
A Multi-Domain Role Activation Model

Vilmar Abreu1, Altair O. Santin1, Eduardo K. Viegas1, Maicon Stihler1,2
1Graduate Program in Computer Science / Pontifical Catholic University of Parana

Curitiba, Parana, Brazil
2Federal Center for Technological Education, Leopoldina, Minas Gerais, Brazil

{vilmar.abreu, santin, eduardo.viegas, stihler}@ppgia.pucpr.br

Abstract— Organizations establish partnerships in order to
achieve a strategic goal. In many cases, resources in a given
organization are accessed from external domains, characterizing
multi-domain operations. This paper presents an approach to
perform role activation in multi-domain environments. The active
roles are imported in other domains from a user's home domain.
Thus, a Single Role Activation (SRA) is performed, similarly to
Single Sign-On (SSO) authentication. The administrative
autonomy to define each role permission is kept within each local
domain. We evaluated the proposal by implementing a prototype
to provide support for SRA, based on RESTful web services and
standardized specifications such as XACML and OpenID
Connect. The prototype evaluation measured response time for
simultaneous access requests, with SRA showing better results
when compared to traditional role activation. Furthermore, from
a security perspective, the proposal is about 15 times faster than
traditional approaches.

Keywords— Multi-Domain Role Activation; RBAC; XACML;
OpenID Connect.

I. INTRODUCTION

Unauthorized access always represents a risk for applications
[14]. An access control is a security mechanism to prevent
unauthorized access to an application by using policies to
regulate user interactions [17]. The Role-Based Access Control
(RBAC) has several advantages over traditional access control
models (e.g. discretionary and mandatory) [9, 12]. RBAC uses
roles as a mechanism to mediate the association between a user
and her permissions (granted rights). In Attribute-Based Access
Control (ABAC), on the other hand, permissions are defined by
attributes and there is no permission assignment for users or
roles [8].

XACML is an XML-based language used to write access
control policies. It defines how to perform requests and receive
responses, and how to evaluate policies [13]. Although
XACML has a profile for RBAC, it does not support the
implementation of role activation nor the Separation of Duty
(SoD) from the RBAC model.

RBAC traditionally operates in a single domain. Some
authors [5, 10, 11, 18] presented proposals that deal with multi-
domains. The main difficulty in multi-domain operations are
role semantics (i.e., a role with the same name across different
domains may have different sets of permissions on each
domain). In some cases, resources and operations may not be
compatible between different domains, therefore requiring a
taxonomy or ontology to provide interoperability [11, 18].
Moreover, the user must activate the required role on each
domain to operate on its local resources.

Web multi-domain security protocols, such as OpenID
Connect (OIDC), provide Single Sign-On (SSO) without fine-
grained access control [1]. OAuth [6] is an open source
framework for access authorization in a web environment, it
limits access to a protected path (URL) without using policies
to control the operations on the resource (URL). Its purpose is
to provide access authorization to a relying party's (RP)
application, without requiring credential sharing [6]. On the
other hand, OIDC is an Identity Management (IdM) system that
allows the RP to authenticate the user identity [1].

Our proposal is to create a multi-domain access control that
supports different role semantics, improved with a single role
activation (SRA) approach. We found that the XACML
architecture and the RBAC model, integrated with the OIDC,
are able to provide support for SRA in a multi-domain
environment. Therefore, a user will be able to access different
domains (using SSO) and, by using SRA, she will not have to
activate roles for each accessed domain.

The remainder of the paper is organized as follows. Section
II discusses the related works. Section III describes the
proposed model. Section IV shows experimental results.
Finally, the conclusion is drawn in section V.

II. RELATED WORKS

Performing authorization in multi-domain environments is a
widely-discussed challenge in the literature. The work of H. K.
Lee [20] reviewed a series of works that address multi-domain
authorization. The authors identified the following properties
present in most studies: (i) Autonomy: all domains aim to
maintain their autonomy to define the access rules to protected
resources; (ii) Privacy: the private user information cannot be
accessed by unauthorized users; (iii) Decentralization: a
decentralized mechanism is needed to manage security policies;
(iv) Scalability: the authorization system needs to be scalable
and simple to deploy; (v) Standardization: the usage of well-
known patterns provides compatibility and allows
interoperability between various domains.

