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ABSTRACT OF THE DISSERTATION

Experimental Methods in Number Theory and Combinatorics

By ROBERT DOUGHERTY-BLISS

Dissertation Director:

Doron Zeilberger

Some results in experimental mathematics are presented. In particular, new primality tests based on the the-

ory of linear recurrences; the confirmation of some conjectures by Manuel Kauers and Christoph Koutschan;

some new proofs of famous summation identities; a connection to Gosper summability of factorials and bell

numbers; the creation of new, decidable diophantine equations; experiments related to Beukers’ proof of the

irrationality of Apéry’s constant; and an enumeration of certain types of restricted Dyck paths.
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Chapter 1

Introduction

This thesis contains results across a variety of fields, chiefly combinatorics, number theory, and the theory

of linear recurrences and summation. The chapters are essentially independent and either self-contained or

accompanied by enough references that an interested reader could follow along. Pick your favorite parts and

ignore the rest. The remainder of this chapter is an introduction to experimental mathematics as I have seen

it practiced at Rutgers and elsewhere, targeted at the uninitiated but interested mathematician.

The theme which underlies this thesis is an embrace of the experimental approach. Roughly speaking,

this means incorporating an aggressive interrogation of data within the process of doing mathematics. The

problems about things that you can touch and manipulate easily on a computer, the methods focus on writing

programs to generate and analyze data, and the results are sometimes conjectures rather than proven theorems.

Of course all mathematicians make conjectures from data, but the difference here is one of degrees. There

is a collection of methods and techniques that experimental mathematicians seem to make use of more than

others, all related to the idea of guessing. To clarify the point, the following sections are a collection of brief

case studies where the experimental approach seems to shine through.

1.1 Origami

In 2021, Natalya Ter–Saakov asked me for help solving a graph theory problem related to the theory of

origami folding [Hul+22]. It is simple enough to state without any knowledge of origami.

Definition 1. An assignment array of length 2n is a circular array of length 2n which contains −1’s and

1’s whose entries sum to ±2. The all-equal-angles origami flip graph A2n consists of one vertex for every

assignment array of length 2n, and edges joining two arrays if one can be obtained from the other by negating
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Figure 1.1: Left: A valid array of size 10. Right: An invalid array of size 10.

Figure 1.2: Two adjacent vertices in A4 and their flipped bits.

two adjacent entries.

Ter-Saakov’s goal was to determine the number of edges in A2n. She and her collaborators had a program

that could compute a few terms of the sequence, which starts as follows:

2,16,84,400,1820,8064,35112,151008,643500,2722720,11454872,47969376,200107544.

The group was unable to find a closed-form expression on their own, and unfortunately the sequence was not

in the OEIS [OEI24]. (The sequence divided by 2 was entered into the OEIS after the end of this story.)

I was able to find a closed form expression for their sequence in a few minutes. I typed the numbers into

Maple and passed them to Zeilberger’s FindRec.txt package [Zei24a] as follows:

> x := [2, 16, 84, 400, 1820, 8064, 35112, 151008,

643500, 2722720, 11454872, 47969376, 200107544]:

> Findrec(x, n, N, 3);

2 (3 n + 1) (2 n - 1)

- --------------------- + N

n (3 n - 2)
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This told me that the sequence a(n), the number of edges in A2n, seemed to satisfy the recurrence

a(n+1) =
2(3n+1)(2n−1)

n(3n−2)
a(n). (1.1)

From here it was a simple matter to unroll the recurrence and conjecture the correct answer

a(n) =
(n+1)(3n−2)

2n−1

(
2n

n−1

)
.

Ter-Saakov, inspired by my formula, quickly found a proof using probabilistic methods.

The method to conjecture the recurrence (1.1) is not particularly complicated. Combinatorial quantities

can often be expressed as the product and quotient of factorials, binomial coefficients, and polynomials. If

a(n) is of this form, then the term ratio a(n+ 1)/a(n) will be some fixed rational function in n. So, as an

educated guess, we write
a(n+1)

a(n)
=

cdnd + cd−1nd−1 + · · ·+ c0

bmnm +bm−1nm−1 + · · ·+b0
, (1.2)

make the numerator and denominator of the rational function have a reasonable degree like 4, and plug

in some values of the sequence a(n) that we know from computation. Cross multiplication and equating

coefficients leads to a system of linear equations in the coefficients of the rational function, and solving

this gives the conjectured expression for a(n+1)/a(n). This is how one could find a recurrence satisfied by

hypergeometric sequences, which are precisely those which satisfy an equation of the form (1.2). Zeilberger’s

Findrec works on a more general class of sequences which are called D-finite [Kau23].

The key point is that recurrences like (1.1), while common, can be arbitrarily difficult to find by hand.

Many sequences satisfy simple recurrences, but many more satisfy very complicated ones, and even more

satisfy no recurrence of this form. Rather than trying to find a needle in one of infinitely many haystacks, it

is better to run automated analyses.

1.2 Permutations and the OEIS

The most famous experimental method to solve a problem is “consult the OEIS,” the authoritative sequence

collection. This has led to some really stupendous discoveries.

For instance, in 2019, Lara Pudwell was studying the following types of permutations [Pud20].

Definition 2. A permutation π on {1,2, . . . ,n} is alternating provided that π(1) > π(2) < π(3) > · · · , and

so on. A permutation π contains the pattern 123 provided that there are integers i < j < k such that π(i) <

π( j)< π(k). The number of 123 patterns contained in π is the number of such i < j < k triples.
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Pudwell discovered that the maximum number of 123 patterns contained in a permutation of length n+3

is A168380. This happens to have the closed form

(n+1)(2n2 +4n+3−3(−1)n)

12
.

More surprisingly, A168380 came up eight years earlier in an unrelated fashion. Alonso del Arte pointed

out in the OEIS that the first eight terms of the sequence (prepended by a zero) happen to equal the “atomic

numbers of the augmented alkaline earth group in Charles Janet’s spiral periodic table.” Or, as Pudwell

puts it, “the quasi-polynomial sequence 2, 4, 12, 20, 38, 56, 88, . . . [gives] the atomic numbers of helium,

beryllium, magnesium, calcium, and more” [Pud20]. The OEIS is great for finding these kind of unexpected

connections.

Another success occurred in 2022. Christoph Koutschan and Manuel Kauers used lattice reduction tech-

niques to build a cutting edge recurrence guesser, then ran it on every sequence in the OEIS. One promising

result was a conjectured recurrence for A189281:

a(n) = {π ∈ Sn | π(i+2)−π(i) ̸= 2, 1≤ i < n−1}.

Like most sequences counting permutations, it is difficult to compute terms of a(n) from the definition.

According to a comment in the OEIS, in 2012 it took 78 computer hours to compute a(34), 147 to compute

a(35), and no one bothered to compute beyond that. The method of “classical guessing,” as implemented in

Zeilberger’s FindRec.txt, could not find a recurrence satisfied by the available terms in 2012. With their

https://oeis.org/A168380
https://oeis.org/A189281
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enhanced approach, Koutschan and Kauers conjectured (essentially) the following recurrence:

((−1+n)2na(n))/4+(n(−16+38n+11n2)a(1+n))/16+

(3/2+(139n)/16+(29n2)/8+(3n3)/16)a(2+n)+

(−21/4− (51n)/4− (79n2)/16− (5n3)/8)a(3+n)+

(−15/2−n/8+(5n2)/4+n3/8)a(4+n)+

(603/4+(307n)/4+(49n2)/4+(11n3)/16)a(5+n)+

(−41− (533n)/16− (49n2)/8− (5n3)/16)a(6+n)+

(−911/2−161n− (303n2)/16− (3n3)/4)a(7+n)+

(−363− (417n)/4− (37n2)/4−n3/4)a(8+n)+

(−993/4−53n− (11n2)/4)a(9+n)+(−130− (93n)/4−n2)a(10+n)+

(−71/4−2n)a(11+n)+(−10−n)a(12+n)+a(13+n) = 0.

Inspired by the potential for faster computation of a(n), independent checkers worked hard to confirm that

the recurrence agrees with a(n) up to n = 300, though it is still officially an open problem to prove that this

recurrence is correct.

1.3 RIES

A lesser-known cousin of the OEIS is RIES, Robert Munafo’s RILYBOT Inverse Equation Solver [Mun].

Given any floating point approximation to a real number, RIES tries to guess an equation that it might satisfy.

This has many silly applications—for example, this thesis will be published in ⌊e5 +42e⌋ CE, approximately

5e
√

e years after I was born—but also some serious ones.

The primary use is to identify constants which come up in experimental work. A nice example occurred

in a Math Stack Exchange question [EHE]. Does the series

∑
k≥1

(−1)k ζ (2k)
22k−1 ,

where ζ (s) = ∑k≥1 k−s is the Riemann zeta function, have a closed form? Summing the first 400 terms of

this series yields the approximation

0.7126885749596477556091690865860192683.
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If we pass this to RIES then we obtain many potential equations, but one with an unusually good fit (output

edited for brevity):

$ ries 0.7126885749596477556091690865860192683

Your target value: T = 0.712688574959648 mrob.com/ries

1/x^2 = 2 for x = T - 0.00558179 {44}

-ln(x) = 1/3 for x = T + 0.00384274 {57}

1/cospi(x) = -phi for x = T - 0.000617977 {60}

sinpi(x) = atan2(1) for x = T - 0.000230344 {57}

...

x+1-pi/2 = pi/(e^pi-1) for x = T - 1.11022e-16 {127}

(Stopping now because best match is within 1e-15 of target value.)

RIES conjectured the closed form

∑
k≥1

(−1)k ζ (2k)
22k−1 =

π

eπ −1
+

π

2
−1. (1.3)

With the confidence given by a convincing guess, this is easy to establish with Euler’s identity

ζ (2k) = (−1)k+1 (2π)2kB2k

2(2k)!

relating ζ (2k) to π and the 2kth Bernoulli number B2k, and the generating function for the Bernoulli numbers

themselves.

See the tutorial on constant identification by Stoutemyer for more information [Sto23].

1.4 Conclusion

We have still not exhausted the experimental toolkit. We have not mentioned the integer relation algorithm

PSQL [FBA99], famously used to discover the following formula for π [BBP97]:

π = ∑
k≥0

1
16k

(
4

8k+1
− 2

8k+4
− 1

8k+5
− 1

8k+6

)
.

We have not mentioned gfun, a package which guesses and manipulates generating functions [SZ94]. And

we have not mentioned any of the Mathematica packages for experimental work developed at the Research

Institute for Symbolic Computation [RIS].
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Nontheless, hopefully this has communicated some of what experimental mathematics is about: The

aggressive interrogation of data as a regular part of mathematical research.
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Chapter 2

Integral Recurrences from A to Z

The following article appeared in The American Mathematical Monthly [Dou22]. It was written over the

winter of 2020 as a distant companion piece to a joint paper with Doron Zeilberger and Christoph Koutschan

about Beukers integrals [DKZ22]. I thought of it as something to hand to a sharp undergraduate student as

a stepping stone, somewhat towards number theory but mostly towards computer algebra. We sometimes

teach undergraduates calculus as if it were 1755 [Eul55], and I wanted to show students this is not the case

anymore.

This is chiefly an expository work, but I include it here because I have some small updates to the refer-

ences. In particular, I have mentioned where readers can learn more about the Almkvist–Zeilberger algorithm

itself, as well as modern implementations.

I do not remember what the biblical quote was supposed to convey.

2.1 Introduction

Behold, I will stand before thee there upon the rock in Horeb; and thou shalt smite the rock and there shall

come water out of it, that the people may drink.

— Exodus 17:6

You have been up all night working out the ingenious solution to your latest problem. Your answer depends

on the integral sequence

I(n) =
∫

∞

−∞

x2n

(x2 +1)n+1 dx,

which you desperately need to evaluate. You know that you could break out special functions, contour

integrals, or some other method, but you would really just like a quick answer without much fuss.
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You run to download the file EKHAD from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD

and read it into Maple with “read EKHAD;”. You type the command

AZd(x^(2 * n) / (x^2 + 1)^(n + 1), x, n, N);

and hardly a second has passed when Maple produces the following:

-2 n - 1 + (2 n + 2) N, -x.

You cry out in joy, for the Almkvist–Zeilberger algorithm has told you that your integrand satisfies the “re-

currence”

(−2n−1+(2n+2)N)
x2n

(x2 +1)n+1 =− d
dx

x
x2n

(x2 +1)n+1 ,

where N is the shift operator defined by N fn(x) = fn+1(x). Integrating this equation on (−∞,∞) gives the

identity

(−2n−1+(2n+2)N)I(n) = 0,

which would traditionally be written as

I(n+1) =
2n+1

2(n+1)
I(n).

Using the initial condition I(0) = π , you crank out the first few terms of the sequence:

π,
π

2
,

3π

8
,

5π

16
,

35π

128
,

63π

256
,

231π

1024
,

429π

2048
,

6435π

32768
,

12155π

65536
,

46189π

262144
.

The denominators look like powers of 2. After some experimentation, you let π = 1 and multiply by 4n. This

produces some integers:

1,2,6,20,70,252,924,3432,12870,48620,184756.

You visit the On-Line Encyclopedia of Integer Sequences [OEI24] at https://oeis.org, type in your

integers, and receive word that they are the central binomial coefficients
(2n

n

)
. You have just conjectured that

I(n) =
∫

∞

−∞

x2n

(x2 +1)n+1 dx =
π

4n

(
2n
n

)
.

To wrap up, you note that the final expression satisfies the same initial condition. You check the recurrence

by typing the commands

https://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD
https://oeis.org
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L := Pi * binomial(2 * (n + 1), n + 1) / 4^(n + 1):

R := Pi * binomial(2 * n, n) / 4^n:

simplify(convert(L / R, factorial));

and observing the output

2 n + 1

-------.

2 n + 2

This is a rigorous proof requiring minimal effort on your part. Such is a normal case study of the AZ algo-

rithm.

In general, we often want to understand the sequence of definite integrals

I(n) =
∫

Fn(x) dx.

Perhaps we would like to compute the first twenty or so terms to see what I(n) looks like. Sometimes we can

ask a computer to churn these out, but other times Fn(x) is so complicated that even our electronic friends

would struggle to keep up for large n. What we need is an efficient algorithm to compute the terms of I(n).

We need a recurrence.

There are plenty of ad hoc methods to find a recurrence for I(n). You could integrate by parts or dif-

ferentiate under the integral sign, for example. But these all require ingenuity, insight, and hard work. As

Sir Alfred Whitehead once remarked, such ingenuity is overrated. No one wants to work hard—we want

answers!

The painless way to discover these recurrences for large classes of integrals is the Almkvist–Zeilberger al-

gorithm. This is the direct analog of the celebrated Wilf–Zeilberger method of automatic definite summation,

but it has received less attention than its discrete counterpart. Our goal here is to explore the Almkvist–

Zeilberger algorithm with a few case studies, leaving the door open for more experimentation.

2.2 A quick start guide to the AZ algorithm

The Wilf–Zeilberger method of definite summation was a breakthrough in automatic summation. Roughly,

the Wilf–Zeilberger method can automatically prove (and semi-automatically discover) most commonly oc-
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curring summation identities of the form

S(n) = ∑
k

f (n,k) = RHS(n).

One piece of the puzzle is that, whenever f (n,k) is a “suitable” function, it satisfies a special type of inhomo-

geneous linear recurrence with polynomial coefficients in n. Specifically, there exists a nonnegative integer d

and polynomials p j(n) such that

d

∑
j=0

p j(n) f (n+ j,k) = G(n,k+1)−G(n,k),

where G(n,k) is some function with G(n,±∞) = 0. Summing over k yields the recurrence

d

∑
j=0

p j(n)S(n+ j) = G(n,∞)−G(n,−∞) = 0.

This method, also known as creative telescoping, has been (rightly) advertised from here to the Moon and

back. See the article [Tef04], the book [PWZ97], the lecture notes [Zei95], and the lively Monthly article

[Nem+97].

The Almkvist–Zeilberger algorithm is to definite integrals what the Wilf–Zeilberger method is to definite

sums. The input to the algorithm is a “suitable” function Fn(x) with a discrete parameter n. The output is a

nonnegative integer d, polynomials pk(n), and a rational function R(x) such that

d

∑
k=0

pk(n)Fn+k(x) =
d
dx

R(n,x)Fn(x).

The left-hand side is independent of x except for the Fn(x), so integrating this equation on [0,1], say, gives

d

∑
k=0

pk(n)
∫ 1

0
Fn+k(x) = R(n,1)Fn(1)−R(n,0)Fn(0).

If Fn(0) = Fn(1) = 0 and R(n,x) is well-behaved, then I(n) =
∫ 1

0 Fn(x) satisfies

d

∑
k=0

pk(n)I(n+ k) = 0,

meaning that we have discovered a recurrence for the sequence of integrals I(n). The only thing to verify is

that Fn(x) is “suitable,” and that R(n,x) is well-behaved on the region of integration.

What functions are “suitable”? The requirement is that Fn(x) is hypergeometric in n and x, meaning that
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there exist fixed rational functions R1(n,x) and R2(n,x) such that

Fn+1(x)/Fn(x) = R1(n,x)

F ′n(x)/Fn(x) = R2(n,x).

This is all that the algorithm needs to produce its identity.

The version of the Almkvist–Zeilberger algorithm that we will use is implemented in the procedure

AZd(f, x, n, N) in the Maple package EKHAD referenced in the introduction. It takes an expression f

in the continuous variable x and discrete parameter n. The symbol N stands for the “shift” operator N on the

set of sequences by

Na(n) = a(n+1).

For example, the Fibonacci numbers F(n) satisfy

(N2−N−1)F(n) = 0.

I have deliberately chosen to not sketch the inner workings of the Alkmvist–Zeilberger algorithm or detail

every modern improvement or implementation. To learn the details, see the original article [AZ90]. To learn

about some improvements to the theory, and where to find efficient multivariate implementations, see [AZ06;

Abl21].

Let us get on to the case studies.

2.3 Factorials

Let us begin humbly, by evaluating an integral that we already know.

Proposition 1. For each integer n≥ 0,

I(n) =
∫

∞

0
e−xxn dx = n!.

Proof. Typing the command

AZd(exp(-x) * x^n, x, n, N);

into Maple produces:

N - n - 1, -x.
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That is, the Almkvist–Zeilberger algorithm has told us that

(N− (n+1)) fn(x) =−
d
dx

e−xxn+1.

Since the antiderivative of the right-hand side vanishes for x = 0 and x = ∞, integrating on [0,∞) gives

(N− (n+1))I(n) = 0,

and since I(0) = 1, we have I(n) = n!.

2.4 “A Complicated Integral”

This is from Section 3.8 of [BM04].

Proposition 2.

I(n) =
∫

∞

0

xn

(x+1)n+r+1 dx =
[

r
(

r+n
n

)]−1

.

Proof. Typing the command

AZd(x^n / (x + 1)^(n + r + 1), x, n, N);

into Maple produces:

(n + 1) + (-n - r - 1) N, x.

And for r > 0, integrating the implied identity

((n+1)− (n+ r+1)N)
xn

(x+1)n+r+1 =
d
dx

x
xn

(x+1)n+r+1

yields

((n+1)− (n+ r+1)N)I(n) = 0.

The sequence (r
(r+n

n

)
)−1 satisfies the same recurrence and initial condition (check!).

2.5 Central binomial coefficients

Proposition 3. The integral sequence

I(n) =
∫ 1

0
(x(1− x))n dx
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satisfies

(N− n+1
2(2n+3)

)I(n) = 0.

Proof. Typing the command

AZd((x * (1 - x))^n, x, n, N);

into Maple produces:

n + 1 + (-4 n - 6) N, (-1 + 2 x) (-1 + x) x.

Integrating the implied identity

(N− n+1
2(2n+3)

)(x(1− x))n =
d
dx

(2x−1)(x−1)x(x(1− x))n,

on [0,1] yields the result, since the antiderivative of the right-hand side vanishes at x = 0 and x = 1.

The recurrence implies that I(n) begins as follows:

1/6, 1/30, 1/140, 1/630, 1/2772, 1/12012, 1/51480, . . . .

Corollary 1.

I(n) =
1

(2n+1)
(2n

n

) .
Proof. Both sequences satisfy the same recurrence and initial condition (check!).

Integral evaluation is an area full of unintended consequences. Here we have an example, since one way

to try and evaluate I(n) is by applying the binomial theorem to the integrand:

I(n) =
∫ 1

0
xn(1− x)n dx

=
∫ 1

0

n

∑
k=0

(
n
k

)
(−1)kxn+k dx

=
n

∑
k=0

(
n
k

)
(−1)k

n+ k+1
.

This remaining sum is complicated, but we can pair it with our previous corollary to get another.

Corollary 2.
n

∑
k=0

(
n
k

)
(−1)k

n+ k+1
=

1
(2n+1)

(2n
n

) .
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2.6 Irrationality

Our final case study is a slightly more complicated sequence of integrals. We will not derive a closed form,

but to compensate we will uncover a wealth of other information.

Proposition 4. The integral sequence

I(n) =
∫ 1

0
(x(1− x))ne−x dx

satisfies

(N2 +2(2n+3)(n+2)N− (n+1)(n+2))I(n) = 0.

Proof. Let fn(x) be the integrand. The Almkvist–Zeilberger algorithm produces the “calculus exercise”

(N2+2(2n+3)(n+2)N− (n+1)(n+2)) fn(x)

=
d
dx

(−2nx3− x4 +3nx2−2x3−nx+5x2−2x) fn(x),

and integrating this proves the proposition.

This recurrence is too complicated to solve in a reasonable way. However, it does help us produce the

following initial terms:

−1+
3
e
, 14− 38

e
, −426+

1158
e

, 24024− 65304
e

, . . . .

This data is very suggestive! It seems that

I(n) = an +bne−1

for some integers an and bn. We can check this immediately with the recurrence: if I(n) = an + bne−1 and

I(n+1) = an+1 +bn+1e−1, then

I(n+2) =−2(2n+3)(n+2)I(n+1)+(n+1)(n+2)I(n)

=−2(2n+3)(n+2)(an+1 +bn+1e−1)+(n+1)(n+2)(an +bne−1)

= an+2 +bn+2e−1,
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where we take

an+2 =−2(2n+3)(n+2)an+1 +(n+1)(n+2)an

bn+2 =−2(2n+3)(n+2)bn+1 +(n+1)(n+2)bn.

That is, an and bn are sequences of integers which satisfy the same recurrence that I(n) satisfies, only the

initial conditions are different:

a1 =−1 a2 = 14

b1 = 3 b2 =−38.

Better yet, note that

−a4

b4
=

24024
65304

= 0.36787945 . . .

≈ e−1.

That is, −an/bn seems to be a good approximation to e−1!

