(Translated by https://www.hiragana.jp/)
EfficientNet - Wolfram Neural Net Repository

EfficientNet Trained on ImageNet with RandAugment

Identify the main object in an image

Released in 2019, this model utilizes the techniques of RandAugment data augmentation on the EfficientNet architectures to effectively perform image classification.

Number of models: 2

Training Set Information

Performance

Examples

Resource retrieval

Get the pre-trained net:

In[1]:=
NetModel["EfficientNet Trained on ImageNet with RandAugment"]
Out[1]=

NetModel parameters

This model consists of a family of individual nets, each identified by a specific parameter combination. Inspect the available parameters:

In[2]:=
NetModel["EfficientNet Trained on ImageNet with RandAugment", \
"ParametersInformation"]
Out[2]=

Pick a non-default net by specifying the parameters:

In[3]:=
NetModel[{"EfficientNet Trained on ImageNet with RandAugment", "Architecture" -> "B7"}]
Out[3]=

Pick a non-default uninitialized net:

In[4]:=
NetModel[{"EfficientNet Trained on ImageNet with RandAugment", "Architecture" -> "B7"}, "UninitializedEvaluationNet"]
Out[4]=

Basic usage

Classify an image:

In[5]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/073a1403-557f-439a-af50-c40fa95ae664"]
Out[5]=

The prediction is an Entity object, which can be queried:

In[6]:=
pred["Definition"]
Out[6]=

Get a list of available properties of the predicted Entity:

In[7]:=
pred["Properties"]
Out[7]=

Obtain the probabilities of the 10 most likely entities predicted by the net:

In[8]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/0c14ef93-75d7-4dda-b9fa-cf616056cac5"]
Out[8]=

An object outside the list of the ImageNet classes will be misidentified:

In[9]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/51af2229-5046-4c9a-8ee5-252b80f9bc4c"]
Out[9]=

Obtain the list of names of all available classes:

In[10]:=
EntityValue[
 NetExtract[
   NetModel["EfficientNet Trained on ImageNet with RandAugment"], "Output"][["Labels"]], "Name"]
Out[10]=

Requirements

Wolfram Language 12.1 (March 2020) or above

Resource History

Reference