Several proposals tried to solve the multi-domain RBAC
problem. Shafiq et al. [18] proposed an algorithm to create role
mapping through match operations. Such operations perform an
intersection among each role involved when merging a domain
to yield the new role permissions set. This centralized merge
operation demands some processing power, since it becomes
necessary to map all roles among themselves. Furthermore, in
the case of updates, in most cases, it is necessary to redo all
intersections. Additionally, a shared resource area is necessary,
so that resources are visible to all domains. Finally, the

permission semantic is domain specific, even when they have
the same name. On Qi Li et al. [11] the concept of role
virtualization on demand was proposed. The RBAC
administrator defines the roles she wants to use for multi-
domain operations purposes and creates links for those roles in
a global domain. Such approach improves on the proposal of
Shafiq [18] bringing the major advantage of choosing roles on
demand, without the need of including all roles in the global
domain. However, it still requires the centralization of role
management, a shared resource area and the definition of role
semantics.

Freudenthal et al. [5] adopted a credential repository called
wallet, which stores authorization delegations using roles. The
delegation is composed of three elements with the following
format: “[Subject -> Role] Domain”. Each domain has wallet
synchronized with each of the other domains' wallets through a
publish/subscribe service. When the delegation does not exist
in the local wallet, a discovery service is used to locate the
corresponding wallet (i.e., the one that holds the resource
involved in the delegation). If the delegation is found, the entry
is inserted in the local wallet for caching purposes. The search
for delegation data can be exhaustive, requiring a scan through
several wallets to retrieve all delegations needed to obtain an
authorization.

Mouliswaran et al. [21] presented a model using Formal
Concept Analysis (FCA) to represent the access permissions
that a role has in different domains. The authors considered that
there are global roles (cross-domain) that have local
permissions on each domain. Those permissions are stored in a
matrix, where global roles are organized as rows and
permissions as columns. Their approach is not scalable because
each operation on a particular resource is stored in a column,
therefore, if a domain has several resources and operations, the
matrix becomes large and sparse, thus its usage becomes
unfeasible.

III. PROPOSAL

This section describes the proposed access control model,
followed by its specification. Afterwards, it shows the proposed
mechanism to import the activated roles from a user's home
domain and the method for policy writing, which uses local
roles and imported role sessions.

A. Access Control Model

In order to enable multi-domain active role importation, it was
necessary to create a model capable of supporting such a
feature. Thus, support for SRA was built in a model integrating
an Identity Management (IdM) system, RBAC controller, fine-
grained access control and a policy language. The proposed
model (Fig. 1) is based on the integration of:

● Authentication Control: responsible for user identification
and authentication – when a user is successfully
authenticated, the Authentication Control provides a short-
term ticket, which proves the user's authentication to the
Access Authorization Control. Besides, it is responsible for
managing users in the proposal, acting as an Identity
Provider (IdP) [2, 24].

● Access Authorization Control: responsible for issuing tokens
that authorize the user to access protected services. Thus, it

acts as an admission control to other Service Providers (SPs).
The Access Authorization Control provides a different token
for each service that the user access, each with a different
access scope.

● Role-Based Access Control: Acting as a SP, it is responsible
for role and session management, creating and assigning
roles to users. It also provides the means to detect conflicts
of interest between roles (used to implement SoD).

● Attribute-based Access Control: Acting as a SP, it is
responsible for performing fine-grained access control, using
roles as user attributes. It implements attribute evaluation and
policy enforcement. Attribute-based Access Control and
Role-based Access Control form up the core of the SRA
implementation.

The user requests her authentication to the Application (Fig.
1). The Application (App) creates a session for the user and
requests authentication to the Authentication Control, providing
the user session (event i) as input. The user provides her
credentials that, when valid, make the Authentication Control
provide a ticket for the App (event ii). The App requests the
token to the Access Authorization Control, providing the ticket
(event iii). Afterwards, the Access Authorization Control
provides an access token (event iv) that allows the user to access
the Role-based Access Control (RBAC) and Attribute-based
Access Control (ABAC). When holding the token, the App is
able to access the RBAC to activate user roles (events v and vi)
and to access the ABAC to request access to protected resources
(events vii and viii).

