1 does in the second week), etc. There are a lot of rules indicating whether a

roster is feasible or not. Those rules deal with rest periods between two duties, rest

periods in a week, the number of weekend days off, etc.

Only a few papers have studied the CCRP. For example, CAPRARA et al. (1998)

developed a heuristic based on a MIP formulation to determine a roster with a

minimum number of weeks such that each duty is done once every day. A very recent

paper (SODHI and NORRIS, 2004) deals with the CCRP at the London Underground,

which is a very complex problem considering all kinds of hard practical constraints.

The authors decompose the problem into two stages, where in the first stage a

pattern of rest-days and duty types is created for each depot, and afterwards the

individual duties are assigned to this pattern. The first phase is the most complex

part, which is further decomposed into three steps. The most complicated step is to

find the ��optimal�� rest-day pattern for each depot. This is solved as a mixed integer

program. The second phase can be formulated straightforwardly and solved as an

assignment problem with side constraints.

7 Real-time control

During operations a lot of things can go wrong. If the planning is robust, small

disturbances will have a minor effect in the operations. However, it is impossible to

take large disturbances into account in the planning. For instance, if an accident

happens at a certain line and no train traffic is possible anymore for a certain period

of time, decisions have to be made as to which trains need to be canceled between

which locations (e.g. the whole line or only part of it). Of course, this can have

consequences both for the rolling stock circulation and for the crew schedules.

Notice that these problems have similarities with the corresponding problems in the
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short-term scheduling phase, but the major difference is that decisions need to be

made in a short period of just a few minutes: heuristic approaches are required.

Moreover, there may be a lot of uncertainty, both on the positions of rolling stock

and crews, and on the duration of the disturbance.

In the railway industry there has not yet been much research on this topic.

However, in other modes of transport (especially airlines) there have been some first

attempts to solve real-time scheduling problems. An interesting reference to this

topic is STOJKOVIĆ and SOUMIS (2001).

8 Final remarks

In this paper, we have given an overview of several kinds of planning problems

arising for a passenger railway operator. We have focused on the well-studied,

classical problems and the most promising ones, in our opinion. We believe that in

the coming years there will be less focus on the classical problems and more focus on

problems that are promising fields such as the reliability of timetables. Moreover, we

believe that, like in the rest of the OR world, there will be research on real-time

control. A combination of these two could significantly improve the performance of

railway operators and can lead to a successful third century of railway transport.
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