To see why this is, we must go back to the initial integral. For 0≤ x≤ 1, we have x(1−x)≤ 1/4, therefore

0≤ I(n) =
∫ 1

0
e−x(x(1− x))n dx≤ 1

4n

∫ 1

0
e−x dx,

which shows that I(n) goes to zero exponentially quickly. Therefore

|an +bne−1| → 0

exponentially quickly, meaning that −an/bn gives an exponentially-good rational approximation of e−1. To

double check, we can use our recurrence to compute a20/b20:

−a20

b20
=

493294164866383351699429534601141833239920640000
1340912564441170249019237618446466016434749440000

= 0.3678794411714423215955237701614608674 . . .

≈ e−1.
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Better still, this remarkable approximation −an/bn ≈ e−1 is too good to be true in the following sense.

Proposition 5. Let α be a real number. If there exist sequences of integers an and bn such that |bn| → ∞, the

ratio an/bn is not eventually constant, and

|α− an

bn
| ≤ C
|bn|1+δ

for some positive constants C and δ , then α is irrational.

Proof. If α = a/b is rational, then

|α− an

bn
|= |(bna−ban)/b|

|bn|
.

The “numerator” bna−ban is a nonzero integer infinitely often, and so

|α− an

bn
| ≥ D
|bn|

for some positive constant D and infinitely many n. But the inequality

D
|bn|
≤ C
|bn|1+δ

is impossible if |bn| → ∞.

This fact together with our approximation −an/bn ≈ e−1 gives us a proof that e is irrational.

Proposition 6. e is irrational with δ = 1.

Proof. Let an and bn be the approximating sequences induced by

I(n) =
∫ 1

0
e−x(x(1− x))n dx.

We have

|an +bne−1| ≤ 1
4n

∫ 1

0
e−x =

C
4n .

The sequence bn satisfies the recurrence

(N2 +2(2n+3)(n+2)N− (n+1)(n+2))bn = 0.

It turns out—see [WZ85]—that this reveals considerable asymptotic information about bn. In particular, if we

rewrite the recurrence as a polynomial in n, the leading coefficient is 4N−1. The only solution to 4N−1 = 0
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is N = 1/4, and this implies that 1/4n ≤C′ 1
|bn| for some constant C′. Thus

|an +bne−1| ≤ C′

|bn|
,

or

|an

bn
+ e−1| ≤ C′

|bn|1+δ
,

where δ = 1. The claim follows from the previous proposition.

It is a cruel irony that almost every real is irrational, yet we are often helpless to prove that any naturally

occurring constant such as eπ , e+π , or γ (the Euler–Mascheroni constant) is irrational. The “constructive

irrationality” method we have just used gives us a possible framework to approach irrationality: find an

approximation, check that δ > 0. Because irrationality results are so difficult, any hint or direction is worth

investigating.

This constructive style of proof was made very famous by Roger Apéry [Apé79; Poo79]. In 1978, during

an infamous talk at Marseille, Apéry proved that

ζ (2) = ∑
k≥1

1
k2 and ζ (3) = ∑

k≥1

1
k3

are irrational. Euler knew that ζ (2) = π2/6, so the irrationality of ζ (2) was no big deal. The irrationality of

ζ (3) was stunning.

Apéry’s proof relied on writing down (seemingly at random) the recurrence

(n+2)3N2− (2n+3)(17n2 +51n+39)N +(n+1)3 = 0.

and choosing two solutions an and bn with different initial conditions, just as we did for e−1. After consid-

erable checking, it turned out that an/bn converged to ζ (3) sufficiently quickly to prove its irrationality with

δ ≈ 0.080529.

The proof left the audience with many questions. Where did that recurrence come from? Why did those

particular solutions work? Would Apéry’s argument generalize to other constants, such as ζ (5)?

Shortly after Apéry’s proof, Frits Beukers [Beu79] cleared up some of the mystery when he elegantly

reproved proved that ζ (2) and ζ (3) are irrational by considering integrals of the form

∫ 1

0

∫ 1

0

xnyn(1− x)n(1− y)n

1− xy
dx dy
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and ∫ 1

0

∫ 1

0

∫ 1

0

xnynzn(1− x)n(1− y)n(1− z)n

(1− (1− xy)z)n+1 dx dy dz,

respectively, which is similar to what we have done here.

Despite the efforts of many experts, it remains unclear how to generalize either Apéry’s or Beukers’

arguments to prove that any odd-zeta value other than ζ (3) is irrational. Simply put, we do not properly

understand how ζ (3) is related to the ratio an/bn of distinct solutions to a single recurrence, so we cannot

construct similar recurrences for ζ (5) and beyond. The relevant term here is Apéry limit [CS21].

2.7 Irrationality Measures

Proving that e is irrational is an easy exercise, but our constructive proof gives more: a quantitative measure

on the irrationality of e. For any real α , the irrationality measure of α , denoted µ(α) is defined to be the

smallest real µ such that ∣∣∣∣α− p
q

∣∣∣∣> 1
qµ+ε

holds for any ε > 0 and for all integers p and q with q sufficiently large. If no such µ exists, then we set

µ(α) = ∞.

Irrationality measures are intimately tied to constructive irrationality proofs. If we can construct a se-

quence of rationals an/bn such that

|α− an

bn
| ≤ C

b1+δ
n

,

then µ(α) ≥ 1+ δ . In many cases—see [Poo79]—this also implies the upper bound µ(α) ≤ 1+ 1
δ

. Our

proof happens to be one of these cases, and we get both µ(e) ≥ 1+ 1 = 2 and µ(e) ≤ 1+ 1
1 = 2, which

implies µ(e) = 2.

Though we have used integrals to construct our approximations, irrationality measures are also tightly

linked with simple continued fractions. See Section 11.3 of the classic book Pi and the AGM by the great

masters Jonathan and Peter Borwein for another proof of the irrationality measure of e, along with much

more discussion about irrationality measures in general [BB87].

It is unusual that we know µ(e) exactly. Irrationality measures fall into three “regions”:

α is . . . µ(α)

rational 1

algebraic with degree > 1 2

transcendental ≥ 2
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So µ(e) ≥ 2 is automatic by its transcendence, but µ(e) = 2 is a surprise. Normally the best we can do is

give an upper bound on µ(α) for specific transcendental α .

In fact, since it is so hard to establish irrationality, we have invented a new game: finding better and better

upper bounds for the irrationality measure of famous constants. If you can find the best upper bound for µ(π),

or µ(ζ (3)), then you get to hold the world record for a few months until someone beats you. For example,

the current “world record” upper bound on µ(π) is held by Zeilberger and Zudilin [ZZ20], who showed that

µ(π)≤ 7.103205334137 . . . .

Ignoring technical details, their proof is very similar to ours. The basic idea is to find a rapidly-decaying

sequence of integrals I(n) such that I(n) = an +πbn for integers an and bn, then show that an and bn have

nice asymptotic properties.

To find their approximating sequences, Zeilberger and Zudilin tweaked integrals similar to the integrals

Beukers used in his ζ (3) proof. They added parameters to the integrands and performed an exhaustive

computer search to find those parameters which gave the empirically best upper bound, then went back and

checked the details. This computer search method continues to provide possible avenues for constructive

irrationality proofs; see [DKZ22] and [ZZ21].

2.8 Conclusions

It is too late for us to become famous proving that ζ (3) is irrational. We should be content just to have some

new tools to play with. We should certainly show students how to use the AZ algorithm.

But you never know—one day you might just plug the right integrand into the Almkvist–Zeilberger

algorithm to prove that

(FAMOUS CONSTANT)

is irrational. Until then, have fun!
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Chapter 3

Hardinian arrays

The On-Line Encyclopedia of Integer sequences [OEI24] contains over 350,000 sequences and perhaps tens

of thousands of conjectures about them. Here we resolve some of these conjectures related to a family of

sequences due to R.H. Hardin.

For any positive integer r, let Hr(n,k) be the number of n× k arrays which obey the following rules:

• The entry in position (1,1) is 0, and the entry in position (n,k) is max(n,k)− r−1.

• The entry in position (i, j) must equal or be one more than each of the entries in positions (i− 1, j),

(i, j−1), and (i−1, j−1).

• The entry in position (i, j) must be within r of max(i, j)−1.

We call these arrangements of numbers Hardinian arrays. For r = 1,2,3, they are counted by the tables

A253026, A253223, and A253004, respectively. Below is an example for r = 1, n = 6, and k = 5.



0 1 2 2 3

1 1 2 2 3

2 2 2 3 3

3 3 3 3 4

4 4 4 4 4

4 4 4 4 4


Hardin noticed several interesting patterns. For example, for every fixed r and k, the sequence Hr(n,k) seems

to be a polynomial in n of degree r for sufficiently large n. He also conjectured an evaluation of the diagonal

https://oeis.org/A253026
https://oeis.org/A253223
https://oeis.org/A253004
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for r = 1, namely

H1(n,n) =
1
3
(4n−1−1).

More recently, Kauers and Koutschan [KK23] performed an automated search for sequences in the OEIS

which satisfy linear recurrences with polynomial coefficients. Hardin happened to submit the diagonal of

r = 2 as its own sequence, which led Kauers and Koutschan to conjecture a recurrence for f (n) = H2(n,n),

namely

32(n+1)(2n+1)2(1575n6 +21285n5 +117954n4 +343020n3 +551943n2 +465785n+161046) f (n)

−8(121275n9 +1933470n8 +13267683n7 +51280818n6 +122556360n5 +186866686n4

+180574335n3 +105734340n2 +33718283n+4443102) f (n+1)

+2(294525n9 +4763070n8 +33170868n7 +130145646n6 +315713355n5 +488415476n4

+478464380n3 +283626704n2 +91378536n+12137328) f (n+2)

+(294525n9 +4668570n8 +31877118n7 +122735586n6 +292620525n5 +445804136n4

+431097970n3 +252913504n2 +80866406n+10688508) f (n+3)

− (121275n9 +1961820n8 +13655808n7 +53503836n6 +129484209n5 +199650088n4

+194784258n3 +114948300n2 +36871922n+4877748) f (n+4)

+2(2n+7)(1575n6 +11835n5 +35154n4 +52554n3 +41382n2 +16118n+2428)(n+3)2 f (n+5) = 0.

Our main results are that many of these conjectures are correct. In Section 3.1 we will prove Hardin’s

conjectured closed form for H1(n,n) and extend this to a closed form for the rectangular case H1(n,k). In

Section 3.2 we will prove that the conjectured recurrence of Kauers and Koutschan for H2(n,n) is correct,

and in fact that every Hr(n,n) satisfies such a recurrence. We will provide rigorous asymptotic estimates of

H2(n,n) and conjecture asymptotic estimates for Hr(n,n) when r ≥ 3.

3.1 The case r = 1

This case can be settled by an elementary combinatorial argument. Let us first consider the diagonal and

confirm the closed form representation conjectured by Hardin. In the following proof we index our arrays

beginning from 0 rather than 1.

Theorem 1. H1(n,n) = 1
3 (4

n−1−1) for all n≥ 1.

Proof. Consider a valid n× n array. Above the upper diagonal, draw a dividing path between row entries
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which are equal to their king-distance and less than their king-distance. Draw the same path below the

diagonal, but make it with respect to columns. See Figure 3.1 for an example.

By the monotonicty rule, the upper path can only move down and to the right. Further, if the first entry to

its right in row i is (i, j), then the first entry to its right in row i+1 is either (i+1, j) or (i+1, j+1). Thus

the upper-path essentially consists of two kinds of steps: down and right-down. The situation is mirrored in

the lower path.

If the upper path does not divide row i just after the row’s entry on the main diagonal, then the row is

determined from the diagonal to the right endpoint. Entries between the diagonal and the path equal their

king-distance, entries after the path equal one less than their king-distance, and the diagonal must equal i as

its king-distance is i and to its right is an i+1. The analogous statement is true for the lower path with respect

to columns. Thus every entry is determined except for when both paths divide the ith row and column just

after the diagonal. In fact, the first time this happens, the diagonal entry is still determined, as one of the

entries above or to the left of the diagonal entry equals i.

In summary, the only entries not determined by these paths are the diagonal entries which both paths are

adjacent to, except the first one and last one (by rule). If one path first touches the diagonal at position i, and

the other at position j > i, then there are n− j−2 diagonal entries not determined. Of these entries, we may

choose at most one to be the first less than its king-distance. After this choice all later entries must do the

same. Thus each such pair of paths generates n− j−1 valid arrays.

If C(k) is the number of paths which are first adjacent to the diagonal at position k, then

H1(n,n) = 2
n−1

∑
j=0

j−1

∑
i=0

C(i)C( j)(n− j−1)+
n−1

∑
j=0

C( j)2(n− j−1).

Because each path essentially has two steps to choose from, both of them moving one step closer to their

end, we have C(k) = 2k−1 if k > 0 and C(0) = 1. Evaluating the above summations and simplifying produces

H1(n,n) = (4n−1−1)/3.

The double-path idea used in the proof above extends to the case of rectangular Hardinian arrays. The

closed form expression for H1(n,k) shown next confirms conjectures stated by Hardin for H1(n,1), H1(n,2),

. . . , H1(n,7).

Theorem 2. H1(n,k) = 4k−1(n− k)+ 1
3 (4

k−1−1) for all n≥ k ≥ 1.

Proof. Draw the same paths indicated in the proof of Theorem 1. See Figure 3.2 for an example.

A lower path now is either adjacent to the diagonal at some point or not. The number of valid arrays

where the lower path is adjacent to the diagonal at some point is H1(k,k). All other pairs of paths contribute
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


0 1 1 2 3
1 1 2 2 3
1 1 2 2 3
2 2 2 ∗ 3
3 3 3 3 3

Figure 3.1: A generic 5× 5 matrix with two specific paths as constructed in the combinatorial proof of
Theorem 1. Every entry is determined by the paths except the one labeled ∗, which may be 3 or 2.




Figure 3.2: The generic picture for paths in the proof of Theorem 2. The lower two paths are examples of the
two possible cases.

only one valid array. There are n−k possible ending positions for a lower path which is never adjacent to the

diagonal and 2k−1 paths originating from each. Thus this case contributes (n− k)4k−1 valid arrays. Together

this yields H1(n,k) = 4k−1(n− k)+H1(k,k).

As these combinatorial arguments do not seem to extend to r > 1, we give some alternative proofs of

Theorem 1. They all rely on the theorem of Gessel and Viennot [Kra15, Theorem 10.13.1], which translates

the counting problem into a determinant evaluation problem. We will evaluate the determinant in three

different ways. The following notation will be used.

Definition 3. 1. For each positive integer n, let M(n) be the n×n matrix of binomial coefficients

{(
u+ v

u

)}
0≤u,v<n

.

Observe that rows and columns are indexed starting from zero.

2. For any n×n matrix A, any distinct row indices i1, i2, . . . , ir ∈ {0, . . . ,n−1} and distinct column indices

j1, j2, . . . , jr ∈ {0, . . . ,n−1}, let A j1, j2,..., jr
i1,i2,...,ir

be the (n− r)× (n− r) matrix obtained from A by deleting

rows i1, . . . , ik and columns j1, . . . , jk.
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

0 1 1 2 3 4 5
1 1 2 2 3 4 5
2 2 2 2 3 4 5
2 2 3 3 3 4 5
3 3 3 3 3 4 5
4 4 4 4 4 4 5
5 5 5 5 5 5 5


Figure 3.3: The contiguous regions of a Hardinian array are separated by a tuple of nonintersecting lattice
walks starting on the left and ending a the top.

3. For every n≥ 1, define

∆(n) = detM(n)

∆(n) j1, j2,..., jr
i1,i2,...,ir

= detM(n) j1, j2,..., jr
i1,i2,...,ir

.

Lemma 1. ∆(n) = 1 for all n.

Proof. Observe that M(n) = AB where A is the matrix whose entry at (u,v) is
(u

v

)
and B is the matrix whose

entry at (u,v) is
(v

u

)
. This follows from Vandermonde’s identity

(u+v
v

)
= ∑k

(u
k

)(v
k

)
. As A and B are triangular

matrices with 1’s on the diagonal, the claim follows from ∆(n) = det(M(n)) = det(A)det(B).

The key observation is that the valid n×n arrays can be partitioned into contiguous regions, as shown in

Figure 3.3. There is a region for 0, a region for 1, a region for 2, and so on. In the n× n case, the region

corresponding to k is obtained by beginning at the lowest occurrence of k in the first column, moving as far

right as possible while only passing k’s, and moving up when stuck. For an n×n Hardinian array this process

always terminates in the first row.

Proposition 7. H1(n,n) =
n−2

∑
i=0

n−2

∑
j=0

∆(n−1) j
i for all n≥ 1.

Proof. The n−1 contiguous regions in a Hardinian array of size n×n are separated by n−2 nonintersecting

lattice paths. These paths begin on one of the n−1 edges between entries in the first column and end on one

of the n− 1 edges between entries in the first row, using only steps to the right (→) and upwards (↑). Each

Hardinian array corresponds to exactly one such set of paths.

In the other direction, each such set of paths corresponds to a Hardinian array. Given such a set, assign

the induced regions the values 0, 1, . . . n−2 in order from the top-left to the bottom-right. The top left will

contain a 0, the bottom right will contain an n− 2, and adjacent entries differ by no more than 1. To see

that the king-distance rule is not violated, note that it is not violated at the entries before the boundaries on
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the first column and first row—because at most one entry does not have a path just before it—and that these

points have the largest king-distance of any entry reached using the available steps.

It follows that the number of Hardinian arrays of size n×n equals the number of sets of nonintersecting

lattice paths we have described. If we label the possible starting and ending positions 0,1, . . . ,n− 2, then

there are altogether
(u+v

v

)
paths from u to v, for any u and v.

Consider the set of paths where i is the unique unchosen startpoint and j the unique unchosen endpoint.

In this case the kth path (k = 0, . . . ,n−3) starts at k+[i≤ k] and ends at k+[ j≤ k]. By the theorem of Gessel

and Viennot, the number of such sets of paths is the determinant of the (n−2)× (n−2) matrix whose entry

at position (u,v) is
(u+v+[i≤u]+[ j≤v]

v+[ j≤v]

)
. This determinant equals ∆(n−1) j

i . It follows that H1(n,n) is the sum of

∆(n−1) j
i over all possible rows i and columns j.

The proposition reduces the enumeration problem to the problem of evaluating a sum of determinants.

This can be done as follows.

Second proof of Theorem 1. Let M̃(n) be the (n+1)× (n+1) matrix obtained from M(n) by first attaching

an additional row 1,−1,1,−1, . . . at the top and then an additional column 0,−1,1,−1,1, . . . at the left, e.g.,

M̃(5) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 −1 1 −1 1

−1 1 1 1 1 1

1 1 2 3 4 5

−1 1 3 6 10 15

1 1 4 10 20 35

−1 1 5 15 35 70

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By expanding along the first row and then along the first column, we have detM̃(n) = ∑
n−1
i=0 ∑

n−1
j=0 ∆(n) j

i .

It remains to determine the determinant of M̃(n).

Subtract the (n−2)nd row from the (n−1)st, then the (n−3)rd row from the (n−2)nd, and so on, and
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analogously for the columns, e.g.,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y−1 +

y−1 +

y−1 +

y−1 +

0 1 −1 1 −1 1

−1 1 1 1 1 1

1 1 2 3 4 5

−1 1 3 6 10 15

1 1 4 10 20 35

−1 1 5 15 35 70

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ ←−
−1

+

←−

−1

+

←−

−1

+

←−

−1

+

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 −2 2 −2 2

−1 1 0 0 0 0

2 0 1 1 1 1

−2 0 1 2 3 4

2 0 1 3 6 10

−2 0 1 4 10 20

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In general, the proposed row and column operations replace the entry

(u
v

)
by

(
u
v

)
−
(

u−1
v

)
− (

(
u

v−1

)
−
(

u−1
v−1

)
) =

(
u−1
v−1

)
.

Now expand along the second row (or column) to obtain

detM̃(n) = ∆(n−1)+4detM̃(n−1) = 4detM̃(n−1)+1

for every n. Together with the initial value detM̃(1) = 1, it follows by induction that detM̃(n) = 1
3 (4

n− 1).

In view of Prop. 7, Theorem 1 follows by replacing n by n−1.

Third proof of Theorem 1. This proof uses computer algebra, in the spirit of an approach proposed by Zeil-

berger [Zei07]. Because of ∆(n) = 1 and Cramer’s rule, (−1)i+ j∆(n) j
i is the entry of M(n)−1 at position

(i, j). For n≥ 1 and i, j = 0, . . . ,n−1, define

c(n, i, j) = (−1)i+ j
n−1

∑
ℓ=0

(
i
ℓ

)(
j
ℓ

)
.

Using symbolic summation algorithms (as implemented, e.g., in Koutschan’s package [Kou10]), it can be

easily shown that
n−1

∑
k=0

(
i+ k

k

)
c(n,k, j) = δi, j

for all n≥ 1 and all i, j≥ 0. Therefore, c(n, i, j) is the entry at (i, j) of M(n)−1, and thus equal to (−1)i+ j∆(n) j
i .

Applying summation algorithms once more, we can prove that the sum s(n) = ∑i, j(−1)i+ jc(n, i, j) satis-
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fies the recurrence

s(n+2) = 5s(n+1)−4s(n)

for all n≥ 1. Together with the initial values s(1) = 1 and s(2) = 5, the claimed closed form expression now

follows again by induction.

While the sum ∆(n) j
i = ∑

n−1
ℓ=0

(i
ℓ

)( j
ℓ

)
does not have a hypergeometric closed form, it does simplify in the

special case j = n−1, where it turns out to be equal to
(n−1

i

)
. Taking the knowledge of this special case for

granted, we can give a fourth proof of Theorem 1.

Fourth proof of Theorem 1. Dodgson’s identity (cf. Prop. 10 of Krattenthaler’s tutorial on evaluating deter-

minants [Kra99]) says that

det(A)det(A j,n−1
i,n−1 ) = det(A j

i )det(An−1
n−1)−det(An−1

i )det(A j
n−1)

for every n× n matrix A. (Actually, Krattenthaler states the equation for i = j = 0, but it is easily seen that

it holds for arbitrary i and j, because we can multiply A with suitable permutation matrices from the left and

the right in order to reduce to the case i = j = 0.)

Consider A = M(n) and observe that An−1
n−1 = M(n−1). Then, because of ∆(n) = ∆(n−1) = 1 it follows

that

∆(n−1) j
i = ∆(n) j

i −∆(n)n−1
i ∆(n) j

n−1.

Using ∆(n)n−1
i =

(n−1
i

)
and ∆(n) j

n−1 =
(n−1

j

)
, it follows that

∆(n) j
i = ∆(n−1) j

i +

(
n−1

i

)(
n−1

j

)
.