(v
i)

 s
ta

tu
s

(i
i)

 t
ic

ke
t

(i
)

A
u

th
en

ti
ca

ti
o

n

R
eq

u
e

st

(v
)

A
ct

iv
e

R
o

le

Fig. 1. Proposed Access Control Model

The access control model was conceived with each
component working as a service, requiring an access token that
is provided online by the Access Authorization Control. For
each service, two different scopes are required: one scope
allows only reading the resource, while the other allows also its
update. This restriction allows access to the application only for
authenticated users holding a valid access token. For example,
to activate a role on RBAC, the user must have an access token
within the "rbac_home_full" scope. However, to retrieve her
active roles, a user must have a token within the
"rbac_home_read" or "rbac_home_full" scope.

B. Access Control Specification

The specification of the attribute-based access control using
multi-domain roles aims to use well-known standards to enable
the proposed model. The OpenID Connect (OIDC), which is
based in the OAuth specification, was used to specify the
Authentication Control. The identity token is used to store the
user information and her home domain. For the Role-based
Access Control, the specifications defined in the standard of
NIST [8] was used. Finally, for the Attribute-based Access
Control the XACML was used.

The integration of these components can be seen in Fig. 2.
The App requests the user authentication in the OIDC providing
her credentials (event i). The OIDC validates the user
credentials and returns a nonce to App (event ii). The nonce is
used by the App to get the access token (accessToken) and the
identity token (idToken), represented in events iii and iv,
respectively. The App requests the roles associated to the user
to RBAC (event v) and informs the access token. The RBAC
performs an online validation of the access token, returning the
roles available for the user to choose which role she wants to
activate (event vi). The role activation is performed by sending
the access token and the chosen role to activate to the RBAC
(event vii).

Fig. 2. Proposed model overview

The App request access to the XACML service, in behalf of
the user, informing the action that she wants to perform over a
given resource (target) along with the access token (event ix).
This request reaches the PEP, which forwards it to the Context
Handler (CH). The CH builds an XACML request to send to the
PDP, which will evaluate the policy and make a decision (allow
or deny). Before building the request, the CH asks the PIP for
the active roles of the user. The active roles are retrieved from
the RBAC service by providing the access token (event a). After
receiving the active roles for the user (event b), the CH forwards

the attributes (including the active roles) for the PDP, that in
turn evaluates if a user is allowed to perform the desired
operation on a resource. The CH receives the PDP decision and
forwards it to the PEP, which allows or denies the user access
to the requested resource (event x).

C. Single Role Activation (SRA) Mechanism

The proposal aims at maintaining the autonomy of a local
domain administrator for defining role permissions, and at the
same time supporting cross-domain operations without
requiring role activation on each visited domain. Thus, a
mechanism is proposed to support importing role sessions from
a user's home domain to other domains. The SRA means that a
user does not need to activate roles in each local domain where
there are roles enabled to used. Different role semantics are
handled by the local domain administrator, who defines the role
permissions for each user visiting it. This requires some trust
relationship between the involved domains. We consider that
this trust relationship can be motivated by the same reasons that
make all involved domains share the same OIDC. Therefore, we
assume the trust relationship as being external to the system and
it will not be addressed in this paper.

Fig. 3 shows the SRA overview. As SRA is SSO-based
(event i), the user must authenticate herself on OIDC and
successfully obtain tokens. In order to access an application
transparently, in a visited domain through the SRA, the user
must have active roles in her own home domain (Domain A).

On the user's behalf, the home domain App requests access
to XACML (event ii), informing the action to be performed on
a given resource with the access token. The access token scope
contains the permission for the user to access a visiting domain
in read mode (Domain B). The PEP receives the request and
forwards it to the CH. Thus, the CH requests the PIP to get the
active role's session from the user's home domain. For this
purpose, the PIP employs the user’s access token to request the
OIDC about her identity token (idToken). The idToken has a
claim (attribute) identifying the home domain for the user.
Finally, the PIP requests the user active roles to RBAC home
domain (event iii).

Fig. 3. Multi-domain SRA overview.

It must be said that the user's roles session, which is active
in the user's home domain, is imported in the visiting domain
through SRA, but RBAC can detect permission conflicts
(Dynamic SoD - DSoD) with active roles. Therefore, when the
user's home domain role activation is possible (i.e., there is no
DSoD), the PIP returns to the CH all the user's active roles,
which may be both local or active by SRA. Then, the CH sends
the attributes to the PDP to be used in the policy evaluation.

This mechanism is flexible, given it keeps compatibility
with the RBAC specification, by assigning permissions to roles
that refer to roles from the user's home domain, which are
imported through SRA mechanism. In practice, it is expected
that a user, which uses SRA, will visit other domains without

activating roles in such domains, just like what occurs with SSO
for authentication.

D. Policies with active roles and SRA

In order to implement SRA, the PIP must be capable of
searching for a user's active roles in the RBAC service on the
user's home domain. However, it was necessary to develop a
method for writing policies supporting SRA without changing
the XACML architecture or its data flow. First, a new attribute
type was proposed to support RBAC. The administrator must
use the attribute "rbac_active_role" to refer active roles when
writing policies. When the PIP receives the request for user
active roles, it searches in the local domain RBAC service.

Then, to take advantage of SRA, the local system
administrator (visited domain for a user) must write policies
referencing roles from the user's home domain, inserting the
domain prefix followed by the role name. In such a case, the
attribute "rbac_sra_role" must be used to write the XACML
policy. When a policy that uses a SRA is added, the related roles
references are stored inside the local RBAC session. Thus, it is
possible to use this role reference for DSoD. Once the
administrator adds a policy, it is asked if she wants to create a
DSoD rule using the related role policy.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the prototype that implements the
proposal and the performed evaluation tests.

A. Implementation

The App was implemented in Java (www.docs.oracle.com/
javase/8) using the Vaadin framework (www.vaadin.com), due
to its rich user experience. The OIDC server was implemented
using the Nimbus [23]. Nimbus API (Application Programming
Interface) follows the OpenID Connect and OAuth 2.0
specification. The XACML evaluation engine was
implemented using the Java-based WSO2 Balana
(www.github.com/wso2/balana), an API based on the well-
known sun-xacml (www.sunxacml.sourceforge.net), which
supports the XACML version 3.0.

Two RESTful (www.tools.ietf.org/html/rfc6690) web
services were implemented using the JAX-RS API [22]. The
first web service implements the following RBAC features: role
management, users and roles assignment, active users, active
roles, and separation of duty. The second web service
implements the PEP features, honoring the PDP access
decisions defined in WSO2 Balana. All available functions in
both services requires an access token issued by the OAuth 2.0.
Besides the need of a valid access token, the services check if
the token access scope is compatible with the requested
function. All communication happens using HTTPS and self-
signed certificates, generated by Java keytool for dealing with
certificates.

In order to interact with architectural entities in different
domains, the PIP was extended to search for the user's active
roles in RBAC service. By default, the WSO2 Balana performs
caching of attribute values provided by the PIP to optimize the
process. However, as the active roles of users are volatile, it was
necessary to clean the PIP cache every time a user request to
activate/deactivate a role. Thus, the PIP gets and provides only
the roles that are currently active.

B. Performance Evaluation

A controlled environment was developed to prevent possible
interferences in the time measurements. A total of four hosts
were connected in a Gigabit local network, all with the same
configuration: core i7 processor and 8 GB of RAM. Each host
executed the Ubuntu Linux x64 operating system v. 14.10 with
Java 1.7 and tomcat 7 to run the web services.

The architecture's components were developed as web
services. In the test, two hosts ran the RBAC and XACML
services, representing two different domains. A third host ran
the OIDC server while the fourth host was a test application
automating the entire process (i.e., from user authentication to
the resource access request). The role activation process mimic
the user's choice (always using the first role available), given
that it is not possible to predict the user behavior.

The test application implemented the scenario of Fig. 2
(composed by 11 facilities), grouped into four groups (i)
OpenID Group comprises the session management, local
authentication, home user authentication and logout processes;
(ii) OAuth Group covers the local and home user token
retrieving processes; (iii) RBAC Group includes the local
domain role retrieving and activation, and the home user role
retrieving and deactivation processes, and (iv) XACML Group
comprises the step of requesting access to a protected resource.