Summing over all i and j gives

s(n) = s(n−1)+4n−1,

and with s(1) = 1, the claim follows again by induction.

3.2 The case r ≥ 2

Via the theorem of Gessel and Viennot, we also have access to the sequences Hr(n,n) for r > 1. The argu-

ment is the same as for r = 1, except that now a Hardinian array of size n× n consists of n− r contiguous

regions, separated by n− r−1 nonintersecting lattice paths, whose start points and end points are taken from
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the set {0, . . . ,n− 2}. According to Gessel and Viennot, ∆(n− 1) j1,..., jr
i1,...,ir

is the number of sets of n− r− 1

nonintersecting lattice walks whose start points are {0, . . . ,n− 2} \ {i1, . . . , ir} and whose end points are

{0, . . . ,n−2}\{ j1, . . . , jr}.

In order to deal with these determinants, it helps to observe that Dodgson’s identity quoted in the fourth

proof of Theorem 1 is a special case of a more general identity due to Jacobi [Jac33; RT07; Abe14]: For an

n×n matrix A and two choices 0≤ i1 < i2 < · · ·< ir < n and 0≤ j1 < j2 < · · ·< jr < n of indices, form the

r× r matrix B whose entry at (u,v) is defined as det(A jv
iu ). Then Jacobi’s identity says

det(A)r−1 det(A j1,..., jr
i1,...,ir

) = det(B).

For example, for r = 2 we obtain

det(A)det(A j1, j2
i1,i2

) =

∣∣∣∣∣∣∣
det(A j2

i2
) det(A j1

i2
)

det(A j2
i1
) det(A j1

i1
)

∣∣∣∣∣∣∣= det(A j1
i1
)det(A j2

i2
)−det(A j2

i1
)det(A j1

i2
),

and setting i2 = j2 = n−1 gives Dodgson’s version.

Theorem 3. For every r ≥ 2, the sequence Hr(n,n) is D-finite. In particular, the sequences A253217 (r = 2)

and A252998 (r = 3) are D-finite.

Proof. For A = M(n), Jacobi’s identity implies

∆(n) j1,..., jr
i1,...,ir

=

∣∣∣∣∣∣∣∣∣∣
∆(n) j1

i1
· · · ∆(n) jr

i1
...

. . .
...

∆(n) j1
ir · · · ∆(n) jr

ir

∣∣∣∣∣∣∣∣∣∣
For every fixed r, the determinant on the right is D-finite because it depends polynomially on quantities which

we have recognized in the previous section as being D-finite. It follows that the left hand side is D-finite, and

consequently,

Hr(n,n) = ∑
0≤i1<···<ir≤n−2

∑
0≤ j1<···< jr≤n−2

∆(n−1) j1,..., jr
i1,...,ir

is D-finite, too.

Theorem 3 is not quite enough to confirm the correctness of the recurrence equation Kauers and Koutschan

obtained for H2(n,n) via guessing [KK23]. The theorem only implies that the sequence satisfies some recur-

https://oeis.org/A253217
https://oeis.org/A252998
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rence. In order to explicitly construct a recurrence, we have to evaluate the two 6-fold sums

S1(n) = ∑
i1≥0

∑
i2>i1

∑
j1≥0

∑
j2> j1

n

∑
u=0

n

∑
v=0

(
u
i1

)(
u
j1

)(
v
i2

)(
v
j2

)
=

n

∑
u=0

n

∑
v=0

(
∑

i1≥0
∑

i2>i1

(
u
i1

)(
v
i2

)
︸ ︷︷ ︸

=:s(u,v)

)(
∑
j1≥0

∑
j2> j1

(
u
j1

)(
v
j2

)
︸ ︷︷ ︸

=s(u,v)

)
and

S2(n) = ∑
i1≥0

∑
i2>i1

∑
j1≥0

∑
j2> j1

n

∑
u=0

n

∑
v=0

(
u
i1

)(
u
j2

)(
v
i2

)(
v
j1

)
=

n

∑
u=0

n

∑
v=0

(
∑

i1≥0
∑

i2>i1

(
u
i1

)(
v
i2

)
︸ ︷︷ ︸

=s(u,v)

)(
∑
j1≥0

∑
j2> j1

(
v
j1

)(
u
j2

)
︸ ︷︷ ︸

=s(v,u)

)
.

It seems best to do this using generating functions. We have

∞

∑
u=0

∞

∑
v=0

s1(u,v)xuyv =
y

(1− x− y)(1−2y)
.

The generating functions of s(u,v)2 and s(u,v)s(v,u) can be expressed as Hadamard products. As explained

in [Bos+17], Hadamard products can be rephrased as residues, and residues can be computed via creative

telescoping [Zei90a]. Using Koutschan’s implementation [Kou10], it is easy to prove

y
(1− x− y)(1−2y)

⊙x,y
y

(1− x− y)(1−2y)
=

y
2x+2y−1

(
1√

x2−2x(y+1)+(y−1)2
+

2
4y−1

)
y

(1− x− y)(1−2y)
⊙x,y

x
(1− x− y)(1−2x)

=
1

2(2x+2y−1)

(
x+ y−1√

x2−2x(y+1)+(y−1)2
+1

)
,

respectively. Summing u from 0 to n and v from 0 to m amounts to multiplying these series by 1
(1−x)(1−y) , and

setting m to n amounts to taking the diagonals of the resulting bivariate series:

diag
1

(1− x)(1− y)
y

2x+2y−1

(
1√

x2−2x(y+1)+(y−1)2
+

2
4y−1

)
,

diag
1

(1− x)(1− y)
1

2(2x+2y−1)

(
x+ y−1√

x2−2x(y+1)+(y−1)2
+1

)
,

respectively. As diagonals can also be rephrased as residues (cf. again [Bos+17] for a detailed discussion),

we can apply creative telescoping to obtain linear differential operators annihilating these series. Their least

common left multiple is an annihilator of the generating function of H2(n,n).

In the end, we obtained a linear differential operator of order 10 with polynomial coefficients of degree 43.

With this certified operator at hand, we can prove that the guessed recurrence of Kauers and Koutschan is
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correct.

In principle, we could derive a recurrence for Hr(n,n) for any r≥ 2 in the same way, but already for r = 3

the computations become too costly. We can however use the formula

Hr(n,n) = ∑
0≤i1<···<ir≤n−2

∑
0≤ j1<···< jr≤n−2

∆(n−1) j1,..., jr
i1,...,ir

to compute some more terms of the sequences. In order to do this efficiently, we can recycle the idea of the

second proof of Theorem 1 and translate some of the summation signs into additional rows and columns of

the determinant. For example, for r = 3 we have

Hr(n,n) =
n−2

∑
i=0

n−2

∑
j=0
|det(Ai, j)|

where Ai, j is the matrix obtained from M(n−1) by removing the ith row and the jth column and adding a row

with alternating signs in the column range 0 . . . j−1 followed by zeros and an additional row with zeros in the

column range 0 . . . j− 1 followed by alternating signs; and similarly two additional columns. For example,

for n = 8, i = 4, j = 5 we have

Ai, j =





0 0 0 0 0 0 1 −1
0 0 −1 1 −1 1 0 0
0 −1 1 1 1 1 1 1
0 1 1 2 3 4 6 7
0 −1 1 3 6 10 21 28
−1 0 1 5 15 35 126 210
1 0 1 6 21 56 252 462
−1 0 1 7 28 84 462 924

extra

columns

extra

rows

ith row

deleted

jth column

deleted

With this optimiziation, it is not difficult to compute the first 100 terms, and using these, the technique

of [KK22] is able to guess a convincing recurrence equation of order 9 and degree 36. It is not reproduced

here.

For r = 4, we explicitly delete two rows and columns and add two rows and columns with alternating

signs, as shown in Figure 3.4 on the left. This allows us to reduce the original 8-fold sum to a 4-fold sum. A

4-fold sum is also sufficient for r = 5, where we can even eliminate six summations by adding extra rows and

columns, as shown in Figure 3.4 on the right. By computing the sums over all these determinants, we were

able to determine the first≈ 65 terms of the sequences H4(n,n) and H5(n,n). Unfortunately, these terms were

not sufficient to find a recurrence by guessing.

However, the terms are enough to obtain convincing conjectured expressions for their asymptotics. We
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extra

extra

j1 j2

i1

i2

extra

extra

j1 j2

i1

i2

Figure 3.4: Left: the computation of ∑i1<i2<i3<i4 ∑ j1< j2< j3< j4 ∆(n− 1) j1, j2, j3, j4
i1,i2,i3,i4

is equivalent to the compu-
tation of the sum over i1, i2 and j1, j2 of the determinants constructed as shown in the figure. Light dots
indicated omitted rows and columns; strong dots indicate regions filled with alternating signs.
Right: the computation of ∑i1<i2<i3<i4<i5 ∑ j1< j2< j3< j4< j5 ∆(n−1) j1, j2, j3, j4, j5

i1,i2,i3,i4,i5
is equivalent to the computation

of the sum over i1, i2 and j1, j2 of the determinants constructed as shown in the figure.

obtained the following conjectures:

r asymptotics remark

0 1 trivial

1 1
223 4n by Theorem 1

2 1
2234π

16n n−1 from the proven recurrence

3 1
2239π

64n n−3 from the guessed recurrence

4 22

316π2 256n n−6 from the first 70 terms

5 24

323π2 1024n n−10 from the first 70 terms

Altogether, it seems that for every r ≥ 0, we have

Hr(n,n)∼ c22rnn−(
r
2) (n→ ∞)

for some constant c that can be expressed as a power product of 2, 3, and π .

At least for specific values of r, it might be possible to prove these conjectured asymptotic formulas using

the powerful techniques of analytic combinatorics in several variables [PW13; Mel21]. However, in order to

invoke these techniques, we would need to know more about the bivariate sequences Hr(n,k). Unfortunately,

while we found an explicit expression for H1(n,k), we were not able to show that Hr(n,k) is D-finite as a

bivariate sequence in n and k for any r ≥ 2, although we suspect it to be.
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Chapter 4

Lots and Lots of Perrin-Type Primality

Tests and Their Pseudo-Primes

The following article describes a set of primality tests based on the theory of linear recurrences, as well as

some results about their pseudoprimes. The tests are a generalization of Fermat’s primality test: A number n

is probably prime if an ≡ a (mod n) for many integers a.

A composite integer n is a psuedoprime of a probable primality test if it passes mistakenly. Fermat’s test

is particularly bad. For example, the smallest pseudoprime with a = 2 is n = 341:

2341 ≡ 2 (mod 341),

yet

341 = 31 ·11.

The obvious fix here is to try multiple a. For example, with a = 3 we have

3341 ≡ 168 (mod 341),

so 341 is correctly discarded as composite as long as you try a = 2 and a = 3. Unfortunately this strategy is

doomed to fail. The famous Carmichael numbers are composite integers n such that an ≡ a (mod n) for all

a. The smallest example is n = 561, but there are infinitely many of them and they are not particularly rare.

Fermat’s primality test can be extended by using linear recurrences with constant coefficients. In partic-

ular, any monic linear recurrence with integer coefficients induces a sequence a(n) and an integer e which
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satisfies a(p)≡ e (mod p) for all primes p. These are the tests the following article describes.

4.1 How it all started thanks to Vince Vatter

It all started when we came across Vince Vatter’s delightful article [Vat22], where he gave a cute combinato-

rial proof of the following fact that goes back to Raoul Perrin [Per99] (See also A001608, A013998, [Ste96],

and [Wik].)

Proposition 8. Let P(n) be the integer sequence defined by

P(1) = 1 P(2) = 2 P(3) = 3

P(n) = P(n−2)+P(n−3).

Then p divides P(p) for every prime p.

To contrast with Vatter, and to provide a hint of things to come, let us see an algebraic proof of this fact.

Proof. It is a simple linear algebra problem to show that P(n) = xn +yn + zn where x, y, and z are the distinct

roots of t3− t−1. Note that x+ y+ z = 0. For any prime p, we have

0 = (x+ y+ z)p

= xp + yp + zp + ∑
i+ j+k=p

i, j,k<p

p!
i! j!k!

xiy jzk

= P(p)+ f (x,y,z).

The term f (x,y,z) is a symmetric, integer-coefficient polynomial in x, y, and z such that every coefficient is

divisible by p. By the theory of symmetric polynomials it follows that f (x,y,z) is an integer divisible by p,

and so P(p)≡ 0 (mod p).

Vatter proved that P(n) is the number of circular words of length n in the alphabet {0,1} that avoid the

subwords {000,11}. We can divide these words into equivalence classes based on shifts. If n = p is prime,

then all the p circular shifts are distinct except for possibly the constant words, since otherwise there would

be a non-trivial period. The constant words 0p and 1p can’t avoid both 00 and 111, so the number of such

words is p times the number of equivalence classes. This gives Perrin’s theorem.

When we saw Vatter’s proof we got excited. Vatter’s argument transforms verbatim to counting circular

words in any finite alphabet which avoid any finite set of patterns. More than twenty years ago one of

https://oeis.org/A001608
https://oeis.org/A013998
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us (DZ) wrote a paper, in collaboration with his then PhD student, Anne Edlin [EZ00], that computes the

(rational) generating function in any such scenario, hence this is a cheap way to manufacture lots and lots of

Perrin-style primality tests. This inspired us to write our first Maple package, PerrinVV.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/PerrinVV.txt.

4.2 An even better way to manufacture Perrin-style Primality tests

After the initial excitement we had an epiphany: There is an easier way to generate primality tests! (It

turns out it was already made, in 1990, by Stanley Gurak [Gur90].) Take any polynomial Q(x) with integer

coefficients and constant term 1, and write it as

Q(x) = 1 − e1 x + e2x2−·· ·+(−1)k ekxk

and factor it over the complex numbers as

Q(x) = (1−α1x)(1−α2x) · · ·(1−αkx).

Note that e1,e2, . . . are the elementary symmetric functions in α1, . . . ,αk. Thanks to Newton’s identities, the

sequence

a(n) = α
n
1 +α

n
2 + · · ·+α

n
k ,

is an integer sequence. We claim that each such integer sequence engenders a Perrin-style primality test,

namely a(p)≡ e1 (mod p). To see this, note that

(α1 + · · ·+αk)
p = a(p)+ pA(p),

where

A(p) = ∑
i1+i2+···+ik=p

i1 ,i2 ,...ik<p

(p−1)!
i1! · · · ik!

α
i1
1 · · ·α

ik
k

is a symmetric polynomial in the αi with integer coefficients. The fundamental theorem of symmetric func-

tions [Mac95] implies that A(p) is an integer. Fermat’s little theorem then gives

a(p)≡ (α1 + · · ·+αk)
p = ep

1 ≡ e1 (mod p)

https://sites.math.rutgers.edu/~zeilberg/tokhniot/PerrinVV.txt
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Figure 4.1: Log-heatmap of the first pseudoprime of x2−ax−b.

So this is an even easier way to manufacture lots and lots of Perrin-style primality tests, and we can let the

computer search for those that have as few small pseudo-primes as possible.

This is implemented in the Maple package Perrin.txt, available from https://sites.math.rutgers.

edu/~zeilberg/tokhniot/Perrin.txt. See the front of this article https://sites.math.rutgers.

edu/~zeilberg/mamarim/mamarimhtml/perrin.html.

for many such primality tests, inspired by this more general method (first suggested by Stanley Gurak

[Gur90]).

4.3 The DB-Z primality test

Let
∞

∑
n=0

a(n)xn :=
−3x4−5x2−6x+7
−4x7− x4− x2− x+1

,

or equivalently, define the integer sequence a(n) by by

a(1) = 1 , a(2) = 3 , a(3) = 4 , a(4) = 11 , a(5) = 16 , a(6) = 30 , a(7) = 78,

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Perrin.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/Perrin.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perrin.html
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perrin.html
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Figure 4.2: Sorted first pseudoprime of x2−ax−b

a(n) = a(n−1) + a(n−2) + a(n−4) + 4a(n−7) ( f or n > 7).

Then a(p)≡ 1 (mod p) for all p. then if p is prime, we have a(p)≡ 1 (mod p).

Manuel Kauers kindly informed us that the seven smallest DB-Z pseudo-primes are as follows:

• 1531398 = 2 ·3 ·11 ·23203

• 114009582 = 2 ·3 ·17 ·1117741

• 940084647 = 3 ·47 ·643 ·10369

• 4206644978 = 2 ·97 ·859 ·25243

• 7962908038 = 2 ·191 ·709 ·29401

• 20293639091 = 11 ·3547 ·520123

• 41947594698 = 2 ·3 ·19 ·523 ·703559

At the time this was a difficult computational challenge. For meeting it, we donated 100 dollars to the OEIS

in Kauers’ honor.
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4.4 The DB-Kauers primality test

After the first version of this paper was written, with the help of Manuel Kauers, we discovered an even better

primality test.

The DB-Kauers primality test

Let
∞

∑
n=0

a(n)xn :=
−9x5−16x4−10x+6
−3x6−9x5−8x4−2x+1

,

or equivalently, let a(n) be the integer sequence defined by

a(1) = 2 , a(2) = 4 , a(3) = 8 , a(4) = 48 , a(5) = 157 , a(6) = 382 ,

a(n) = 2a(n−1) + 8a(n−4) + 9a(n−5) + a(n−6) ( f or n > 6).

Then a(p)≡ 2 (mod p) for all prime p.

The smallest pseudoprime happens to be 2,260,550,373 = 3 ·103 ·107 ·68371.

4.5 Perrin-Style Primality Tests with Explicit Infinite Families of Pseudo-

Primes

We are particularly proud of the next primality test, featuring the Companion Pell numbers (see https:

//oeis.org/A002203). These numbers have been studied extensively, but as far as we know using them as

a primality test is new. It is not a very good one, but the novelty is that it has an explicit, doubly-infinite set

of pseudo-primes.

The Companion Pell Numbers Primality Test Let

∞

∑
n=0

a(n)xn :=
2−2x

−x2−2x+1
,

or equivalently,

a(1) = 2 , a(2) = 6 , a(n) = a(n−1) + 2a(n−2) ( f or n > 2) ,

then if p is a prime, we have

a(p)≡ 2(mod p) .

https://oeis.org/A002203
https://oeis.org/A002203
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Theorem 4. Every element of

{2i ·3 j | i≥ 3, j ≥ 0}

is a Companion-Pell pseudoprime. In other words, a(2i ·3 j)≡ 2 (mod 2i3 j) for i≥ 3 and j ≥ 0.

Proof. With α1 = 1+
√

2 and α2 = 1−
√

2, we have the Binet formula a(n) = αn
1 +αn

2 . This and the product

α1α2 =−1 lead to the recurrences

a(2n) = a(n)2 +2(−1)n+1

a(3n) = a(n)3 +3(−1)n+1a(n).

Define the sequence b(n) = a(n)−2. We will show by induction that b(2i3 j) is divisible by 2i3 j if i≥ 3

and j ≥ 0.

Suppose that n is even, i.e., that i≥ 1. Then the above identities yield

b(2n) = b(n)(b(n)+4).

It is easy to prove that b(n) is even for all n, so this identity shows that if an even n divides b(n), then 2n

divides b(2n). Therefore if 2i3 j divides b(2i3 j) with i≥ 1, then 2i+13 j divides b(2i+13 j).

The second recurrence implies

b(3n)+2 = (b(n)+2)3 +3(−1)n+1(b(n)+2).

Again, if n is even, i.e. i≥ 1, then this gives

b(3n) = b(n)(b(n)2 + 6b(n) + 12).

It is easy to show that b(n) is divisible by 3 if i ≥ 1 and j ≥ 1. Therefore, if n divides b(n) with i ≥ 1 and

j ≥ 1, then 3n divides b(n).

Considering the above remarks, we have shown that if 2i3 j divides b(2i3 j), then 2i+13 j divides b(2i+13 j)

and 2i3 j+1 divides b(2i3 j+1). Since 24 divides b(24), the theorem follows by induction.

We now state without proofs (except for Theorem 4, where we give a sketch) a few other primality tests

that have explicit infinite families of pseudoprimes.
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Theorem 5. Let
∞

∑
n=0

a(n)xn :=
2− x

−2x2− x+1
,

or equivalently,

a(1) = 1 , a(2) = 5 , a(n) = a(n−1) + 2a(n−2) ( f or n > 2) ,

then if p is a prime, we have

a(p)≡ 1(mod p) .

Furthermore, {2i |i≥ 2} are all pseudo-primes, in other words

a(2i)≡ 1(mod 2i) , i≥ 2.

Theorem 6. Let
∞

∑
n=0

a(n)xn :=
2−2x

−2x2−2x+1
,

or equivalently,

a(1) = 2 , a(2) = 8 , a(n) = 2a(n−1) + 2a(n−2) ( f or n > 2) ,

then if p is a prime, we have

a(p)≡ 2(mod p) .

Furthermore, the following infinite families are all pseudo-primes:

{3i |i ≥ 2} , {2 · 3i |i ≥ 1} , {11 · 81i |i ≥ 1}, {23 · 35i |i ≥ 1} , {29 · 34+12i |i ≥ 0} ,

{31 ·316i |i≥ 1} .

Theorem 7. Let
∞

∑
n=0

a(n)xn :=
2x2 +3

2x3 +2x2 +1
,

or equivalently,

a(1) = 0 , a(2) =−4 , a(3) =−6 , a(n) = −2a(n−2) − 2a(n−3) ( f or n > 2) ,

then if p is a prime, we have

a(p)≡ 0(mod p) .
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Furthermore, the following infinite families are all pseudo-primes:

{2i |i≥ 2} , {3 ·24i |i≥ 2} , {11 ·218i |i≥ 2} , {13 ·217+20i |i≥ 2} .

Sketch of proof We use the C-finite ansatz [Zei13]. Let

b(n) = a(2n)−a(n)2 ,

then it follows from the C-finite anzatz that b(n) satisfies some recurrence, that turns out to be

b(1) =−4 , b(2) =−8 , b(3) =−40 , b(n) = 2b(n−1)+4b(n−3) ( f or n > 3)

We now define

c(n) :=
b(n)

2⌊n/2⌋ ,

and once again it follows that c(n) satisfies the recurrence,

c(1) =−4 , c(2) =−4 , c(3) =−20, c(4) =−24, c(5) =−56, c(6) =−76

c(n) = 2c(n−2)+4c(n−4)+2c(n−6) ( f or n > 6) .

Note that c(n) are manifestly integers. Going back to a(n) we have the recurrence

a(2n) = a(n)2 +2⌊n/2⌋c(n) ,

and it follows by induction that a(2i)/2i are all integers. A similar argument goes for the other infinite

families claimed.