The tests aimed at evaluating the access control
performance in the home domain versus the visited domain
while using the SRA. For this purpose, a number of several
requests and a number of users were evaluated. Initially, 10
roles were registered on each RBAC domain. To test SRA
performance, it was created 10 policies linked to the local
RBAC domain and 10 policies linked to the home user RBAC
domain. On the OIDC, it was created 1,000 users; each user was
linked to a role in each domain, randomly chosen. The first test
was deployed using 10 clients performing from 1 to 100
simultaneous requests. Each iteration randomly chooses 10
clients. Two scenarios were tested: on the first scenario, the
clients make each request on a single domain; on the second
scenario, the requests are made on a multi-domain with SRA
support. All requests are equally evaluated, given the caches for
PDP/PIP were disabled.

Fig. 4. Effect of increasing simultaneous requests on domains.

The Fig. 4 shows the time spent for accessing a single and
multi-domain considering the number of simultaneous requests.
One can be noticed that an equivalent performance can be
observed for local and home RBAC user access.

Fig. 5. Effects of increasing simultaneous requests in the proposal entities.

The Fig. 5 illustrates a test scenario to evaluate the
proposal's entities in a multi-domain environment with support
of SRA. We observed that by increasing the number of
simultaneous requests only the XACML is affected, while for
other entities the performance remains almost unchanged.

For a second test, the number of users is varied from 1 to
100, each user performs 10 access requests. The users are
randomly chosen for each test iteration. It is possible to note a
small performance impact while requesting user from home
RBAC domain (Fig. 6). The increase on the number of users
directly affects the architecture's entities (Fig. 7).

Fig. 6. Effects of increasing users requests on the domains.

Both tests significantly affect the XACML response time.
This behavior was expected in the first test, due to the growth
in the number of access requests. However, in the second test,
it occurs because the application performs 10 access requests
by user. Thus, increasing the number of users increases the
number of access requests. Note that a user is identified by its
access token in the services (RBAC and XACML). At each
iteration test, the user creates a session and, at the end of the
iteration, a session logout is performed. Thus, every iteration
uses a different access token.

Fig. 7. Effect of increasing simultaneous users on the proposal entities.

C. Security Analysis

This section performs a security analysis of the proposed model.
Figure 8 illustrates two scenarios which highlights the benefits
of usage the Access Authorization Control. Scenario A does not
use the access token. Thus, it is necessary to go through all
XML rules to conclude that a user does not have access to a
specific resource. This scenario shows an unauthorized user
requesting access to a protected resource (event i). The PEP
intercepts the request and forwards it to the Context Handler,
requesting the user attributes to PIP (event ii e iii). The PIP
requests the active roles from RBAC (event iv). RBAC, in its
turn, does not return any role because the user is not authorized
(event v). Next, PIP informs the Context Handler that the user
has no active role (event vi). The Context Handler creates a
XACML request to PDP (event vii). The PDP concludes that the
user is not authorized and replies to the Context Handler (event
viii), which informs the PEP (event ix). The PEP denies access
to the protected resource (event x).

In scenario B, the unauthorized user requests access to a
protected resource (event i). The PEP intercepts the request and
forwards to OAuth, which tries to validate the access token
(event ii). As it is not authorized, OAuth rejects the access token
and informs the PEP (event iii). The PEP denies access to the

protected resource (event iv). Scenarios A and B were evaluated
by using the same hosts as the section IV.B. The tests aimed to
measure the execution response time for each scenario. The
result of the evaluation showed that the scenario B, which uses
OAuth, was about 15 times faster than the scenario A. This
advantage is because the number of operations is reduced in
scenario B, given that a user without necessary authorizations
are denied before evolve in the evaluation process. In a possible
Denial of Service (DoS) attack, Scenario A, which does not use
OAuth, the resources would be exhausted faster, while Scenario
B would not be affected by the attack as Scenario A.

Context
Handler

PDP

PAPPIP

(vii) XACML Request

(viii) XACML response

(i
ii)

 A
tt

ri
b

ut
e

R
eq

u
es

t

(v
i)

 a
tt

ri
b

ut
e

s

RBAC
(iv) Role Request

(v) roles

Protected
Resources

PEP
(ix) response

(ii) Request(i) Access Request

(x) access denied

Scenario A, without OAuth – Number of operations to deny access: 10

Scenario B, with OAuth – Number of operations to deny access: 4

RBAC PIP PAP

Context
Handler

PDP

OAuth

Protected
Resources

PEP

Unauthorized
User

Unauthorized
User

(iv) access denied

(ii) Token
Validation

(iii) Invalid

(i) Access Request
(access token)

Fig. 8. Effect of increasing simultaneous users on the proposal entities.