Theorem 8. Let
∞

∑
n=0

a(n)xn :=
−2x2−2x+3
−x3−2x2− x+1

,

or equivalently,

a(1) = 1 , a(2) = 5 , a(3) = 10 , a(n) = a(n−1) + 2a(n−2)+a(n−3) ( f or n > 2) ,

then if p is a prime, we have

a(p)≡ 1(mod p) .



42

Furthermore, the following infinite families are all pseudo-primes:

{3i |i≥ 2} , {5 ·36+10 i |i≥ 0} , {5 ·38+10 i |i≥ 0} , {7 ·34+6 i |i≥ 0} ,

We found 9 other such primality tests, with infinite explicit families of presodoprimes, that can be viewed

by typing

PDB(x); ,

in the Maple package Perrin.txt.

For fast computations and explorations using C programs, readers are welcome to explore the GitHub

repository https://github.com/rwbogl/pt.

Acknowledgment: Many thanks to Manuel Kauers for his computational prowess, and to the referee for

a helpful remark.

https://github.com/rwbogl/pt
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Chapter 5

Creating decidable diophantine

equations

5.1 Preface

In 1970, 23-year-old Yuri Matiyasevich, standing on the shoulders of Julia Robinson, Martin Davis, and

Hilary Putnam, shocked the world of mathematics by showing that David Hilbert’s dream of finding an

algorithm that inputs any polynomial

P(x1, . . . ,xn)

with integer coefficients, and outputs true or false if P = 0 has, or does not have, solutions in integers, can

never come to be.

Of course, for specfic equations, and even, many specific infinite families, one can often decide, but there

is no magic bullet that, can decide all of them.

For example, Pythagoras got very upset when Hippasus of Metapontum discovered that the diophantine

equation

x2−2y2 = 0 ,

has no solution, and Hippasus (probably) gave a fully rigorous proof (not the usual one but a geometrical

version of the reduction formula if (x,y) x > y > 0 is a solution so is (y,2x− y and since (1,0) is not a

solution qed. Going backwards, using the fact that if (x,y) is a solution of Pell’s equation

x2−2y2 = ±1
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then so is (x+2y,x+y), we can prove that there are infinitely many solutions. A little more effort will show

that these are the only ones (see [Zei14]).

Much harder is the fact proved by Sir Andrew Wiles [Wil95], that for every n> 2 the diophantine equation

xn + yn = zn ,

has no solution.

On the positive side, Noam Elkies [Elk88] famously proved that

A4 +B4 +C4 = D4 ,

has infinitely many solutions.

Wouldn’t it be nice to be able to manufacture, at will, many examples of diophantine equations for which

we can explicitly construct all solutions?

There is a cheap way to do this. As most of us know, the triple

a = A2−B2 , ,b = 2AB , c = A2 +B2 ,

satisfies

a2 +b2 = c2

A little more challenging is to prove that all solutions of a2 +b2 = c2 with gcd(a,b) = 1 are of this form. But

this is true, and the same idea applies more generally.

Take any m+1 polynomials in m variables with integer coefficients

Pi(a1, . . . ,am) , 1≤ i≤ m+1

and define

Xi = Pi(a1, . . . ,am) , 1≤ i≤ m+1 ,

using, e.g Gröbner bases (the Buchberger algorithm) we can eliminate a1, . . . ,am and get a polynomial

equation (with integer coefficients)

Q(X1, . . . ,Xm) = 0 ,

that has a parametric solution as above. Alas, in general this leads to monster equations and unlike the case
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with Pythagorean triples, it is not clear that there aren’t other solutions.

So it would be nice to be able to generate, in a systematic way, many examples of simple diophantine

equations for which we know infinitely many solutions, and to be able to prove that these are all of them. It

would also be nice to manufacture not too complicated, but non-trivial, diophantine equations for which we

can conclusively prove that there aren’t any solutions.

5.2 Diophantine equations from recurrences

In Matiyasevich’s proof (we use the versions in [JM91; Mat93]) a central role is played by Pell’s equation

and the fact ([Mat93], pp. 19-20) that two consecutive terms x = ab(n),y = ab(n+ 1) of the sequence of

integers defined by the second-order linear recurrence

ab(0) = 0 , ab(1) = 1 , ab(n+2) = bab(n+1)−ab(n) ,

satisfy the diophantine equation

x2−bxy+ y2 = 1 ,

and conversely if x > y satisfies it, then there must be an n such that x = ab(n+1), y = ab(n). This gave us

the idea to consider higher-order recurrences.

If Fn is the nth Fibonacci number, then taking the determinant of the well-known matrix identity

Fn+1 Fn

Fn Fn−1

=

1 1

1 0


n

,

yields Cassini’s identity Fn+1Fn−1−F2
n = (−1)n. If we square this and apply the Fibonacci recurrence, then

we obtain P(Fn−1,Fn) = 1 for some polynomial P. From another perspective, starting with the Fibonacci

numbers we created a polynomial diophantine equation P(x,y) = 1 with infinitely many solutions. Our goal

is to repeat this for a wider class of recurrences.

Consider the linear recurrence

a(n) = c1a(n−1)+ · · ·+ cda(n−d). (5.1)
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Our recipe has two parts. First, the matrix

B =



c1 c2 · · · cd

1 0 · · · 0

0 1 · · · 0

· · ·

0 0 · · · 1


satisfies the “forward identity” 

a(n+1)

a(n)
...

a(n−d +2)


= B



a(n)

a(n−1)
...

a(n−d +1)


for any sequence which satisfies (5.1). Second, (5.1) has d “fundamental solutions” which form a basis for

all solutions. They are the solutions whose initial conditions are all zero except for a single entry, which is

instead one. By luck, the columns of the identity matrix are exactly the initial conditions of these fundamental

solutions. If we call the fundamental solutions e0(n),e1(n), . . . ,ed−1(n), then



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

· · ·

0 0 0 · · · 1


=



e0(d−1) e1(d−1) · · · ed−1(d−1)

e0(d−2) e1(d−2) · · · ed−1(d−2)

e0(d−3) e1(d−3) · · · ed−1(d−3)

· · ·

e0(0) e1(0) · · · ed−1(0)


.

This implies a relation between Bn and the fundamental solutions:

Bn = BnI =



e0(n+d−1) e1(n+d−1) · · · ed−1(n+d−1)

e0(n+d−2) e1(n+d−2) · · · ed−1(n+d−2)

e0(n+d−3) e1(n+d−3) · · · ed−1(n+d−3)

· · ·

e0(n) e1(n) · · · ed−1(n)


. (5.2)

From the elementary theory of difference equations, every solution to (5.1)—including the fundamental

ones—can be expressed as a linear combination of the sequences e0(n), e0(n+1), . . . , e0(n+d−1). There-

fore every entry in the right-hand side of (5.2) is actually a linear combination of shifts of e0(n). By taking
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determinants in (5.2) it follows that

P(e0(n),e0(n+1), . . . ,e0(n+d−1)) = (detB)n

for some polynomial P. Laplace expansion implies detB = (−1)dcd , so setting cd = (−1)d makes the right-

hand side 1.

The previous considerations lead to the following proposition.

Proposition 9. For any integers c1,c2, . . . ,cd−1, there is a nonzero polynomial P(x1,x2, . . . ,xd) such that the

diophantine equation

P(x1,x2, . . . ,xd) = 1

has infinitely many solutions. In particular, the points (a(n),a(n+1), . . . ,a(n+d−1)) are solutions, where

a(n) satisfies

a(n) =
d−1

∑
k=1

cka(n− k)+(−1)da(n−d)

and has initial conditions 0,0, . . . ,0,1.

Our goal is to show that the diophantine equations in Proposition 9 are sometimes solved by only the

recurrence solutions. This goal is too lofty in general, but we have arguments which apply to an infinite

family of recurrences, and one detailed case study concerning the Tribonacci numbers.

5.3 Tribonacci numbers

We begin with the Tribonacci numbers as a detailed example. The main idea is to show that all solutions to the

associated diophantine equation are generated, in some sense, by increasing solutions, and then to construct

all increasing solutions.

Definition 4. Define the numbers Tn by

T0 = T1 = 0

T2 = 1

Tn = Tn−1 +Tn−2,

the polynomial PT by

PT (x,y,z) = x3 +2x2y+ x2z+2xy2−2xyz− xz2 +2y3−2yz2 + z3,
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and the map RT by

RT (x,y,z) = (y,z,x+ y+ z).

Note that PT is invariant under RT , i.e., PT ◦RT = PT .

Proposition 10. If PT (x,y,z) = 1 for integers (x,y,z), then (x,y,z) is the result of repeatedly applying RT or

its inverse to a nonnegative increasing solution. That is, there exist integers 0 ≤ a ≤ b ≤ c and a positive

integer n such that P(a,b,c) = 1 and (x,y,z) is Rn
T (a,b,c) or R−n

T (a,b,c).

Proof. Repeatedly applying RT to our initial point (x,y,z) produces a sequence a(n) which satisfies

a(n) = a(n−1)+a(n−2)+a(n−3)

with initial conditions (a(0),a(1),a(2)) = (x,y,z). Because PT is invariant under RT we have PT (a(n),a(n+

1),a(n+ 2)) = 1 for all n. The elementary theory of difference equations implies a(n) ∼ c ·αn where α =

1.8393 is the unique real root of X3−X2−X−1 and

c = α
(α2−α−1)a(0)+(α−1)a(1)+a(2)

α2 +2α +3
.

Note that c is real. If c < 0, then we eventually obtain a strictly negative solution, which is impossible

because PT (x,y,z) ≤ 0 if x,y,z ≤ 0. If c = 0 then (α2−α − 1)a(0)+ (α − 1)a(1)+ a(2) = 0, and this is

impossible because {1,α,α2} is linearly independent over the rationals. The remaining possibility is c > 0,

which implies that we eventually have 0 < a(n)< a(n+1)< a(n+2), and we get back to (x,y,z) by applying

the inverse map R−1
T .

Proposition 11. If PT (x,y,z) = 1 for integers 0≤ x≤ y≤ z, then (x,y,z) = (Tn,Tn+1,Tn+2) for some integer

n≥ 0.

Proof. The map R−1
T (x,y,z) = (z−x−y,x,y) takes solutions to other solutions. Note that if 0≤ z−x−y≤ x,

then the new solution is also nonegative and increasing, and in fact strictly smaller unless x = y = 0. (If

x = y = 0 then z = 1 is the unique solution.) We will show that 0≤ z− x− y≤ x for all increasing solutions

with sufficiently large z.

If we divide both sides of the equation PT (x,y,z) = 1 by z3, and make the change of variables (t,s) =

(x/z,y/z), then we obtain

2s3 +2s2t +2st2 + t3−2st + t2−2s− t +1 =
1
z3 . (5.3)
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Call the left-hand side of this equation f (s, t) and note that it is a cubic defined on the unit square. It is a

routine calculus exercise to show that the minimum of f (s, t) on the region 1− t− s < 0 is

398−68
√

34
27

.

Therefore we cannot have both (5.3) and 1− t− s < 0 for

z >

(
398−68

√
34

27

)−1/3

= 2.6235.

It follows that 0≤ z−x−y for all increasing solutions to PT (x,y,z) = 1 with z≥ 3. By an analogous argument

on the region 1− t− s > t, all increasing solutions to PT (x,y,z) = 1 with z≥ 5 satisfy z− x− y≤ x.

Repeatedly applying the “backwards” map R−1
T produces smaller, nonnegative, increasing solutions as

long as z ≥ 5, and so this process terminates at a solution with 0 ≤ x ≤ y ≤ z < 5. It is simple to check that

all such solutions return to the point (0,0,1) under the map R−1
T , and so all increasing nonnegative solutions

come from applying the “forward” map RT to (0,0,1). This produces exactly the Tribonacci numbers.

See Figure 5.1 for a visual representation of the maps and regions in Proposition 11.

Theorem 9. If PT (x,y,z) = 1 for integers x,y,z, then (x,y,z) = (Tn,Tn+1,Tn+2) for some integer n.

Proof. By the previous two propositions, every solution comes from applying the maps (x,y,z) 7→ (y,z,x+

y+ z) and (x,y,z) 7→ (z− x− y,x,y) to the solution (0,0,1), which produces exactly the Tribonacci numbers

with positive and negative indices.

5.4 Uniqueness in general

The arguments from the previous section carry over almost verbatim to the general third-order recurrence.

The main difficulty is in establishing the minimum of the analogous cubic (5.3). For any specific recurrence it

is completely routine to check whether the proof of Proposition 11 works, but Proposition 13 gives a weaker

statement about an infinite family.

Definition 5. For any positive integers a and b, define the polynomial Pab(x,y,z) as

a2y2z+abxyz+aby3 +b2xy2 +ax2z+axy2−2ayz2 +2bx2y−bxz2−by2z+ x3−3xyz+ y3 + z3
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Figure 5.1: The map (x,y,z) 7→ (y,z,x+ y+ z) represented in the ts plane by its equivalent (t,s) 7→ (s/(s+
t +1),1/(s+ t +1)). Left: The map restricted to the unit square, with the region {s+ t > 1}∪{s+2t < 1}
shaded. The unique critical point in the first quadrant of the left-hand side of (5.3) is labeled by a black dot.
Right: The map on a larger portion of the plane. The critical point is an attractor for s+ t +1 > 0.

Proposition 12. Let a and b be positive integers such that X3−aX2−bX−1 is irreducible over Q and has a

single largest root which is real and greater than 1. Then all integer solutions to Pab(x,y,z) = 1 are generated

by applying the map (x,y,z) 7→ (z−ay−bx,x,y) or its inverse to a nonnegative, increasing solution.

Proof. The argument is the same as in Proposition 10. The irreducibility of X3−aX2−bX −1, with largest

root α > 1, implies the linear independence of {1,α,α2} over the rationals and gives the correct asymptotics.

Proposition 13. Fix positive integers a and b and consider the recurrence

u(n) = au(n−1)+bu(n−2)+u(n−3). (5.4)

If a is sufficiently large relative to b, then all solutions 0≤ x≤ y≤ z to the diophantine equation Pab(x,y,z)= 1

are generated by applying (5.4) to finitely many solutions.

It should be noted that while the following proof is non-constructive, the method is not. Carrying out the

proof for any specific integers a and b will determine an exact bound under which the finitely many initial

conditions can be found.

Proof. The polynomial Pab(x,y,z) is invariant under the map

(x,y,z) 7→ (z−ay−bx,x,y), (5.5)



51

so it takes solutions to solutions. In particular, the new solution is strictly closer to the origin unless x =

y = 0 (which yields the unique solution z = 1). We will show that the new solution is also nonnegative and

increasing for sufficiently large z.

If we divide both sides of Pab(x,y,z) = 1 by z3 and make the change of variables (t,s) = (x/z,y/z), then

we obtain fab(t,s) = z−3 where fab is a cubic in t and s on the unit square. Because fab is a cubic, it is possible

to exactly compute its critical points on the unit square, as well as the critical points of boundary functions

such as fab(0,s) and fab(1,s). If we treat b as a constant and perform asymptotic expansions as a→ ∞ of

these critical points, it turns out that the minimum of fab on the region {1−as−bt < 0}∪{1−as−bt > t}

occurs on the line 1−as−bt = 0, and it equals

1
a6 −

b2

4a7 −
9b
2a8 +O(a−9).

So fab(t,s) = z−3 fails if

z > a2 +
b2

12
a+

3b
2

+
b4

72
+O(a−1). (5.6)

It follows that 0 < 1− as− bt < t, also known as 0 < z− ay− bx < x for any solution 0 ≤ x ≤ y ≤ z with

sufficiently large z. We may therefore iterate (5.5) on such a solution until we reach one where z is below the

bound implied by (5.6), and there are only finitely many of these.

Theorem 10. Let a and b be positive integers such that

1. X3− aX2− bX − 1 is irreducible over the rationals and has a single largest root which is real and

greater than 1; and

2. a is sufficiently large relative to b (in the non-constructive sense of proposition 12).

Then all integer solutions to Pab(x,y,z) = 1 are generated by applying (5.4) forwards or backwards to finitely

many initial solutions.

Note that the first condition is not very restrictive. The cubic X3−aX2−bX −1 has a rational root only

if b = a+2.

5.5 Examples

A single family The characteristic equation

X3−10X2−3X−1
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leads to the diophantine equation

x3 +6x2y+10x2z+19xy2 +27xyz−3xz2 +31y3 +97y2z−20yz2 + z3 = 1.

Theorem 10 (along with explicit arguments from Proposition 13) shows that all solutions to this equation are

generated by applying the maps (x,y,z) 7→ (y,z,10z+3y+ x) and (x,y,z) 7→ (z−10y−3x,x,y) to the initial

solution (0,0,1).

Multiple families The characteristic equation

X3−2X2−3X−1

leads to the diophantine equation

x3 +6x2y+2x2z+11xy2 +3xyz−3xz2 +7y3 + y2z−4yz2 + z3 = 1.

Theorem 10 (along with explicit arguments from Proposition 13) shows that all solutions to this equation are

generated by applying the maps (x,y,z) 7→ (y,z,3z+ 2y+ x) and (x,y,z) 7→ (z− 3y− 2x,x,y) to the initial

solutions

(0,0,1),(0,1,3),(0,2,7),(1,1,4).

A failure The characteristic equation

X3−X2−3X−1 = (X−1)(X2−2X−1)

corresponds to setting a = 1 and b = 3, which leads to the diophantine equation

x3 +6x2y+ x2z+10xy2−3xz2 +4y3−2y2z−2yz2 + z3 = 1.

Our method fails here on two counts. First, the proof of Proposition 13 does not go through (a = 1 is not big

enough relative to b = 3). Second, this recurrence has degenerate integer solutions like (−1)n which do not

have the correct asymptotics.
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Chapter 6

The Meta-C-Finite Ansatz

The Fibonacci numbers Fn satisfy the famous recurrence Fn = Fn−1 +Fn−2. The sequence which takes every

other Fibonacci number, F2n, satisfies the similar recurrence F2n = 3F2(n−2)−F2(n−2). In fact, every sequence

of the form Fmn satisfies such a recurrence. Here are the first few:

Fn = Fn−1 +Fn−2

F2n = 3F2(n−1)−F2(n−2)

F3n = 4F3(n−1)+F3(n−2)

F4n = 7F4(n−1)−F4(n−2)

F5n = 11F5(n−1)+F5(n−2).

(6.1)

If we look closely at the coefficients that appear—or plug them into the OEIS [OEI24]—there seems to be a

general recurrence:

Fmn = LmFm(n−1)+(−1)m+1Fm(n−2). (6.2)

This conjecture is right on the money, and we can prove it a dozen different ways—Binet’s formula, induction,

generatingfunctionology—but the outline is more interesting.

We began with a sequence which satisfied a nice recurrence (Fn), examined recurrences for a family

of related sequences (Fmn), then noticed that the coefficients on the recurrences satisfied a meta pattern

(equation (6.2)). This outline holds for any sequence which satisfies a linear recurrence relation with constant

coefficients. Such sequences are called C-finite or constant recursive [Zei13; KP10]. Our goal is to prove

that this outline holds for C-finite sequences and give some example applications.

The remainder of the paper is organized as follows. Section 6.1 gives a brief overview of C-finite se-
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quences, Section 6.2 proves that an analogue of (6.2) holds for any C-finite sequence, Section 6.3 applies this

to produce infinite families of summation identities, and Section 6.4 shows that a similar outline holds for

products of C-finite sequences.

6.1 The C-finite ansatz

The theory of C-finite sequences is beautifully laid out in [KP10] and [Zei13]. What follows is a brief

description of the principle results. For simplicity, assume that everything we do is over an algebraically

closed field such as the complex numbers.

Given a sequence a(n), let N be the shift operator defined by

Na(n) = a(n+1).

We say that a(n) is C-finite if and only if there exists a polynomial p(x) such that p(N)a(n) = 0 for all n≥ 0.

We say that p(x) annihilates a(n). For example, x2−x−1 annihilates the Fibonacci sequence F(n) and x−2

annihilates the exponential sequence 2n. The set of all polynomials which annihilate a fixed a(n) is an ideal.

The generator of this ideal is the characteristic polynomial of a(n), and we call its degree the degree (or

order) of a(n).

Every C-finite sequence has a closed-form expression as a sum of polynomials times exponential se-

quences. More specifically,

a(n) =
m

∑
k=1

fk(n)rn
k ,

where r1,r2, . . . ,rm are the distinct roots of the characteristic equation of a(n) and fk(n) is a polynomial

in n with degree less than or equal to the multiplicity of the root rk. We call these formulas Binet-type

formulas after Binet’s famous formula for the Fibonacci numbers. For example, (x− 2)2 is an annihilating

polynomial of any sequence a(n) which satisfies the recurrence a(n+2) = 4a(n+1)−4a(n), and this implies

a(n) = (α +βn)2n for some constants α and β .

We can go the other way and derive an annihilating polynomial from a closed form expression. A term of

the form ndrn is annihilated by (x− r)d+1, so for each exponential rn in the closed form, look for the highest

power nd which is multiplied by rn and write down (x−r)d+1. For example, the sequence a(n)= n3n− n2

2 +5n

is annihilated by (x−3)2(x−1)3(x−5).
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Finally, if a(n) and b(n) are two C-finite sequences, then so are the following:

a(n)b(n) a(n)±b(n)
n

∑
k=0

a(k)b(n− k).

C-finite sequences are a special subclass of holonomic sequences, sequences which satisfy a linear recur-

rence with polynomial coefficients [Kau13]. Holonomic sequences satisfy very similar properties, but do not

have the readily computable closed forms which we need here.

6.2 Uniform recurrences

First up, we will prove the analogue of (6.2) for arbitrary C-finite sequences.

Proposition 14. If a(n) is a C-finite sequence of order d, then n 7→ a(nm) satisfies a recurrence of the form

a(nm) =
d

∑
k=1

ck(m)a((n− k)m), (6.3)

where ck(m) is C-finite with respect to m and has order at most
(d

k

)
. The sequence c1(m) always satisfies

the same recurrence as a(n) itself, and cd(k) = ωk, where ω is (−1)d times the constant coefficient of the

characteristic polynomial of a(n).

The following proof is constructive given the roots of the characteristic polynomial of a(n), but [BGW15]

gives formulas for ck(m) in terms of partial Bell polynomials without reference to the roots.

Proof. The Binet-type formula for a(n) is a linear combination of terms of the form nirn where i is a nonneg-

ative integer and r is a root of the characteristic polynomial of a(n). Thus, the Binet-type formula for a(nm)

is a linear combination of terms of the form (nm)irnm, which is equivalently a linear combination of terms of

the form ni(rm)n. The only thing that has changed is the exponential terms themselves, so if

d

∏
k=1

(x− rk)

is the characteristic polynomial of a(n) with possibly repeated roots r1, . . . ,rd , then

d

∏
k=1

(x− rm
k ). (6.4)

annihilates n 7→ a(nm). From the elementary theory of polynomials, the coefficients of (6.4) are elementary

symmetric functions of the roots rm
k . C-finite sequences are closed under multiplication and addition, so the
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coefficients of the polynomial are C-finite with respect to m.