D. Compliance Analysis

The XACML defines three top-level elements: Rule, Policy and
PolicySet. In a simplified way, the Rule is expressed as a
predicate (using role) that is individually evaluated. The Policy
element contains one or more Rules. Finally, the Policy Set
element contains one or more Policies. The Policy and
PolicySet elements adopt a combination algorithm that is used
when there are conflicting rules. For example, a policy contains
two rules, if evaluation of one rule returns true and the other
false, PDP must use a combination algorithm to decide the
evaluation's outcome. The most well-known combination
algorithms are: Deny-overrides, Permit-overrides and First-
applicable [13].

The RBAC standard [3] defines an administrative
specification that guide RBAC implementation. Among these,
the specification proposes a Permission Assignment (PA)
function that associates the roles with all their permissions. Our
proposal considers that the roles are user attributes. In such way,
the permissions assigned to a role are defined in the policies
stored in the PAP repository. Thus, the PA function is
performed every time the PDP evaluates an access request.

It was necessary to adopt a strategy for writing the XACML
policies using the user's active roles to prevent a possible
inconsistency in the PA function. For example, the Engineer
role must be allowed to read a project and write a technical
report. If these rights were written in different policies, it is
possible that role Engineer has only one of the permissions,

causing a role semantic inconsistency. The strategy adopted to
solve this problem associates all permissions of the role (PA) in
a single Policy. Thus, when a role is active, the user is assigned
to all the permissions of an active role or none in the case of
SoD. Such issue is not addressed neither by related works [4, 7]
nor on the XACML profile.

V. CONCLUSION

An attribute-based and multi-domain role activation model was
presented, which considers the different semantics of a role and
allows the single role activation (SRA). We use OIDC to
provide Single Sign-On among domains and OAuth acting as
admission control for the services, because each service has
different context. The RBAC controls the roles session, users
and separation of duty. The XACML performs fine-grained
access control based on attributes, from roles that are in fact
user attributes.

The proposal keeps the autonomy of each local domain
administrator, allowing the administrator to set permissions for
each role (local or imported role – from a RBAC session). Thus,
the local domain administrator can set XACML policies
referencing also roles from a RBAC user-home domain. When
a user visits a domain and requests access to a protected
resource, the active role's session on her home domain is
considered. If the permissions of an active roles in the home
domain do not conflict with local roles, the RBAC imports the
role session into the visited domain. As a result, a user
transparently accesses other domains, without activating role in
the visited domains, as happens with SSO for authentication.

The prototype showed the model's feasibility. The tests
related to multi-domains with SRA showed that the access
control has a similar performance to a single domain, with slight
increase in the response times. Considering the qualitative
advantages that the SRA provides to the user and the reasonable
performance, we consider that the proposal shown is feasible.

ACKNOWLEDGEMENTS

This work was partially sponsored by the Brazilian National
Council for Scientific and Technological Development (CNPq),
grants 307346/2015-3 and 404963/2013-7. Vilmar Abreu
Junior wishes to thanks to CNPq for scholarship granting,
process 381612/2014-7.

REFERENCES

 [1] Y. C. Y. Cao e L. Y. L. Yang, “A survey of Identity Management
technology,” Proc. of IEEE Int. Conf. Inf. Theory Inf. Secur., p. 287–
293, 2010.

[2] M. Hansen, P. Berlich, J. Camenisch, S. Clauβ, A. Pfitzmann, M.
Waidner, “Privacy-enhancing identity management,” Information
Security Technical Report, vol. 9, no. 1, p. 35-44, 2004.

[3] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.
Chandramouli. “Proposed NIST standard for role-based access
control.,” ACM Transactions on Information and System Security vol.
4, no. 3, p. 224-274, 2001.

[4] R. Ferrini e E. Bertino, “Supporting RBAC with XACML+OWL,”
Proc. of ACM symposium on Access control models and technologies,
p. 145–154, 2009.