To obtain the degree bound, recall that the coefficient on xd−i in (6.4) equals (−1)iei(rm
1 , . . . ,r

m
d ), where

ei(rm
1 , . . . ,r

m
d ) is the sum of all products of i distinct rm

k . Each of these products is of the form αm for some

constant α . The number of such terms is an upper bound on the degree of the sequence with respect to m,

and there are exactly
(d

i

)
of them.

Finally, note that the coefficient on xd−1 is precisely the sum ∑k rm
k , which is annihilated by the character-

istic polynomial of a(n) itself, and the coefficient on xd−d is precisely the product (r1r2 . . .rd)
m.

Example: Perrin numbers The Perrin numbers P(n) are a third-order C-finite sequence defined by

P(0) = 0 P(1) = 0 P(2) = 2

P(n+3) = P(n+1)+P(n).

They are sometimes called the “skipponaci” numbers. They satisfy the interesting property that p divides

P(p) for every prime p. Tracing through the above proof reveals the meta-recurrence

P(mn) = P(m)P(m(n−1))+ c(m)P(m(n−2))+P(m(n−3)), (6.5)

where c(m) is A078712 in the OEIS.

Example: General second-order Let a(n) be annihilated by (x− r1)(x− r2) for distinct reals r1 and r2.

The proof of Proposition 14 shows that n 7→ a(mn) is annihilated by

(x− rm
1 )(x− rm

2 ) = x2− (rm
1 + rm

2 )x+(r1r2)
m.

In particular, if r1 and r2 are the golden ratio and its conjugate, respectively, then rm
1 + rm

2 = Lm is the mth

Lucas number, and r1r2 =−1. This recovers (6.1).

Example: Square Fibonacci The square Fibonacci numbers F2
n are also C-finite. Going through the steps

of the above proof and consulting the OEIS reveals the following general identity:

F2
mn = (5F2

m +3(−1)m)(F2
m(n−1)− (−1)mF2

m(n−2))+(−1)mF2
m(n−3). (6.6)
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Example: Tribonacci Consider the sequence Tn defined by

T0 = 0 T1 = 0 T2 = 1

Tn = Tn−1 +Tn−2 +Tn−3.

The family of sequences n 7→ Tnm satisfy the following recurrences:

Tn = Tn−1 +Tn−2 +Tn−3

T2n = 3T2(n−1)+T2(n−2)+T2(n−3)

T3n = 7T3(n−1)−5T3(n−2)+T3(n−3)

T4n = 11T4(n−1)+5T4(n−2)+T4(n−3)

T5n = 21T5(n−1)+T5(n−2)+T5(n−3)

T6n = 39T6(n−1)−11T6(n−2)+T6(n−3).

In general,

Tnm = c1(m)T(n−1)m + c2(m)T(n−1)m +T(n−2)m,

where

c1(1) = 1 c1(2) = 3 c1(3) = 7

c1(m) = c1(m−1)+ c1(m−2)+ c1(m−3)

and

c2(1) = 1 c1(2) = 1 c1(3) =−5

c2(m) =−c2(m−1)− c2(m−2)+ c2(m−3).

The sequences ck(m) were found via guessing. However, Proposition 14 establishes that these sequences

are C-finite, and so proving our guess requires that we check only finitely many terms. In this case we must

check no more than double the maximum degree, which is 6 terms. We have produced just enough examples

above to constitute a proof.
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6.3 Uniform sums

The Fibonacci numbers satisfy the famous summation identity

n

∑
k=0

Fk = Fn+2−1. (6.7)

There are as many ways to prove this identity as there are articles devoted to evaluating related Fibonacci

sums [Lay77; Mel99; Fro18], but the most useful method at this juncture is the following method outlined in

[KP10]. The annihilating polynomial of Fn can be written as

x2− x−1 = (x−1)x−1.

Applying this to Fn shows that Fn = (x− 1)Fn+1 = Fn+2 − Fn+1. If we sum over n, then the right-hand

side telescopes and we recover (6.7). In general, if p(x) annihilates a(n) and p(1) ̸= 0, then we can write

p(x) = (x− 1)q(x)+ p(1) for some easily-computable polynomial q(x). Applying this to a(n) shows that

a(n) = (x−1)b(n) where b(n) =−q(x)a(n)/p(1). Summing over n yields

∑
0≤k<n

a(k) = b(n)−b(0).

From this idea, the uniform recurrences we have derived for sequences of the form n 7→ a(mn) and n 7→

a(ni)a(n j) will help us discover uniform summation identities.

Here is one such identity for the Perrin numbers, using (6.5).

Proposition 15. The Perrin numbers P(n) satisfy

∑
0≤k<n

P(mn) =
(P(n)−3)(1−P(m)− c(m))+P(n+1)(1−P(m))+P(n+2)−2

P(m)+ c(m)
,

where c(m) is A078712 in the OEIS.

Using (6.6), we can quickly rediscover the following infinite family of sums for the square of the Fi-

bonacci numbers.

Proposition 16. If m is odd, then

∑
0≤k<n

F2
mk =

FmnFm(n−1)

Lm
.
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Proof. Using (6.6), we obtain

∑
0≤k<n

F2
mk =

F2
mn(7−10F2

m)+(F2
m(n+1)−F2

m)(4−5F2
m)+F2

m(n+2)−F2
2m

10F2
m−8

.

This is far from the most economical representation. First, the numerator here contains (5F2
m− 4)F2

m−F2
2m.

It is easy to check that

(5F2
m−4)F2

m−F2
2m =−8F2

m
(−1)m +1

2
, (6.8)

so the expression on the left vanishes when m is odd. We are down to

F2
mn(7−10F2

m)+F2
m(n+1)(4−5F2

m)+F2
m(n+2)

10F2
m−8

.

Applying the general recurrence (6.1) to Fm(n+2) and simplifying the result brings us to

F2
mn(8−10F2

m)+F2
m(n+1)((4−5F2

m)+L2
m)+2FmnLmFm(n+1)

10F2
m−8

.

When m is odd, the identity 4− 5F2
m + L2

m = 0 follows from dividing (6.8) by F2
m and recalling that Lm =

F2m/Fm. Using this and simplifying gives

Fmn(−LmFmn +Fm(n+1))

Lm
,

and applying the general recurrence (6.1) once more to Fm(n+1) gives us the final answer FmnFm(n−1)/Lm.

6.4 Uniform products

The proof of Proposition 14 relied on little more than the identity rmn = (rm)n and some structural facts about

C-finite sequences. Unsurprisingly, these ideas apply to other settings. The below proposition shows how to

apply the idea to prove that sequences of the form n 7→ a(ni)a(n j) also satisfy meta C-finite recurrences.

Proposition 17. If a(n) is C-finite of degree d whose characteristic polynomial has m distinct roots, then

Pi, j(n) = a(ni)a(n j) satisfies a recurrence of the form

Pi, j(n) =
m(2d−m)

∑
k=1

ck(i, j)Pi, j(n− k),

where each ck(i, j) is C-finite with respect to i and j and ck(i, j) = ck( j, i). The sequence ck(i, j) has order
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(with respect to i or j) no more than
(d

k

)
.

Proof. Write the characteristic polynomial of a(n) as ∏
m
k=1(x− rk)

dk+1 where the rk are distinct and d1 +

d2 + · · ·+dm = d−m. Then,

a(n) =
m

∑
k=1

pk(n)rn
k ,

where pk is a polynomial in n of degree dk or less. Therefore

Pi, j(n) = ∑
1≤k,v≤m

pk(in)pv( jn)(ri
kr j

v)
n.

Immediately, we see that Pi, j(n) is annihilated by

∏
1≤k,v≤m

(x− ri
kr j

v)
dk+dv+1, (6.9)

a polynomial of degree ∑k,v(dk + dv + 1) = m(2d−m). The coefficients of this polynomial are elementary

symmetric polynomials in the variables {ri
kr j

v}1≤k,v≤d , and therefore C-finite with respect to i and j by the

C-finite closure properties. The roots ri
kr j

v are symmetric in i and j, so the coefficient sequences are as well.

The coefficient on xD−k is essentially the sum of all products of k distinct elements from {ri
kr j

v}1≤k,v≤d .

As a sequence in i the r j
v factors are irrelevant: The coefficient will be annihilated by the characteristic

polynomial for the sum of all products of k distinct elements from {ri
k}1≤k≤d . Each term of this latter sum is

of the form α i for some constant α , and there are no more than
(d

k

)
distinct values of α . Therefore ck(i, j)

has order no more than
(d

k

)
with respect to i (and also j).

The previous proof can be slightly modified to produce a stronger statement. Namely, if we split the

product (6.9) into diagonal and off-diagonal terms, we get the following corollary.

Corollary 3. Let a(n) be a C-finite sequence of degree d whose characteristic polynomial has m distinct

roots. Then n 7→ a(ni)a(n j) is annihilated by a polynomial Ci, j(x) which factors as

Ci, j(x) = Li+ j(x)Ri, j(x), (6.10)

where degLi+ j = 2d−m and degRi, j = (m−1)(2d−m). The coefficients of Li+ j(x) are C-finite sequences

in i+ j and the coefficients of Ri, j(x) are C-finite sequences which are symmetric in i and j.

There is one case of this corollary worth highlighting. Now that we know these annihilating polynomials

with C-finite coefficients exist, we could find them by computing enough examples and guessing a pattern.

However, if the degrees of Li+ j(x) and Ri, j(x) are the same, then it is not always clear which factor is L and
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which factor is R in a given example. This happens when 2d−m = (m− 1)(2d−m). Since m ≤ d, the

interesting solution is m = 2. Thus sequences with exactly two roots in their characteristic polynomial should

be handled “manually.” We will show one example.

Example: Second-order annihilators Let a(n) be a C-finite sequence annihilated by the quadratic (x−

r1)(x− r2) where r1 ̸= r2. Then n 7→ a(ni)a(n j) is annihilated by

(x2−L (i+ j)x+(r1r2)
i+ j)(x2− (r1r2)

jL (i− j)x+(r1r2)
i+ j)

where L (n) = rn
1 + rn

2. If a(n) = F(n) equals the nth Fibonacci number, then L (n) = L(n) is the nth Lucas

number, r1r2 =−1, and we obtain the annihilator

(x2−L(i+ j)x+(−1)i+ j)(x2− (−1) jL(i− j)x+(−1)i+ j).

6.5 Computer demo

This article is joined by a corresponding Maple package MetaCfinite, obtainable from GitHub at https:

//github.com/rwbogl/MetaCfinite. With MetaCfinite, nearly all the propositions described in this

article can be explored and checked empirically.

Guessing uniform recurrences Suppose that we want to discover (6.1) and the corresponding general

pattern. The following Maple commands compute the five recurrences from (6.1):

Fib := [[0, 1], [1, 1]:

mSect(Fib, 1, 0); # [[0, 1], [1, 1]]

mSect(Fib, 2, 0); # [[0, 1], [3, -1]]

mSect(Fib, 3, 0); # [[0, 2], [4, 1]]

mSect(Fib, 4, 0); # [[0, 3], [7, -1]]

mSect(Fib, 5, 0); # [[0, 5], [11, 1]]

We are trying to guess the pattern followed by 1,3,4,7,11, and 1,−1,1,−1,1. The following command does

this for us:

MetaMSect(Fib, 0); # [[[1, 3], [1, 1]], [[1], [-1]]]

This tells us that, for example, the coefficient on Fm(n−1) is a sequence Lm which begins L1 = 1, L2 = 3, and

satisfies Lm = Lm−1 +Lm−2. These are the Lucas numbers.

https://github.com/rwbogl/MetaCfinite
https://github.com/rwbogl/MetaCfinite
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Uniform summation identities The procedure polysum(a, n, p, x computes an expression for ∑0≤k<n a(k)

where a(n) is a C-finite sequence with characteristic polynomial p(x). For example, the following command

derives the famous identity (6.7):

polysum(F, n, x^2 - x - 1, x); # F(n + 1) - F(1).

This is most powerful when joined with uniform recurrences found by MetaMSect. For instance, the sequence

n 7→ F(mn) has characteristic polynomial pm(x) = x2−L(m)x− (−1)m+1. The following commands derive

a summation identity for ∑0≤k<n F(mk):

polysum(Fm, n, x^2 - L(m) * x - (-1)^(m + 1), x);

(Fm(n) - Fm(0)) (1 - L(m)) + Fm(n + 1) - Fm(1)

- ----------------------------------------------

m

1 - L(m) + (-1)

That is, we have automatically derived the famous identity

∑
0≤k<n

F(mk) =
F(mn)(1−L(m))+F(m(n+1))−F(m)

L(m)−1− (−1)m .

6.6 Conclusion

We have used the theory of C-finite sequences to establish meta-facts about the recurrences C-finite sequences

satisfy. Namely, we have shown that the recurrences satisfied by n 7→ a(nm) and n 7→ a(ni)a(n j) are uniform

in a C-finite sense. This allowed us to state uniform families of summation identities for some C-finite

sequences.

The summation identities our methods derive are automatic and uniform, but we do not claim that they

are the “best possible.” For instance, the first expression obtained for ∑
n−1
k=0 F2

mk in Proposition 16 is quite

cumbersome compared to the final answer:

F2
mn(7−10F2

m)+(F2
m(n+1)−F2

m)(4−5F2
m)+F2

m(n+2)−F2
2m

10F2
m−8

=
FmnFm(n−1)

Lm
.

It still takes some (semi-automatic) sweat to discover this reduction. Can we automatically discover and

prove such “complex = simple” identities? And might this apply to more complex sums, such as ∑
n−1
k=0 F5

mk?

The answer is likely yes—and perhaps a C-finite simplification algorithm already exists—but we leave this

as an open problem.
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Chapter 7

Gosper’s algorithm and Bell numbers

Evaluating the partial sums of sequences which are products and quotients of polynomials, binomial coeffi-

cients, factorials, and so on is a major theme in combinatorics, discrete probability, and computer science.

The main tool in this area is Bill Gosper’s marvelous hypergeometric summation algorithm [Gos78].

A sequence f (k) is hypergeometric (or a hypergeometric term) provided that the consecutive quotient

f (k+1)/ f (k) is a rational function in k. Gosper’s algorithm completely solves the problem of hypergeometric

summation in one variable. It constructively determines when ∑k f (k) itself is hypergeometric term. We call

such hypergeometric terms “Gosper summable.”

Unfortunately, many hypergeometric terms are not Gosper summable. For example, we cannot fill in the

following blank with a hypergeometric term:

n

∑
k=0

1
k!

= .

However, an upshot of Gosper’s algorithm is that we can often tweak non-Gosper summable terms to make

them summable. For example, while 1/k! is not Gosper summable, the term (k− 1)/k! is. In fact, lots of

multiples of 1/k! are Gosper summable:

n

∑
k=0

k−1
k!

=− 1
n!

n

∑
k=0

k2−2
k!

=−n+2
n!

n

∑
k=0

k3−5
k!

=−n2 +3n+5
n!

n

∑
k=0

k4−15
k!

=−n3 +4n2 +9n+15
n!

.
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This list suggests that there exists a sequence of integers b(d)—beginning 1,2,5,15—such that (kd−b(d))/k!

is Gosper summable. This turns out to be true. Even better, b(d) turns out to be the dth Bell number, the

number of partitions of d elements into any number of nonempty subsets.

Indeed, there is a similar statement for hypergeometric terms of the form zkak and zk/ak for constant z,

where ak = a(a+1) · · ·(a+k−1) is the rising factorial. Specifically, there are explicit exponential generating

functions ga,z(x) and fa,z(x) such that (kd−c(d))zkak is Gosper summable iff c(d) is the coefficient on xd/d!

in ga,z(x), and the analogous statement for zk/ak and fa,z(x). These generating functions happen to be related

to the famous exponential generating function for the Bell numbers B(x) = eex−1. Our goal is to explain and

prove these facts.

The remainder of this paper is organized as follows. Section 7.1 gives a quick overview of Gosper’s algo-

rithm. Section 7.2 establishes the summability results and gives the explicit generating functions. Section 7.3

shows how to explicitly evaluate a special case of these sums in terms of well-known integer sequences.

Section 7.4 explains how these generating functions are related to the Bell numbers.

7.1 Gosper’s algorithm

This section provides a brief overview of Gosper’s algorithm. For more details, see [Gos78] or [PWZ97].

A sequence f (k) is hypergeometric, or a hypergeometric term, provided that f (k+ 1)/ f (k) is a rational

function in k.

Every rational function R(k) can be decomposed as

R(k) =
a(k)
b(k)

c(k+1)
c(k)

,

where a, b, and c are polynomials in k which satisfy gcd(a(k),b(k+ i)) = 1 for all nonnegative integers i. This

is called the polynomial normal form of R(k). If f (k) is hypergeometric and f (k+ 1)/ f (k) has polynomial

normal form
f (k+1)

f (k)
=

a(k)
b(k)

c(k+1)
c(k)

,

then we call a/b the kernel of f , and c the shell of f . Note that

f (k) = zc(k)
k−1

∏
j=0

(a( j)/b( j))

for some constant z. For this reason, we sometimes call c(k) the “polynomial part” of f (k) and the remaining

product the “purely hypergeometric part.”
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Gosper’s algorithm amounts to the following theorem.

Theorem. The hypergeometric term f (k) with polynomial normal form (a,b,c) is Gosper summable if and

only if there is a polynomial solution x(k) to

x(k+1)a(k)− x(k)b(k−1) = c(k). (7.1)

In that case,

∑
k

f (k) =
(

x(k)b(k−1)
c(k)

)
f (k).

For example, the term ratio of f (k) = 1/k! has polynomial normal form

f (k+1)
f (k)

=
1

k+1

with (a,b,c) = (1,k+1,1). Therefore f (k) is summable if and only if x(k+1)−x(k)k = 1 has a polynomial

solution x(k), which it does not. On the other hand, the term ratio of g(k) = (k−1)/k! has polynomial normal

form
g(k+1)

g(k)
=

1
k+1

k
k−1

with (a,b,c) = (1,k+ 1,k− 1). Therefore g(k) is summable if and only if x(k+ 1)− x(k)k = k− 1 has a

polynomial solution x(k), which it does, namely x(k) =−1. In addition,

∑
k

k−1
k!

=− k
k!

=− 1
(k−1)!

.

7.2 Summability

For pedagogical purposes, let us first prove the following proposition.

Proposition 18. The term
kd−b(d)

k!

is Gosper summable if and only if b(d) is the dth Bell number.

Proof. The consecutive term ratios of 1/k! are 1/(k+ 1), which has polynomial normal form (1,k+ 1,1).

Setting xd(k) =−kd in (7.1) shows that

pd(k) = kd+1− (k+1)d
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is a sequence of polynomials such that pd(k)/k! is Gosper summable. Since the degree of pd(k) is exactly

d + 1, these polynomials are linearly independent, and therefore form a basis for the set of all polynomials

p(k) such that p(k)/k! is Gosper summable. Our proposition amounts to the claim that kd +b(d) is a different

basis for this space.

The degrees of the pd(k) start at 1 and increase by 1 every step, so by subtracting appropriate multiples

of previous terms, we can cancel every power of k in pd(k) except the leading term and the constant. That is,

there is a basis of the form k+ c(1),kd + c(2), . . . , obtained by a linear operation on the pd(k). In particular,

since

pd(k) = kd+1−∑
j

(
d
j

)
k j,

the correct multiples to subtract are as follows:

kd+1 + c(d +1) = pd(k)+ ∑
j>0

(
d
j

)
(k j + c( j)). (7.2)

If we set c(0) =−1 and look at the constant term of both sides, we obtain

c(d +1) = ∑
j

(
d
j

)
c( j).

This implies c(d) = −b(d), where b(d) is the dth Bell number, since the Bell numbers satisfy the same

recurrence and begin with 1 rather than −1.

The above outline carries over nearly verbatim to other simple hypergeometric terms. A slight difference

is that, most of the time, the sequence c(d) is not well-known, and we have to settle for an explicit exponential

generating function. The following propositions neatly summarize the results.

Proposition 19. If z ̸= 0 and a is not a nonpositive integer, then the hypergeometric term (kd−c(d))zk/ak is

Gosper summable if and only if

c(d) = [xd/d!]exp(−z− (a−1)x+ zex) = [xd/d!] fa,z(x).

Proof. The consecutive term ratios of zk/ak are z/(a+ k), so their polynomial normal form is (z,a+ k,1). It

follows that the sequence of polynomials

pd(k) = kd(a+ k−1)− z(k+1)d

for d = 0,1,2, . . . form a basis for the set of polynomials p(k) such that p(k)zk/ak is Gosper summable. It
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suffices to transform this basis by iteratively eliminating all powers of k from pd(k) except its highest power

and its constant term, then to show that the constant terms have the quoted exponential generating function.

Note that

pd(k) = kd+1− (z+1−a)kd− z ∑
j<d

(
d
j

)
k j.

Therefore,

kd+1 + c(d +1) = pd(k)+(z+1−a)(kd + c(d))+ z ∑
0< j<d

(
d
j

)
(k j + c( j)).

Comparing constant terms, we see that

c(d +1) =−z+(z+1−a)c(d)+ z ∑
0< j<d

(
d
j

)
c( j)

If we let c(0) =−1, then this becomes

c(d +1) = (1−a)c(d)+ z∑
j

(
d
j

)
c( j).

If C(x) = ∑d≥0
c(d)
d! xd is the exponential generating function of c(d), then the previous equation implies

C′(x) = (1−a)C(x)+ zexC(x).

Solving this linear differential equation yields

C(x) =−e−z−(a−1)x+zex
.

Therefore (kd − c(d))zk/ak is Gosper summable if and only if c(d) is the coefficient on xd/d! in exp(−z−

(a−1)x+ zex).

Proposition 20. If z ̸= 0 and a is not a nonpositive integer, then the hypergeometric term (kd − c(d))zkak is

Gosper summable with respect to k if and only if

c(d) = [xd/d!]exp(z−1−ax− z−1e−x) = [xd/d!]ga,z(x).

Proof. The consecutive term ratio of zkak has polynomial normal form (z(a+ k),1,1). Therefore, as in the

proof of Proposition 2, the sequence of polynomials

pd(k) = z(k+1)d(a+ k)− kd
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form a basis for the set of all polynomials p(k) such that p(k)zkak is Gosper summable, and our job is to

simplify it.

Note that

pd(k) = zkd+1 +(z(a+d)−1)kd + z ∑
j<d

(
a
(

d
j

)
+

(
d

j−1

))
k j.

Therefore, having constructed basis elements of the form k+ c(1), k2 + c(2), . . . ,kd + c(d), we have

z(kd+1 + c(d +1)) = pd(k)− (z(a+d)−1)(kd + c(d))− z ∑
0< j<d

(
a
(

d
j

)
+

(
d

j−1

))
(k j + c( j))

Comparing constant coefficients yields

zc(d +1) = az− (z(a+d)−1)c(d)− z ∑
0< j<d

(
a
(

d
j

)
+

(
d

j−1

))
c( j).

If we let c(0) =−1, then this becomes

zc(d +1) = c(d)− z ∑
0≤ j≤d

(
a
(

d
j

)
+

(
d

j−1

))
c( j).

If we move the sum to the left-hand side, the equation reads

c(d) = z∑
j

(
a
(

d
j

)
+

(
d

j−1

))
c( j).

If C(x) is the exponential generating function of c(d), then standard techniques give us

C(x) = z(exC(x)+ exC′(x)),

whose unique solution with C(0) =−1 is C(x) =−exp(z−1−ax− z−1e−x).

7.3 Explicit Formulas and Gould Numbers

In the previous section we proved that

∑
k

kd−b(d)
k!

is Gosper summable when b(d) is the dth Bell number. In this section we will explicitly evaluate this sum in

terms of well-known integer sequences.

Equation (7.2) is essentially a change of basis equation. It tells us how to express the polynomials pd(k)
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in terms of the polynomials kd−b(d). The first basis, pd(k), has the benefit that

∑
k

pd(k)
k!

=−kd+1

k!
.

So, if we could invert (7.2) and express kd − b(d) in terms of pd(k), pd−1(k), and so on, we could apply

linearity to evaluate ∑k
kd−b(d)

k! .

Equation (7.2) amounts to the following matrix identity:



p0(k)

p1(k)

p2(k)
...


=



1 0 0 0 · · ·

−1 1 0 0 · · ·

−2 −1 1 0 · · ·

−3 −3 −1 1 · · ·
...





k−b(1)

k2−b(2)

k3−b(3)
...


. (7.3)

The coefficient matrix is invertible. The first few rows of A−1 are as follows:

A−1 =



1 0 0 0 0 · · ·

1 1 0 0 0 · · ·

3 1 1 0 0 · · ·

9 4 1 1 0 · · ·

31 14 5 1 1 · · ·
...


.

The OEIS [OEI24] suggests that the columns are the diagonals of A121207, which is a table of values Td j

defined by

T(d+1) j =
d− j−1

∑
i=0

(
r
i

)
T(d−i) j.

This table is a special case of a family of tables studied by Gould and Quaintance [GQ07]. The numbers Tr1

are called the Gould numbers (see A040027). This suggestion turns out to be correct.

Proposition 21. For any positive integer d,

∑
k

kd−b(d)
k!

=−
∑ j≥1 Bd jk j

k!
,

https://oeis.org/A040027
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where the matrix Bd j is defined by Bdd = 1 and

B(d+1) j =
d− j

∑
k=0

(
d
k

)
B(d−k) j (d ≥ j).

In particular, Bd j is the dth element of the ( j−1)th diagonal of A121207.

Proof. The matrix in (7.3) is defined by

Ad j = [d = j]−
(

d−1
j

)
[d ̸= j].

For B to be its matrix inverse, we must have

∑
k≥1

A(d+1)kBk j = [d +1 = j] (7.4)

for all integers d ≥ 0 and j ≥ 1. If we expand A(d+1)k, then this reads

B(d+1) j = ∑
k≥1

(
d
k

)
Bk j +[d +1 = j]. (7.5)

Note that this implies Bd j = 0 if d < j. Indeed, B1 j =
(0

1

)
B1k = 0, and if d < j− 1, then we can apply

induction to every term of the right-hand side of (7.5) to conclude that B(d+1) j = 0. Hence we can define Bd j

as follows:

B j j = 1

B(d+1) j = ∑
j≤k≤d

(
d
k

)
Bk j (d ≥ j).

This is A121207 shifted so that j begins at 1 rather than 0.

Written more concretely, this identity reads

n−1

∑
k=0

kd−b(d)
k!

=−
∑ j≥1 Bd jn j

n!
.

If we multiply by n! and rearrange things, we obtain the following equality for the bell numbers, valid for

n≥ 1 and d ≥ 0:

b(d) =
∑

n−1
k=0 kdnn−k +∑ j≥1 Bd jn j

∑
n−1
k=0 nn−k

. (7.6)

It seems plausible that this has a combinatorial proof, but the author does not know one.

https://oeis.org/A121207
https://oeis.org/A121207
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7.4 Connections with Bell numbers

The exponential generating functions from the previous section are

fa,z(x) = exp(−z− (a−1)x+ zex)

ga,z(x) = exp(z−1−ax− z−1e−x).

These functions, and therefore the underlying sequences, are connected with the Bell numbers. In particular,

if we let

B(x) = eex−1 = ∑
j≥0

b(d)
d!

xd

be the exponential generating function for the Bell numbers, then for integral z we have the following identi-

ties:

fa,z(x) = e(1−a)xB(x)z (7.7)

ga,1/z(x) = e−axB(−x)−z. (7.8)

If z is positive, the first equation says that the coefficients of f1,z(x) are the binomial convolution of (1−a)k

with the convolution of the Bell numbers with themselves z times. If z is negative, the second equation says

that the coefficients of g1,1/z(x) are the binomial convolution of (−a)k with the convolution of the alternating

Bell numbers (−1)db(d) with themselves z times.

Examples for zk/ak Setting a= z= 1 in (7.7), we get f1,1(x) =B(x). If we translate this into the vocabulary

of the previous section, this says that
kd−b(d)

k!

is Gosper summable, and no other constants will work. Similarly, f1,2(x) = B(x)2, so

(kd− c(d))2k

k!
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is Gosper summable only if c(d) = ∑ j
(d

j

)
b(d)b(d− j). This sequence begins 2,6,22,94, corresponding to

the following identities:

n

∑
k=0

(k−2)2k

k!
=−2n+1

n!
n

∑
k=0

(k2−6)2k

k!
=− (n+3)2n+1

n!
n

∑
k=0

(k3−22)2k

k!
=− (n2 +4n+11)2n+1

n!
n

∑
k=0

(k4−94)2k

k!
=− (n3 +5n2 +17n+47)2n+1

n!
.

Setting a = 1/2 and z = 1 gives g1/2,1(x) = ex/2B(x), which says that

kd− c(d)

(1/2)k
= (kd− c(d))

4kk!
(2k)!

is Gosper summable only if c(d) = ∑ j
(d

j

)
b(d)/2d− j.

Examples for zkak The connection for g1,1/z(x) is most convenient when z is a negative integer. Setting

z =−1 in (7.8) gives g1,−1(x) = e−xB(−x) = B′(−x), which says that

(kd− (−1)db(d +1))(−1)kk!

is Gosper summable, and no constant except (−1)db(d+1) will work. Similarly, g1,−1/2(x) = e−xB(−x)2 =

B′(−x)B(−x). Therefore,

(kd− c(d))
k!

(−2)k

is Gosper summable only if c(d) = (−1)d
∑ j
(d

j

)
b( j+1)b(d− j). For example,

n

∑
k=0

(k2−11)k!
(−2)k =

(n−3)(n+1)!
(−2)n −8.

Setting a = 1/2 and z =−1 gives g1/2,−1(x) = e−x/2B(−x), so

(kd− c(d))(−1)k(1/2)k = (kd− c(d))(−1)k (2k)!
4kk!

is Gosper summable only if c(d) = (−1)d
∑ j
(d

j

)
b(d)/2d− j.



73

7.5 Conclusion

We have given some explicit conditions for the Gosper summability of hypergeometric terms of the form

(kd− c(d))zkak and (kd− c′(d))
zk

ak
.

Namely, c(d) and c′(d) must be the coefficients of explicit exponential generating functions which are related

to the Bell numbers. In the special case of 1/k!, we gave an explicit evaluation of these sums in terms of the

inverse of a matrix involving binomial coefficients. The Bell numbers probably appear by accident. However,

should some combinatorial connection be made, the author would like to hear about it.

We have made use of Gosper’s algorithm for hypergeometric summation, but there is a continuous variant

of Gosper’s algorithm for hyperexponential integration [AZ90]. We may be able to make statements about

when integrals of the form ∫
(xd−b(d))e−x2

dx

are themselves hyperexponential. However, in contrast to the summation problem, we have a solid under-

standing of all elementary antiderivatives thanks to Liouville’s theorem [GCL92, ch. 12], not just hyperexpo-

nential ones. Thus this could be a less satisfying problem.

Finally, we note that the results here work essentially because the space of polynomials p(k) such that

p(k)zkak are Gosper summable contains polynomials of every degree greater than or equal to 1. More com-

plicated hypergeometric terms will produce spaces with degrees only 2 or greater, or 3 or greater, and so on.

In these cases, the basis could not be simplified down to leading powers and constants, so the results would

be about terms of the form

(kd− kc1(d)− c0(d)) f (k),

or

(kd− k2c2(d)− kc1(d)− c0(d)) f (k),

and so on. The techniques here would certainly apply to such terms, though the results would be more difficult

to state.
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Chapter 8

Tweaking the Beukers Integrals In

Search of More Miraculous Irrationality

Proofs á La Apéry

In honor of our irrational guru Wadim Zudilin, on his ⌊50ζ (5)⌋-th birthday

8.1 Hilbert’s 0-th problem

Before David Hilbert [Hol20] stated his famous 23 problems, he mentioned two problems that he probably

believed to be yet much harder, and indeed, are still wide open today. One of them was to prove that there are

infinitely many prime numbers of the form 2n +1, and the other one was to prove that the Euler-Mascheroni

constant is irrational.

Two paragraphs later he stated his optimistic belief that “in mathematics there is no ignorabimus.”

As we all know, he was proven wrong by Gödel and Turing in general, but even for such concrete prob-

lems, like the irrationality of a specific, natural, constant, like the Euler-Mascheroni constant (that may be

defined in terms of the definite integral −
∫

∞

0 e−x logxdx) , that is most probably decidable in the logical

sense, (i.e. there probably exists a (rigorous) proof), we lowly humans did not yet find it, (and may never

will!).

While the Euler-Mascheroni constant (and any other, natural, explicitly-defined, constant that is not ob-

viously rational) is surely irrational, in the everyday sense of the word sure (like death and taxes), giving a

proof, in the mathematical sense of ‘proof’ is a different matter. While e was proved irrational a long time



75

ago (trivial exercise), and π was proved irrational by Lambert around 1750, we have no clue how to prove

that e+π is irrational. Ditto for e ·π . Exercise: Prove that at least one of them is irrational.

8.2 Apéry’s Miracle

As Lindemann first proved in 1882, the number π is more than just irrational, it is transcendental, hence it

follows that ζ (n) is irrational for all even arguments, since Euler proved that ζ (2n) is a multiple of π2n by a

rational number. But proving that ζ (3), ζ (5), . . . are irrational remained wide open.

Since such problems are so hard, it was breaking news, back in 1978, when 64-years-old Roger Apéry

announced and sketched a proof that ζ (3) := ∑
∞
n=1

1
n3 is irrational. This was beautifully narrated in a classic

expository paper by Alf van der Poorten [Poo79], aided by details filled-in by Henri Cohen and Don Zagier.

While beautiful in our eyes, most people found the proof ad-hoc and too complicated, and they did not like

the heavy reliance on recurrence relations.

To those people, who found Apéry’s original proof too magical, ad-hoc, and computational, another

proof, by a 24-year-old PhD student by the name of Frits Beukers [Beu79] was a breath of fresh air. It was a

marvelous gem in human-generated mathematics, and could be easily followed by a first-year student, using

partial fractions and very easy estimates of a certain triple integral, namely

∫ 1

0

∫ 1

0

∫ 1

0

(x(1− x)y(1− y)z(1− z))n

(1− z+ xyz)n+1 dxdydz .

The general approach of Apéry of finding concrete sequences of integers an,bn such that

|ζ (3)− an

bn
| < CONST

b1+δ
n

,

(see below) for a positive δ was still followed, but the details were much more palatable and elegant to the

average mathematician in the street.

As a warmup, Beukers, like Apéry before him, gave a new proof of the already proved fact that ζ (2) = π2

6

is irrational, using the double integral

∫ 1

0

∫ 1

0

(x(1− x)y(1− y))n

(1− xy)n+1 dxdy .

Ironically, we will follow Beukers’ lead, but heavily using recurrence relations, that will be the en-

gine of our approach. Thus we will abandon the original raison d’être of Beukers’ proof of getting rid of

recurrences, and bring them back with a vengeance.
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8.3 How Beukers’ proofs could have been discovered

Once upon a time, there was a precocious teenager, who was also a computer whiz, let’s call him/her/it/they

Alex. Alex just got a new laptop that had Maple, as a birthday present.

Alex typed, for no particular reason,

int(int(1/(1-x*y),x=0..1),y=0..1);

and immediately got the answer: π2

6 . Then Alex wondered about the sequence

I(n) :=
∫ 1

0

∫ 1

0

(x(1− x)y(1− y))n

(1− xy)n+1 dxdy .

(why not, isn’t it a natural thing to try out for a curious teenager?), and typed the following:

I1:=n->int(int(1/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))**n,x=0..1),y=0..1);

(I is reserved in Maple for
√
−1, so Alex needed to use I1) Alex looked at the first ten values by typing:

L:=[seq(I1(i),i=1..10)]; ,

getting after a few seconds

[5− π2

2
,−125

4
+

19π2

6
,

8705
36
− 49π2

2
,−32925

16
+

417π2

2
,

13327519
720

− 3751π2

2
,−124308457

720
+

104959π2

6
,

19427741063
11760

− 334769π2

2
,−2273486234953

141120
+

9793891π2

6
,

202482451324891
1270080

− 32306251π2

2
,−2758128511985

1728
+

323445423π2

2
] .

Alex immediately noticed that, at least for n≤ 10,

I(n) = an−bn
π2

6
,

for some integers bn and some rational numbers an. By taking evalf(L), Alex also noticed that I(n) get

smaller and smaller. Knowing that Maple could not be trusted with floating point calculations (unless you

change the value of Digits from its default, to something higher, say, in this case Digits:=30), that they

get smaller and smaller. Typing ‘evalf(L,30);’, Alex got:

[0.06519779945532069058275450006,0.0037472701163022929758881663,
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0.000247728866269394110526059,0.00001762713127202699137347,

0.0000013124634659314676853,0.000000100776323486001254,

0.00000000791212964371946,0.0000000006317437711206,

5.1111100706×10−11,4.17922459×10−12] .

Alex realized that I(n) seems to go to zero fairly fast, and since I(10)/I(9) and I(9)/I(8) were pretty

close, Alex conjectured that the limit of I(n)/I(n−1) tends to a certain constant. But ten data points do not

suffice!

When Alex tried to find the first 2000 terms, Maple got slower and slower. Then Alex asked Alexa, the

famous robot,

Alexa: how do I compute many terms of the sequence I(n) given by that double-integral?

and Alexa replied:

Go to Doron Zeilberger’s web-site and download the amazing program https: // sites. math. rutgers.

edu/ ~ zeilberg/ tokhniot/ MultiAlmkvistZeilberger. txt that accompanied the article [AZ06].

Typing

MAZ(1,1/(1-x*y),x*(1-x)*y*(1-y)/(1-x*y),[x,y],n,N, {})[1];

immediately gave a recurrence satisfied by I(n)

I(n) =−
(
11n2−11n+3

)
n2 · I (n−1)+

(n−1)2

n2 · I (n−2) .

Using this recurrence, Alex easily computed the first 2000 terms, using the following Maple one-liner

(calling the sequence defined by the recurrence I2(n)):

I2:=proc(n) option remember: if n=0 then Pi**2/6 elif n=1 then 5-Pi**2/2 else -(11*n**2-11*n+3)/n**2*I2(n-1)+(n-1)**2/n**2*I2(n-2):fi:

end:

and found out that indeed I(n)/I(n−1) tends to a limit, about 0.09016994. Writing

I(n) = an−bn
π2

6

and realizing that I(n) is small, Alex found terrific rational approximations to π2

6 , an/bn, that after clearing

denominators can be written as a′n/b′n where now both numerator a′n and denominator b′n are integers.

π2

6
≈ a′n

b′n
.

https://sites.math.rutgers.edu/~zeilberg/tokhniot/MultiAlmkvistZeilberger.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/MultiAlmkvistZeilberger.txt
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Alex also noticed that for all n up to 2000, for some constant C,

|π
2

6
− a′n

b′n
| ≤ C

(b′n)1+δ
,

where δ is roughly 0.09215925467. Then Alex concluded that this proves that π2

6 is irrational, since if it were

rational the left side would have been ≥ C1
b′n

, for some constant C1. Of course, some details would still need

to be filled-in, but that was not too hard.

8.4 The general strategy

Let’s follow Alex’s lead. (Of course our fictional Alex owes a lot to the real Beukers and also to Alladi and

Robinson [AR80]).

Start with a constant, let’s call it C, given by an explicit integral

∫ 1

0
K(x)dx ,

for some integrand K(x), or, more generally, a d-dimensional integral

∫ 1

0
· · ·
∫ 1

0
K(x1, . . . ,xk)dx1 . . .dxk .

Our goal in life is to prove that C is irrational. Of course C may turn out to be rational (that happens!), or

more likely, an algebraic number, or expressible in terms of a logarithm of an algebraic number, for which,

there already exist irrationality proofs (albeit not always effective ones). But who knows? Maybe this constant

has never been proved irrational, and if it will happen to be famous (e.g. Catalan’s constant, or ζ (5), or the

Euler-Mascheroni constant mentioned above), we will be famous too. But even if it is a nameless constant, it

is still extremely interesting, if it is the first irrationality proof, since these proofs are so hard, witness that, in

spite of great efforts by experts like Wadim Zudilin, the proofs of these are still wide open.

In this article we will present numerous candidates. Our proofs of irrationality are modulo a ‘divisibility

lemma’ (see below), that we are sure that someone like Wadim Zudilin, to whom this paper is dedicated,

can fill-in. Our only doubts are whether these constants are not already proved to be irrational because they

happen to be algebraic (probably not, since Maple was unable to identify them), or more complicated numbers

(like logarithms of algebraic numbers). Recall that Maple’s identify can’t (yet) identify everything that God

can.

Following Beukers and Alladi-Robinson, we introduce a sequence of integrals, parameterized by a non-
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negative integer n

I(n) =
∫ 1

0
K(x)(x(1− x)K(x))n dx ,

and analogously for multiple integrals, or more generally

I(n) =
∫ 1

0
K(x)(x(1− x)S(x))n dx ,

for another function S(x). Of course I(0) =C, our constant that we want to prove irrational.

It so happens that for a wide class of functions K(x), S(x), (for single or multivariable x) using the

Holonomic ansatz [Zei90b], and implemented (for the single-variable case) in [AZ90], and for the multi-

variable case in [AZ06], and much more efficiently in [Kou09], there exists a linear recurrence equation

with polynomial coefficients, that can be actually computed (always in theory, but also often in practice,

unless the dimension is high). In other words we can find a positive integer L, the order of the recurrence,

and polynomials p0(n), p1(n), . . . , pL(n), such that

p0(n)I(n)+ p1(n)I(n+1)+ · · ·+ pL(n)I(n+L) = 0 .

If we are lucky (and all the cases in this paper fall into this case) the order L is 2. Furthermore, it would

be evident in all the examples in this paper that p0(n), p1(n), p2(n) can be taken to have integer coefficients.

Another ‘miracle’ that happens in all the examples in this paper is that I(0) and I(1) are rationally-related,

i.e. there exist integers c0,c1,c2 such that

c0I(0)+ c1I(1) = c2 ,

that our computers can easily find.

It then follows, by induction, that one can write

I(n) = bnC−an ,

for some sequences of rational numbers {an} and {bn} that both satisfy the same recurrence as I(n).

Either using trivial bounds on the integral, or using the so-called Poincaré lemma (see, e.g. [Poo79; ZZ21;

ZZ20]) it turns out that

an = Ω(αn) , bn = Ω(αn) ,
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for some constant α > 1, and

|I(n)|= Ω(
1

β n ) ,

for some constant β > 1.

[Please note that we use Ω in a looser-than-usual sense, for us x(n) = Ω(αn) means that limn→∞
logx(n)

n =

α .]

In the tweaks of Beukers’ integrals for ζ (2) and ζ (3) coming up later, α and β are equal, but in the

tweaks of the Alladi-Robinson integrals, α is usually different than β .

It follows that

|C− an

bn
|= Ω(

1
(αβ )n ) .

Note that an, and bn are, usually, not integers, but rather rational numbers (In the original Beukers/Apéry

cases, the bn were integers, but the an were not, in the more general cases in this article, usually neither of

them are integers).

It so happens, in all the cases that we discovered, that there exists another sequence of rational numbers

E(n) such that

a′n := an E(n) , b′n := bn E(n) ,

are always integers, and, of course gcd(a′n , b′n) = 1. We call E(n) the integer-ating factor.

In some cases we were able to conjecture E(n) exactly, in terms of products of primes satisfying certain

conditions (see below), but in other cases we can only conjecture that such an explicitly-describable sequence

exists.

In either case there exists a real number, that sometimes can be described exactly, and other times only

estimated, let’s call it ν , such that

lim
n→∞

logE(n)
n

= ν ,

or, in our notation, E(n) = Ω(enν ) .

Since we have

|C− a′n
b′n
|= Ω(

1
(αβ )n ) ,

where b′n = Ω(eν nαn). We need a positive δ such that

(eν n
α

n)1+δ = (αβ )n .
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Taking log (and dividing by n) we have

(ν + logα)(1+δ ) = logα + logβ ,

giving

δ =
logβ −ν

logα +ν
.

If we are lucky, and logβ > ν , then we have δ > 0, and an irrationality proof!, Yea! We also, at the same

time, determined an irrationality measure (see [Poo79])

1+
1
δ

=
logα + logβ

logβ −ν
.

If we are unlucky, and δ < 0, it is still an exponentially fast way to compute our constant C to any desired

accuracy.

Summarizing: For each specific constant defined by a definite integral, we need to exhibit

• A second-oder recurrence equation for the numerator and denominator sequence an and bn that feature

in I(n) = bnC−an.

• The initial conditions a0,a1, b0,b1 enabling a very fast computation of many terms of an,bn.

• The constants α and β

• Exhibit a conjectured integer-ating factor E(n), or else conjecture that one exists, and find, or estimate

(respectively), ν := limn→∞
logE(n)

n .

• Verify that β > eν and get (potentially) famous.

8.5 The three classical cases

log2 ([AR80])

C =
∫ 1

0

1
1+ x

dx = log2 .