[5] E. Freudenthal, T. Pesin, L. Port, E. Keenan, e V. Karamcheti,
“dRBAC: Distributed Role-based Access Control for Dynamic
Coalition Environments,” Proc. of Int. Conf. on Distributed

Computing Systems, p. 411–420, 2002.
[6] D. Hardt, “The OAuth 2.0 Authorization Framework,” in Internet

Engineering Task Force (IETF), p. 1–76, 2012.
[7] N. Helil e K. Rahman, “RBAC Constraints Specification and

Enforcement in Extended XACML,” Proc. of Int. Conf. on Multimedia
Information Networking and Security, MINES, p. 546–550, 2010.

[8] V. Hu, D. Ferraiolo, e R. Kuhn, “Guide to Attribute Based Access
Control (ABAC) Definition and Considerations,” NIST Special
Publication, p. 1-162, 2014.

[9] J. B. D. Joshi, R. Bhatti, E. Bertino, e A. Ghafoor, “Access-Control
Language for Multidomain Environments,” IEEE Internet Computing,
vol. 8, no 6, p. 40–50, 2004.

[10] H. K. Lee e H. Luedemann, “Lightweight Decentralized
Authorization Model for Inter-Domain Collaborations,” Proc. of ACM
workshop on Secure web services, p. 83–89, 2007.

[11] Q. Li, X. Zhangt, S. Qing, e M. Xut, “Supporting Ad-hoc
Collaboration with Group-based RBAC Model,” Proc. of Int. Conf. on
Collaborative Computing, p. 1–8, 2006.

[12] S. Osborn, R. Sandhu, e Q. Munawer, “Configuring Role-Based
Access Control to Enforce Mandatory and Discretionary Access
Control Policies,” ACM Trans. Inf. Syst. Secur., vol. 3, no 2, p. 85–
106, 2000.

[13] B. Parducci e H. Lockhart, “eXtensible Access Control Markup
Language (XACML) Version 3.0,” OASIS Standard, p. 1–154, 2013.

[14] R. Power, “Tangled Web: Tales of Digital Crime from the Shadows
of Cyberspace,” Macmillan Press, p. 1-8, 2000.

[15] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, e C. Mortimore,
“OpenID Connect Core 1.0,” 2014. Available at:
http://openid.net/specs/openid-connect-core-1_0.html. [Accessed:
March 2017].

[16] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, e C. E. Youman, “Role-
Based Access Control Models,” IEEE Comput., vol. 29, no 2, p. 38–
47, 1995.

[17] R. S. Sandhu e P. Samarati, “Access Control: Principles and
Practice”, IEEE Communications Magazine, p. Samarati, “Access
Control: Principles and Practice,” IEEE Communications Magazine, p.
1–21, 1994.

[18] B. Shafiq, J. B. D. Joshi, E. Bertino, e A. Ghafoor, “Secure
Interoperation in a Multidomain Environment Employing RBAC
Policies,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no 11, p. 1557–1577, 2005.

[19] R. Sinnema e E. Wilde, “eXtensible Access Control Markup
Language (XACML) XML Media Type,” Internet Engineering Task
Force (IETF), p. 1–8, 2013.

[20] H. K. Lee, “Unraveling decentralized authorization for multi-
domain collaborations,” Proc. of Int. Conf. Collab. Comput.
Networking, Appl. Work, p. 33–40, 2007.

[21] S. C. Mouliswaran and C. A. Kumar, “Inter-domain Role Based
Access Control using Ontology,” Proc. of International Conference on
Advances in Computing, Communications and Informatics, p. 2027–
2032, 2015.

[22] Ribeiro, R. C. , Santin, A. O., Abreu, V., Marynowski, J. E., Viegas,
E. K., “Providing Security and Privacy in Smart House Through
Mobile Cloud Computing,” Proc. of IEEE Latin-American Conf. on
Communications, p. 1-6, 2016.

[23] A. Witkovski, A. Santin, V. Abreu, and J. Marynowski, “An IdM
and Key-based Authentication Method for providing Single Sign-On
in IoT,” Proc. of IEEE GLOBECOM, p. 1–6, 2015.

[24] M. Stihler, A. Santin, A. Marcon, J. Fraga, “Integral Federated
Identity Management for Cloud Computing,” Proc. of Int. Conf. on
New Technologies, Mobility and Security (NTMS), p. 1-5, 2012.