I(n) =
∫ 1

0

(x(1− x))n

(1+ x)n+1 dx .

Recurrence:

(n+1)X (n)+(−6n−9)X (n+1)+(n+2)X (n+2) = 0 .
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α = β = 3+2
√

2 .

Initial conditions

a0 = 0 , a1 = 2 ; b0 = 1 , b1 = 3 .

Integer-ating factor E(n) = lcm(1 . . .n), ν = 1.

δ =
logβ −ν

logα +ν
=

logβ −1
logα +1

=
log(3+2

√
2)−1

log(3+2
√

2)+1
= 0.276082871862633587 .

Implied irrationality measure: 1+1/δ = 4.622100832454231334 . . . .

ζ (2) ([Beu79])

C =
∫ 1

0

∫ 1

0

1
1− xy

dxdy = ζ (2) .

I(n) =
∫ 1

0

∫ 1

0

(x(1− x)y(1− y))n

(1− xy)n+1 dxdy .

Recurrence:

−(1+n)2 X (n)+
(
11n2 +33n+25

)
X (n+1)+(2+n)2 X (n+2) = 0 .

α = β =
11
2

+
5
√

5
2

.

Initial conditions

a0 = 0 , a1 =−5 ; b0 = 1 , b1 =−3 .

Integer-ating factor E(n) = lcm(1 . . .n)2, ν = 2.

δ =
logβ −ν

logα +ν
=

logβ −2
logα +2

=
log(11/2+5

√
5/2)−2

log(11/2+5
√

5/2)+2
= 0.09215925473323 . . . .

Implied irrationality measure: 1+1/δ = 11.8507821910523426959528 . . . .

ζ (3) ([Beu79])

C =
∫ 1

0

∫ 1

0

∫ 1

0

1
1− z+ xyz

dxdy dz = ζ (3) .
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I(n) =
∫ 1

0

∫ 1

0

∫ 1

0

(x(1− x)y(1− y)z(1− z))n

(1− z+ xyz)n+1 dxdydz .

Recurrence:

(1+n)3 X (n)− (2n+3)
(
17n2 +51n+39

)
X (n+1)+(n+2)3 X (n+2) = 0 .

α = β = 17+12
√

2 .

Initial conditions

a0 = 0 , a1 = 12 ; b0 = 1 , b1 = 5 .

Integer-ating factor E(n) = lcm(1 . . .n)3, ν = 3.

δ =
logβ −ν

logα +ν
=

logβ −3
logα +3

=
log(17+12

√
2)−3

log(17+12
√

2)+3
= 0.080529431189061685186 . . . .

Implied irrationality measure: 1+1/δ = 13.41782023335376578458 . . . .

8.6 Zudilin’s Catalan constant integral

The inspiration for our tweaks came from Wadim Zudilin’s brilliant discovery [Zud03] that the famous Cata-

lan constant, that may be defined by the innocent-looking alternating series of the reciprocals of the odd

perfect-squares

C := 1− 1
32 +

1
52 −

1
72 + · · ·=

∞

∑
n=0

(−1)n

(2n+1)2 ,

can be written as the double integral

1
8

∫ 1

0

∫ 1

0

x−
1
2 (1− y)−

1
2

1− xy
dxdy .

This lead him to consider the sequence of Beukers-type double-integrals

I(n) =
∫ 1

0

∫ 1

0

x−
1
2 (1− y)−

1
2

1− xy
·
(

x(1− x)y(1− y)
1− xy

)n

dxdy .

Using the Zeilberger algorithm, Zudilin derived a three term recurrence for I(n) leading to good diophan-

tine approximations to the Catalan constant, alas not good enough to prove irrationality. This was elaborated
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and extended by Yu. V. Nesterenko [Nes16]. See also [Zud04].

Using the multivariable Almkvist-Zeilberger algorithm we can derive the recurrence much faster. Using

Koutschan’s package [Kou09], it is yet faster.

Inspired by Zudilin’s Beukers-like integral for the Catalan constant, we decided to use our efficient tools

for quickly manufacturing recurrences.

We systematically investigated the following families.

8.7 Generalizing the Alladi–Robinson integral for log2

Alladi and Robinson [AR80] gave a Beukers-style new proof of the irrationality of log2 using the elementary

fact that

log2 =
∫ 1

0

1
1+ x

dx ,

and more generally,
1
c

log(1+ c) =
∫ 1

0

1
1+ cx

dx .

They used the sequence of integrals

I(n) :=
∫ 1

0

1
1+ cx

(
x(1− x)
1+ cx

)n

dx ,

and proved that for a wide range of choices of rational c, this leads to irrationality proofs and irrationality

measures (see also [ZZ21]).

Our generalized version is the three-parameter family of constants

I1(a,b,c) :=
1

B(1+a,1+b)

∫ 1

0

xa(1− x)b

1+ cx
dx

that is easily seen to equal 2F1(1,a+1;a+b+2;−c).

We use the sequence of integrals

I1(a,b,c)(n) :=
1

B(1+a,1+b)

∫ 1

0

xa(1− x)b

1+ cx
·
(

x(1− x)
1+ cx

)n

dx .

Using the (original!) Almkvist-Zeilberger algorithm [AZ90], implemented in the Maple package https:

//sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt, we immediately get a second-order

recurrence that can be gotten by typing ‘OpeL(a,b,c,n,N);’ in the Maple package https://sites.math.

https://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/GenBeukersLog.txt
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rutgers.edu/~zeilberg/tokhniot/GenBeukersLog.txt

This enabled us to conduct a systematic search, and we found many cases of 2F1 evaluations that lead to

irrationality proofs, i.e. for which the δ mentioned above is positive. Many of them turned out to be (conjec-

turally) expressible in terms of algebraic numbers and/or logarithms of rational numbers, hence proving them

irrational is not that exciting, but we have quite a few not-yet-identified (and inequivalent) cases. See the out-

put file https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersLog1.txt for many

examples. Whenever Maple was able to (conjecturally) identify the constants explicitly, it is mentioned. If

nothing is mentioned then these are potentially explicit constants, expressible as a hypergeometric series 2F1,

for which this would be the first irrationality proof, once the details are filled-in.

We also considered the four-parameter family of constants

I′1(a,b,c,d) :=

∫ 1
0

xa(1−x)b

(1+cx)d+1 dx∫ 1
0

xa(1−x)b

(1+cx)d dx
,

and, using the more general recurrence, also obtained using the Almkvist-Zeilberger algorithm (to see it

type ‘OpeLg(a,b,c,d,n,Sn);’ in GenBeukersLog.txt), found many candidates for irrationality proofs

that Maple was unable to identify. See the output file https://sites.math.rutgers.edu/~zeilberg/

tokhniot/oGenBeukersLog2.txt.

8.8 Generalizing the Beukers Integral for ζ (2)

Define

I2(a1,a2,b1,b2)(n) =
1

B(1−a1,1−a2)B(1−b1,1−b2)
·

∫ 1

0

∫ 1

0

x−a1(1− x)−a2y−b1(1− y)−b2

1− xy
·
(

x(1− x)y(1− y)
1− xy

)n

dxdy ,

that happens to satisfy a linear-recurrence equation of second order, yielding Diophantine approximations to

the constant I2(a1,a2,b1,b2)(0), let’s call it C2(a1,a2,b1,b2)

C2(a1,a2,b1,b2) =
1

B(1−a1,1−a2)B(1−b1,1−b2)
·
∫ 1

0

∫ 1

0

x−a1(1− x)−a2 y−b1(1− y)−b2

1− xy
dxdy .

It is readily seen that

C2(a1,a2,b1,b2) = 3F2

(
1 , 1−a1 ,−b1 +1

2−a1−a2 , 2−b1−b2
;1
)

.

https://sites.math.rutgers.edu/~zeilberg/tokhniot/GenBeukersLog.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/GenBeukersLog.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/GenBeukersLog.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersLog1.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersLog2.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersLog2.txt
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Most choices of random a1,a2,b1,b2 yield disappointing, negative δ ’s, just like C2(
1
2 ,0,0,

1
2 ) (alias 8

times the Catalan constant), but a systematic search yielded several hundred candidates that produce positive

δ ’s and hence would produce irrationality proofs. Alas, many of them were conjecturally equivalent to each

other via a fractional-linear transformation with integer coefficients, C→ a+bC
c+dC , with a,b,c,d integers, hence

the facts that they are irrational are equivalent. Nevertheless we found quite a few that are (conjecturally)

not equivalent to each other. Modulo filling-in some details, they lead to irrationality proofs. Amongst them

some were (conjecturally) identified by Maple to be either algebraic, or logarithms of rational numbers, for

which irrationality proofs exist for thousands of years (in case of
√

2 and
√

3 etc.), or a few hundred years (in

case of log2, etc.).

But some of them Maple was unable to identify, so potentially our (sketches) of proofs would be the first

irrationality proofs.

Denominator 2

We first searched for C2(a1,a2,b1,b2) where the parameters a1,a2,b1,b2 have denominator 2, there were

quite a few of them, but they were all conjecturally equivalent to each other. Here is one of them:

•C2(0,0, 1
2 ,0) = 3F2(1,1,1/2;2,3/2;1), alias 2 log2.

Denominator 3

There were also quite a few where the parameters a1,a2,b1,b2 have denominator 3, but again they were

all equivalent to each other, featuring π
√

3. Here is one of them.

•C2(0,0, 1
3 ,−

2
3 ) = 3F2(1,1,2/3;2,7/3;1), alias (conjecturally) −6+4π

√
3/3.

Denominator 4

There were also quite a few where the parameters a1,a2,b1,b2 have denominator 4, but again they were

all equivalent to each other, featuring
√

2, yielding a new proof of the irrationality of
√

2 (for what it is worth).

Here is one of them.

•C2(− 3
4 ,−

3
4 ,−

1
4 ,−

3
4 ) = 3F2(1,7/4,5/4;7/2,3;1), alias (conjecturally) −240 + 512

3

√
2.

Denominator 5

There were also quite a few where the parameters a1,a2,b1,b2 have denominator 5, but again they were

all equivalent to each other, featuring
√

5, yielding a new proof of the irrationality of
√

5 (for what it is worth).

Here is one of them.

•C2(− 4
5 ,−

4
5 ,−

2
5 ,−

3
5 ) = 3F2(1,9/5,7/5;18/5,3;1), alias (conjecturally) − 845

2 + 2275
12

√
5

Denominator 6 with identified constants

We found two equivalence classes where the parameters a1,a2,b1,b2 have denominator 6, for which the

constants were identified. Here are one from each class.

•C2(−5/6,−5/6,−1/2,−1/2) = 3F2(1,11/6,3/2;11/3,3;1), alias (conjecturally) − 1344
5 + 16384

√
3

105
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•C2(−5/6,−5/6,−1/3,−2/3) = 3F2(1,11/6,4/3;11/3,3;1), alias (conjecturally) 97222/3

5 − 1536
5

denominator 7 with identified constants

We found two cases where the parameters a1,a2,b1,b2 have denominator 7, for which the constants were

identified.

•C2(−6/7,−6/7,−4/7,−3/7) = 3F2(1,13/7,11/7;26/7,3;1), alias (conjecturally) the positive root of

13824x3−2757888x2−10737789048x+16108505539 = 0 .

•C2(−6/7,−1/7,4/7,2/7)= 3F2(1,13/7,3/7;3,8/7;1), alias (conjecturally) the positive root of 2299968x3+

7074144x2−11234916x−12663217 = 0

Maple was unable to identify the following constants, so we have potentially their first irrationality proofs.

Denominator 6 with not yet identified constants

We found two cases (up to equivalence):

•C2(0,−1/2,1/6,−1/2) = 3F2(1,1,5/6;5/2,7/3;1)

While Maple was unable to identify this constant, Mathematica came up with −24 − 81
√

πΓ(7/3)
Γ(−1/6) .

•C2(−2/3,−1/2,1/2,−1/2) = 3F2(1,5/3,1/2;19/6,2;1)

While Maple was unable to identify this constant, Mathematica came up with 13
2 −

6Γ(19/6)√
πΓ(8/3) .

Denominator 7 with not yet identified constants

We found six cases (up to equivalence):

•C2(−6/7,−6/7,−4/7,−5/7) = 3F2(1,13/7,11/7;26/7,23/7;1)

•C2(−6/7,−5/7,−3/7,−5/7) = 3F2(1,13/7,10/7;25/7,22/7;1)

•C2(−6/7,−5/7,−2/7,−1/7) = 3F2(1,13/7,9/7;25/7,17/7;1)

•C2(−6/7,−4/7,−1/7,−1/7) = 3F2(1,13/7,8/7;24/7,16/7;1)

•C2(−6/7,−3/7,−5/7,−3/7) = 3F2(1,13/7,12/7;23/7,22/7;1)

•C2(−5/7,−3/7,−4/7,−2/7) = 3F2(1,12/7,11/7;22/7,20/7;1)

For each of them, to get the corresponding theorem and proof, use procedure TheoremZ2 in the Maple

pacgage GenBeukersZeta2.txt.

To get a statement and full proof (modulo a divisibility lemma) type , in GenBeukersZeta2.txt

TheoremZ2(a1,a2,b1,b2,K,0):

with K at least 2000. For example, for the last constant in the above list 3F2(1,12/7,11/7;22/7,20/7;1),

type

TheoremZ2( -5/7, -3/7, -4/7, -2/7 ,3000,0):

For more details (the recurrences, the estimated irrationality measures, the initial conditions) see the

output file https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta2g.txt.

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta2g.txt
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8.9 Generalizing the Beukers Integral for ζ (3)

The natural extension would be the six-parameter family (but now we make the exponents positive)

1
B(1+a1,1+a2)B(1+b1,1+b2)B(1+ c1,1+ c2)

·

∫ 1

0

∫ 1

0

∫ 1

0

xa1(1− x)a2yb1(1− y)b2zc1(1− z)c2

1− z+ xyz
·
(

x(1− x)y(1− y)z(1− z)
1− z+ xyz

)n

dxdydz .

However, for arbitrary a1,a2,b1,b2,c1,c2 the recurrence is third order. (Wadim Zudilin pointed out

that this may be related to the work of Rhin and Viola in [RV01]).

Also, empirically, we did not find many promising cases. Instead, let’s define

J3(a1,a2,b1,b2,c1,c2;e)(n)

∫ 1

0

∫ 1

0

∫ 1

0

xa1(1− x)a2yb1(1− y)b2zc1(1− z)c2

(1− z+ xyz)e ·
(

x(1− x)y(1− y)z(1− z)
1− z+ xyz

)n

dxdydz .

and

I3(a1,a2,b1,b2,c1,c2;e)(n) :=
J3(a1,a2,b1,b2,c1,c2;e+1)(n)

J3(a1,a2,b1,b2,c1,c2;e)(0)

The family of constants that we hope to prove irrationality is the seven-parameter:

I3(a1,a2,b1,b2,c1,c2;e)(0) .

=

∫ 1
0
∫ 1

0
∫ 1

0
xa1 (1−x)a2 yb1 (1−y)b2 zc1 (1−z)c2

(1−z+xyz)e+1 dxdydz∫ 1
0
∫ 1

0
∫ 1

0
xa1 (1−x)a2 yb1 (1−y)b2 zc1 (1−z)c2

(1−z+xyz)e dxdydz
.

Of course, for this more general, 7-parameter, family, there is no second-order recurrence, but rather a third-

order one. But to our delight, we found a five-parameter family, let’s call it

K(a,b,c,d,e)(n) := I3(b,c,e,a,a,c,d)(n) .

Spelled-out, our five-parameter family of constants is

K(a,b,c,d,e)(0) =

∫ 1
0
∫ 1

0
∫ 1

0
xb(1−x)cye(1−y)aza(1−z)c

(1−z+xyz)d+1 dxdydz∫ 1
0
∫ 1

0
∫ 1

0
xb(1−x)cye(1−y)aza(1−z)c

(1−z+xyz)d dxdydz
.
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Now we found (see the section on finding recurrences below) a general second-order recurrence, that is

too complicated to display here in full generality, but can be seen by typing

OPEZ3(a,b,c,d,e,n,Sn);

In the Maple package GenBeukersZeta3.txt. This enabled us, for each specific, numeric specialization

of the parameters a,b,c,d,e to quickly find the relevant recurrence, and systematically search for those that

give positive δ . Once again, many of them turned out to be (conjecturally) equivalent to each other.

Denominator 2:

We only found one class, up to equivalence, all related to log2. One of them is

K(0,0,0,1/2,1/2) = I3(0,0,1/2,0,0,0,1/2) ,

that is not that exciting since it is (conjecturally) equal to − 2−4 log(2)
3−4 log(2) .

For details, type TheoremZ3(0,0,0,1/2,1/2,3000,0); in GenBeukersZeta3.txt .

Denominator 3:

We found three inequivalent classes, none of them Maple was able to identify.

K(0,0,0,1/3,2/3) = I3(0,0,2/3,0,0,0,1/3) ,

for details, type TheoremZ3(0,0,0,1/3,2/3,3000,0); in GenBeukersZeta3.txt.

K(0,0,0,2/3,1/3) = I3(0,0,1/3,0,0,0,2/3) ,

for details, type TheoremZ3(0,0,0,2/3,1/3,3000,0); in GenBeukersZeta3.txt.

K(0,1/3,2/3,1/3,2/3) = I3(0,0,1/3,0,0,0,2/3) ,

for details, type TheoremZ3(0,1/3,2/3,1/3,2/3,3000,0); in GenBeukersZeta3.txt,

These three constants are candidates for ‘first-ever-irrationality proof’.

Denominator 4: We only found one family, all expressible in terms of log2. Here is one of them.

For example

K(0,1/2,0,1/4,3/4) = I3(1/2,0,3/4,0,0,0,1/4) ,

that, conjecturally equals −−30+45 log(2)
−11+15 log(2) .

For details, type TheoremZ3(0,1/2,0,1/4,3/4,3000,0); in GenBeukersZeta3.txt.

Denominator 5: We only found one family, up to equivalence, but Maple was unable to identify the
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constant. So it is potentially the first irrationality proof of that constant

K(0,1/5,0,3/5,2/5) = I3(1/5,0,2/5,0,0,0,3/5) .

For details, type TheoremZ3(0,1/5,0,3/5,2/5,3000,0); in GenBeukersZeta3.txt.

Denominator 6: We found three families, up to equivalence, none of which Maple was able to identify.

Once again, these are candidates for first-ever irrationality proofs for these constants.

K(0,1/2,1/2,1/3,1/6) = I3(1/2,1/2,1/6,0,0,1/2,1/3) .

For details, type TheoremZ3(0,1/2,1/2,1/3,1/6,3000,0); in GenBeukersZeta3.txt.

K(0,1/2,1/2,1/6,1/3) = I3(1/2,1/2,1/3,0,0,1/2,1/6) .

For details, type TheoremZ3(0,1/2,1/2,1/6,1/3,3000,0); in GenBeukersZeta3.txt.

K(1/3,0,2/3,1/2,5/6) = I3(0,2/3,5/6,1/3,1/3,2/3,1/2) .

For details, type TheoremZ3(1/3,0,2/3,1/2,5/6,3000,0); in GenBeukersZeta3.txt.

Denominator 7: We found five families, up to equivalence, none of which Maple was able to identify.

Once again, these are candidates for first-ever irrationality proofs for these constants.

K(1/7,0,2/7,3/7,4/7) = I3(0,2/7,4/7,1/7,1/7,2/7,3/7) .

For details, type TheoremZ3(1/7,0,2/7,3/7,4/7,3000,0); in GenBeukersZeta3.txt.

K(1/7,0,2/7,5/7,3/7) = I3(0,2/7,3/7,1/7,1/7,2/7,5/7) .

For details, type TheoremZ3(1/7,0,2/7,5/7,3/7,3000,0); in GenBeukersZeta3.txt.

K(1/7,0,3/7,4/7,5/7) = I3(0,3/7,5/7,1/7,1/7,3/7,4/7) .

For details, type TheoremZ3(1/7,0,3/7,4/7,5/7,3000,0); in GenBeukersZeta3.txt.

K(1/7,0,4/7,2/7,5/7) = I3(0,4/7,5/7,1/7,1/7,4/7,2/7) .
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For details, type TheoremZ3(1/7,0,4/7,2/7,5/7,3000,0); in GenBeukersZeta3.txt.

K(2/7,0,3/7,4/7,5/7) = I3(0,3/7,5/7,2/7,2/7,3/7,4/7) .

For details, type TheoremZ3(2/7,0,3/7,4/7,5/7,3000,0); in GenBeukersZeta3.txt.

If you don’t have Maple, you can look at the output file https://sites.math.rutgers.edu/~zeilberg/

tokhniot/oGenBeukersZeta3All.txt that gives detailed sketches of irrationality proofs of all the above

constants, some with conjectured integer-ating factors.

Guessing an INTEGER-ating factor

In the original Beukers cases the integer-ating factor was easy to conjecture, and even to prove. For ζ (2) it

was lcm(1 . . .n)2, and for ζ (3) it was lcm(1 . . .n)3. For the Alladi-Robinson case of log2 it was even simpler,

lcm(1 . . .n).

But in other cases it is much more complicated. A natural ‘atomic’ object is, given a modulo M, a subset

C of {0, ...,M−1}, rational numbers e1, e2 between 0 and 1, rational numbers e3,e4, the following quantity,

for positive integers n

Pp(e1,e2,e3,e4,C,M;n) := ∏
p

p ,

where p ranges over all primes such that (let {a} be the fractional part of a, i.e. a−⌊a⌋)

• e1 < {n/p}< e2

• e3 < p/n < e4

• p mod M ∈C

Using the prime number theorem, it follows (see e.g. [Zud04]) that

lim
n→∞

logPp(e1,e2,e3,e4,C,M;n)
n

,

can be evaluated exactly, in terms of the function Ψ(x) = Γ′(x)
Γ(x) (see procedure PpGlimit in the Maple pack-

ages) thereby giving an exact value for the quantity δ whose positivity implies irrationality.

Of course, one still needs to rigorously prove that the conjectured integer-ating factor is indeed correct.

Looking under the hood: On Recurrence Equations

For ‘secrets from the kitchen’ on how we found the second-order, four-parameter recurrence operator

OPEZ2(a1,a2,b1,b2,n,N) in the Maple package GenBeukersZeta2.txt, that was the engine driving the

ζ (2) tweaks, and more impressively, the five-parameter second-order recurrence operator OPEZ3(a,b,c,d,e,n,N)

in the Maple package GenBeukersZeta3.txt, that was the engine driving the ζ (3) tweaks, the reader

is referred to the stand-alone appendix available from https://sites.math.rutgers.edu/~zeilberg/

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta3All.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta3All.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/beukersAppendix.pdf
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mamarim/mamarimPDF/beukersAppendix.pdf.

Other Variations on Apéry’s theme

Other attempts to use Apéry’s brilliant insight are [Zei03; Zei24b; ZZ21]. Recently Marc Chamberland

and Armin Straub [CS21] explored other fascinating aspects of the Apéry numbers, not related to irrationality.

Conclusion and Future Work

We believe that symbolic computational methods have great potential in irrationality proofs, in particular,

and number theory in general. In this article we confined attention to approximating sequences that arise from

second-order recurrences. The problem with higher order recurrences is that one gets linear combinations

with rational coefficients of several constants, but if you can get two different such sequences coming from

third-order recurrences, both featuring the same two constants, then the present method may be applicable.

More generally if you have a k-th order recurrences, you need k−1 different integrals.

The general methodology of this article can be called Combinatorial Number Theory, but not in the usual

sense, but rather as an analog of Combinatorial Chemistry, where one tries out many potential chemical

compounds, most of them useless, but since computers are so fast, we can afford to generate lots of cases and

pick the wheat from the chaff.

Encore: Hypergeometric challenges

As a tangent, we (or rather Maple) discovered many exact 3F2(1) evaluations. Recall that the Zeil-

berger algorithm can prove hypergemoetric identities only if there is at least one free parameter. For a

specific 3F2(a1 a2 a3 ;b1 b2;1), with numeric parameters, it is useless. Of course, it is sometimes possi-

ble to introduce such a parameter in order to conjecture a general identity, valid for ‘infinitely’ many n,

and then specialize n to a specific value, but this remains an art rather than a science. The output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta2f.txt contains many

such conjectured evaluations, (very possibly many of them are equivalent via a hypergeometric transforma-

tion rule) and we challenge Wadim Zudilin, the birthday boy, or anyone else, to prove them.

Happy Ending

The birthday boy brilliantly met the challenges! See his brilliant note [Zud].

8.10 Accompanying Maple packages

This article is accompanied by three Maple packages, GenBeukersLog.txt, GenBeukersZeta2.txt, GenBeukersZeta3.txt

all freely available from the front of this masterpiece https://sites.math.rutgers.edu/~zeilberg/

mamarim/mamarimhtml/beukers.html, where one can find ample sample input and output files, that read-

ers are welcome to extend.

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/beukersAppendix.pdf
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/beukersAppendix.pdf
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/beukersAppendix.pdf
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGenBeukersZeta2f.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/beukers.html
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/beukers.html
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Chapter 9

Enumerating restricted Dyck Paths with

Context Free Grammars

9.1 Introduction

As Flajolet and Sedgewick demonstrate in their great text, Analytic Combinatorics [FS09], mathematicians

have occasionally borrowed the study of formal languages from computer science and linguistics for combi-

natorial reasons. Many combinatorial classes can be reinterpreted as languages generated by certain gram-

mars, and these grammars often make writing down generating functions, another favorite combinatorial tool,

routine. Such grammars are sometimes called “combinatorial specifications.”

For example, consider the well-known Dyck paths. A Dyck path is a finite list of +1’s and −1’s whose

partial sums are nonnegative, and whose sum is 0. We will write U (up) for +1 and D (down) for −1. Thus,

the following are all Dyck paths:

UUDD

UDUD

UUUDUDDD

A Dyck path must have even length, and for this reason we often refer to Dyck paths of semilength n (length

2n).
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The number of Dyck paths of semilength n equals the nth Catalan number,

Cn =
1

n+1

(
2n
n

)
.

There are many proofs of this fact, but here is a grammatical proof.

Let P denote the set of all Dyck paths. Then, P is generated by the unambiguous, context-free grammar

P = ε ∪ UPDP, (9.1)

where ε denotes the empty string. In words, a path is either empty or begins with a U , is followed by a Dyck

path (shifted to height 1), a D, then another Dyck path.1 This is a unique parsing of all Dyck paths.

Given a set of objects E each with a nonnegative integer size, let GF(E) = ∑k≥0 |E(k)|zk be a formal

generating function, where |E(k)| is the number of objects of size k in E. The main result about formal

grammars is that, in an unambiguous context free grammar,

GF(A∪B) = GF(A)+GF(B),

for disjoint clauses A and B, and

GF(AB) = GF(A)GF(B),

where A∪B is the union of the words of A and the words of B, and AB stands for “concatenation of words of

A with words in B.” The “sizes” of a grammar are the lengths of the words it generates.

In our case, if P(z) is the generating function for the number of Dyck paths of semilength n, then the

grammar (9.1) implies

P(z) = GF(ε)+GF(UPDP)

= 1+ zP(z)2.

The generating function C(z) for the Catalan numbers also satisfies

C(z) = 1+ zC2(z),

and since there are only two possible solutions, it is not hard to see that P(z) =C(z).

The grammatical technique offers a unifying framework: Devise a grammar and you get an equation.

1Note that D denotes the first time the path returns to height 0.
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Sometimes the equations turn out to be well-known or simple. Other times they are new and messy. The

enumeration of all Dyck paths is one application of this framework, and here we want to demonstrate others.

In particular, we will give grammatical proofs of several combinatorial facts about restricted Dyck paths, and

also establish several infinite families of grammars in closed form.

First, let us define the restrictions we shall consider.

Definition 6. Given a Dyck path, the height of the path at position k is the partial sum of its first k terms. A

peak of a Dyck path at height h (or simply “at h”) is the bigram UD where the height of the path after the U

is h. Similarly, a valley occurs at the bigram DU , and its height is analogously defined. The empty path has,

by convention, a peak at 0 but no valley.

Definition 7. Given a sequence of steps L, define Ln to be the repetition of L n times. (For example, U2 =UU

and (UD)3 = UDUDUD.) A Dyck path has an up-run of length n provided that it contains at least one Un

that is not preceded nor followed by U . Similarly, it contains a down-run of length n provided that it contains

at least one Dn that is neither preceded nor followed by D.

We will study Dyck paths whose peak heights, valley heights, up-run lengths, and down-run lengths avoid

certain sets. We will, for example, discuss the set of all Dyck paths whose peak heights avoid {2,4,6, . . .}

and have no up-run of length greater than 2.

Definition 8. For arbitrary sets of positive integers A, B, C, and D, let P(A,B,C,D) be the set of Dyck

paths whose peak heights avoid A, whose valley heights avoid B, whose up-run lengths avoid C, and whose

down-run lengths avoid D. Let PA,B,C,D(z) be be the generating function for the number of Dyck paths of

semilength n in P(A,B,C,D).

Some of these sets have been studied. In [PW01], Peart and Woan provide a continued-fraction recurrence

for the generating functions P{k}, /0, /0, /0(z). In [ELY03], Eu, Liu, and Yeh take this idea further and express

PA, /0, /0, /0(z) as a finite continued fraction whenever A is finite or an arithmetic progression. In [HH17], Hein

and Huang enumerate the number of Dyck paths which avoid up-runs of length k after a down step. In [EZ20],

Zeilberger presents a rigorous experimental method to derive equations for PA,B,C,D(z) when the sets involved

are finite or arithmetic progressions. Proving “by hand” some of Zeilberger’s interesting discoveries ex post

facto was a motivation for the present work. We generalize some of Zeilberger’s results to infinite families

which are likely out of reach for symbolic methods.

Our results include several explicit grammars (and therefore generating function equations) for infinite

families of the sets A and B, and also grammatical proofs of several interesting special cases suggested in

[EZ20]. Many of these—any grammars referencing restrictions on up- or down-runs—are not in [ELY03].
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Some of our results are suggested in the OEIS [OEI24]; see, for example, A1006 (Motzkin numbers) and

A004148 (generalized Catalan numbers).

The remainder of the paper is organized as follows. Section 9.2 presents some results discovered by

experimentation with software from [EZ20] and proven with grammatical methods. Section 9.3 presents

some infinite families of explicit grammars. Section 9.4 offers some concluding remarks about the limitations

of grammars.

9.2 Combinatorial results

In this section we will present a number of results with grammatical proofs.

Proposition 22. The number of Dyck paths of semilength n whose peak heights avoid {2r+ 3 | r ≥ 0} and

whose up-runs are no longer than 2 is 1 when n = 0, and 2n−1 when n≥ 1.

Proof. Let P be the set of all such Dyck paths, and Q the set of all Dyck paths which avoid peaks in {2r+2}

and up-runs longer than 2. Note that P and Q satisfy the following grammar:

P = ε ∪ UDP ∪ UUDQDP

Q = ε ∪ UDQ.

This implies the following system of equations:

P = 1+ zP+ z2QP

Q = 1+ zQ.

Thus, Q(z) = (1− z)−1 (the only path in Q of semilength n is (UD)n), and

P(z) =
1− z

1−2z
.

Therefore, [z0]P(z) = 1, and [zn]P(z) = 2n−1.

The following proposition concerns generalized Catalan numbers (see A4148 in the OEIS and [SW79]).
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These numbers are defined by the recurrence

G0 = 1

G1 = 1

Gn+2 = Gn+1 + ∑
1≤k<n+1

GkGn−k.

Proposition 23. The number of Dyck paths of semilength n whose peak heights avoid {2r+ 3 | r ≥ 0} and

whose up-runs are no longer than 3 equals the (n+1)th generalized Catalan number.

Proof. Let P , O , and E be the set of all Dyck paths with up-runs no longer than 3, and whose peak heights

avoid {2r+3 | r ≥ 0}, {2r+2 | r ≥ 0}, and {2r+1 | r ≥ 0}, respectively. Observe that P , O , and E satisfy

the following grammar:

P = ε ∪ UDP ∪ UUDODP

O = ε ∪ UDO ∪ UUUDODE DO

E = ε ∪ UUDODE .

This grammar implies the following equations:

P = 1+ zP+ z2OP

O = 1+ zO+ z3EO2

E = 1+ z2OE.

This system has two possible solutions for P, but only one is holomorphic near the origin, namely

P(z) =
2

1− z− z2 +(z4−2z3− z2−2z+1)1/2 .

The generating function G(z) for the generalized Catalan numbers is (see A4148 in the OEIS)

G(z) =
1− z+ z2− (1−2z− z2−2z3 + z4)1/2

2z2 ,

and it is routine to verify that G(z) = zP(z)+1. Therefore Gn+1 = [zn]P(z) for n≥ 0.

The following proposition is concerned with Motzkin numbers (see A1006 in the OEIS and [DS77]). A

Motzkin path is like a Dyck path, but includes a “sideways” step S which does not change the height. The nth
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Motzkin number Mn is the number of Motzkin paths of length n. The generating function M = M(z) for Mn

satisfies the quadratic equation

M = 1+ zM+ z2M2.

There are numerous bijections between Motzkin paths and various restricted classes of Dyck paths. Such

bijections are often variations of the “folding” map

UD 7→ S

DU 7→ S

UU 7→U

DD 7→ D,

which in general is not injective, but many restrictions on Dyck paths make it injective. For example, this idea

shows that the Dyck paths of semilength n with no up-runs longer than 2 are in bijection with the Motzkin

paths of length n. We offer a grammatical proof of this fact.

Proposition 24. The number of Dyck paths of semilength n which avoid up-runs of length 3 or more equals

the nth Motzkin number Mn.

Proof. Let P be the set of such paths. A grammar for P is

P = ε ∪ UUDPDP ∪ UDP.

Our grammar implies that

P = 1+ zP+ z2P2.

This is the same equation satisfied by the Motzkin generating function, and it is easy to check that P(z) =

M(z).

Proposition 25. Consider the set of Dyck paths such that no peak or valley has positive, even height. The

numbers of such paths of semilength 2n and 2n+1 are
(2n−1

n

)
and

(2n
n

)
, respectively.

Proof. Let P denote the set of such paths, and let O denote the set of all Dyck paths whose peaks and valleys
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avoid odd heights. These sets satisfy the following grammars

P = ε ∪UODP,

O = ε ∪UUODDO.

This grammar can be translated into the following equations:

P = 1+ zOP, and

O = 1+ z2O2

Solving this system for O, we get two solutions for O, but only the following is holomorphic near the

origin

O =
1−
√

1−4z2

2z2 .

Thus,

P =
2z−1−

√
1−4z2

2(2z−1)
,

and it is easy to check that

[z2n]P(z) =
(

2n−1
n

)
, and

[z2n+1]P(z) =
(

2n
n

)
.

Now, let us define a mapping which allows us to translate restrictions on up-run (respectively, down-run)

lengths into restrictions on down-run (respectively, up-run) lengths. Let P denote the set of all Dyck paths.

Define the mapping

φ : P →P, P 7→ Q, (9.2)

where applying φ reverses the order and direction of the steps in P. For example,

φ(UUUDUUDDDDUD) =UDUUUUDDUDDD.
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It is obvious that φ(P) must be a Dyck path. Moreover, it is easy to check that φ is an involution. Note that

the up-runs (respectively, down-runs) in P become down-runs (respectively, up-runs) in φ(P) of the same

length.

Proposition 26. Let A and B be arbitrary sets of positive integers. The number of Dyck paths of semi-length

n which avoid up-runs and down-runs with lengths in A and B, respectively, equals the number of Dyck paths

of semi-length n which avoid down-runs with lengths in A and up-runs with lengths in B.

Proof. Let P(A,B) be the set of Dyck paths such that no up-run has length in A and no down-run has length

in B, and P(B,A) be the set of Dyck paths such that no up-run has length in B and no down-run has length

in A. Then φ – defined in equation 9.2 – gives a one-to-one correspondence between the Dyck paths of

semi-length n in P(A,B) and the Dyck paths of semi-length n in P(B,A).

Note that φ also allows us to translate the grammar of P(A,B) into the grammar of P(B,A), as seen in

the following section.

9.3 Grammatical families

In this section we provide some explicit grammars for infinite families of restricted Dyck paths. In many

cases, such grammars are guaranteed to exist. The reasoning in [EZ20] shows that, for every set of Dyck

paths whose peaks, valleys, and up- and down-runs avoid specific arithmetic progressions, we may construct

a finite, context-free grammar which generates them. The method implied in [EZ20] to compute these gram-

mars gives no hint as to their form, and this is what we try to provide here.

Our first two results are about Dyck paths whose up-run lengths avoid a fixed arithmetic progression

{Ar+B | r ≥ 0}; each of these is accompanied by a corollary on Dyck paths that avoid down-run lengths in

{Ar+B | r ≥ 0}. It turns out that when B < A, there is a simple context-free grammar for such paths. When

B≥ A the situation is more complicated, but we can derive a “grammatical equation” which again leads to a

generating function.

Proposition 27. Let B < A be non-negative integers. The set P of Dyck paths whose up-run lengths avoid

{Ar+B | r ≥ 0} has the unambiguous grammar

P =

 ⋃
0≤k<A

k ̸=B

Uk(DP)k

∪UA(PD)AP,
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and therefore

P(z) =

 ∑
0≤k<A

k ̸=B

zkPk(z)

+ zAPA+1(z),

where P(z) is the weight-enumerator of P .

Proof. The grammar clearly uniquely parses the empty path, so suppose that P ∈P has length n > 0. Then

P starts with a up-run of length k > 0 for some k ̸≡ B mod A. If k < A, then write P = UkDW , where W

is a walk from height k− 1 to height 0 with the same restrictions on up-runs as P. For 0 ≤ i < k− 1, let Di

indicate the down-step in W which hits the height i for the first time. Then

W = Pk−1Dk−2Pk−2Dk−3...P1D0P0,

where Pi is a Dyck path shifted to height i with the same restrictions on up-runs as P. This uniquely parses P

into the case Uk(DP)k in the grammar.

If the initial up-run has length k ≥ A, then write P = UAW , where W is a walk from height A to height

0 whose up-run lengths avoid {Ar+B | r ≥ 0}. By argument analogous to the previous paragraph, we can

decompose W as

W = PADA−1PA−1DA−2...P1D0P0,

where Pi ∈P . Thus W is of the form (PD)AP , and this uniquely parses P into the final case of the grammar.

We have shown that P is contained in the language generated by this grammar, and it is easy to see that

the first k cases of the grammar are contained in P . The final case, UA(PD)AP , is also contained in the

grammar, because concatenating UA to the beginning of a path does not change the length any of the up-runs

modulo A. The different cases are clearly disjoint, so the grammar is also unambiguous.

Corollary 4. Let A,B ∈ Z≥0 such that B < A. The set P of Dyck paths avoiding down-run lengths in

{Ar+B|r ∈ Z≥0} has the unambiguous grammar

P =

 ⋃
0≤k<A

k ̸=B

(PU)kDk

∪P(UP)ADA

and therefore

P(z) =

 ∑
0≤k<A

k ̸=B

zkPk(z)

+ zAPA+1(z),

where P(z) is the weight-enumerator of P .
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Proof. Let φ be the involution defined in equation 9.2, and let Q be the set of Dyck paths avoiding up-run

lengths in {Ar+B|r ∈ Z≥0}. By proposition 27,

Q =
⋃

0≤k<A
k ̸=B

Uk(DQ)k ∪UA(QD)AQ.

Since

φ(Q) = P,

φ(Uk(DQ)k) = (PU)kDk, for all 0≤ k < A, and

φ(UA(QD)AQ) = P(UP)AUA,

φ translates the grammar of Q into the desired grammar for P .

Proposition 28. Let A ≤ B be nonnegative integers. The set P of Dyck paths avoiding up-run lengths in

{Ar+B | r ≥ 0} satisfies the “grammatical equation”

P ∪UB(DP)B =

( ⋃
0≤k<A

Uk(DP)k

)
∪ UA(PD)AP,

and therefore

P(z)+ zBP(z)B =

(
∑

0≤k<A
zkPk(z)

)
+ zAPA+1(z),

where P(z) is the weight-enumerator of P .

Note that the right-hand side is nearly identical to proposition 6; the difference being that we can get paths

in UB(DP)B, which we will show below.

Proof. If P is a path in P , then we can uniquely parse P into a case of the right-hand side by the same

argument given in the previous proposition. Note that

UB(DP)B =UAUB−A(DP)B

=UA{UB−A(DP)B−A}(DP)A

=UA[{UB−A(DP)B−A}D(PD)A−1]P.

The expression in brackets, UB−A(DP)B−A, is in P , which shows that UB(DP)B is contained in UA(PD)AP .

Conversely, it remains to show that the left-hand side is all that the right-hand side can generate.
⋃

0≤k<A Uk(DP)k
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is contained in P as in the previous proposition. For W ∈UA(PD)AP , write

W =UAP1D . . .PADPA+1.

Let ℓ be the length of the initial up-run in P1. If ℓ ̸≡ B (mod A), then W contains no up-runs of lengths in

{Ar+B | r ≥ 0} and is a path in P . If ℓ ≡ B (mod A), then ℓ ≤ B−A. If ℓ < B−A then the initial run of

W has length less than B. Thus, W contains no up-runs of lengths in {Ar+B | r ≥ 0}. For ℓ= B−A, let Di

denote the first time W steps down to height i for A < i < B and write

W =UAP1D . . .PADPA+1

=UA(UB−ADB−1WB−1 . . .DAWA)DP2D . . .PADPA+1

=UBDB−1WB−1 . . .DAWADP2D . . .PADPA+1.

Wi is Dyck path shifted to height i by the definition of Di. Hence, W ∈UB(DP)B.

Corollary 5. Let A,B ∈ Z≥0 such that B ≥ A. The set P of Dyck paths avoiding down-run lengths in

{Ar+B|r ∈ Z≥0} satisfies the grammatical equation

P ∪ (PU)BDB =
(⋃

0≤k<A
(PU)kDk

)
∪P(UP)ADA.

and therefore

P(z)+ zBPB(z) =

(
∑

0≤k<A
zkPk(z)

)
+ zAPA+1(z).

where P(z) is the weight-enumerator of P .

Proof. Let φ be the involution defined in equation 9.2, and let Q be the set of Dyck paths avoiding up-run

lengths in {Ar+B|r ∈ Z≥0}. Applying φ to each clause of the grammar of Q given in proposition 28, we get

P ∪ (PU)BDB =
(⋃

0≤k<A
(PU)kDk

)
∪P(UP)ADA,

as desired.

Proposition 29. Let r ∈ Z+. The set P of Dyck paths avoiding ascending and descending runs of lengths in

{1, ...,r} satisfies the grammatical equation

P ∪UDP = ε ∪U r+1Dr+1P ∪UPDP.
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and therefore

P(z)+ zP(z) = 1+ zr+1P(z)+ zP2(z),

where P(z) is the weight-enumerator of P .

Proof. If P ∈P is the empty path, then the grammar uniquely parses P. Otherwise, P ∈P must begin

with an ascending run of length ℓ > r. If ℓ = r+1, then clearly U r+1 must be immediately followed by the

descending run Dr+1, and P is uniquely parsed into the case U r+1Dr+1P .

If ℓ > r+1, then let D0 denote the step where P returns to height 0 for the first time and write

P =UP1D0P2.

It is obvious that P2 ∈P and P1 is a Dyck path shifted to height 1. By restrictions on P, the final descending

run in P1 must have length L ≥ r. If L = r then the preceding ascending run ends at height r+ 1. But the

ascending runs in P must have length of at least r+1, and hence P1 hits height 0, contradicting the definition

of D0. From here, it is clear that P1 has the same restrictions on ascending and descending runs as P. Thus, P

is uniquely parsed into the case UPDP .

Since it is trivial that UDP is contained in UPDP , we have shown that the left-hand side of the given

equation is generated by the right-hand side. It is also obvious that the cases defined on the right-hand side

are disjoint and that ε ∪U r+1Dr+1P is contained in P . A path UP1DP2 ∈UPDP is contained in UDP if

P1 is the empty path and P otherwise. Thus, P satisfies the given grammatical equation.

Proposition 30. Let m,n ∈ Z+. The set P of Dyck paths avoiding ascending runs of lengths in {1, ...,m}

and descending runs of lengths in {1, ...,n} satisfies the grammatical equation

P ∪UDP = ε ∪UPDP ∪Um+1Dn+1(PD)m−nP, if m≥ n (9.3)

P ∪PUD = ε ∪PUPD∪P(UP)n−mUm+1Dn+1, if m≤ n. (9.4)

Proof. We have already shown that this statement is true for m = n. Suppose m > n. If P ∈P is the empty

path, then the grammar uniquely parses P. Otherwise, P must begin with an ascending run of length ℓ > m.

If ℓ = m+1 then Um+1 is followed by a descending chain of length of at least n+1. Let Di denote the first
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time P returns to height i for 0≤ i≤ m−n−1, and write

P =Um+1Dn+1Pm−nDm−n−1...P1D0P0.

It is obvious that Pi is a Dyck path, shifted to height i, that has the same restrictions on ascending runs and de-

scending runs (with the exception of the final descending run) as P. Since Pi is a Dyck path, its final descend-

ing run must be at least as long as the ascending run preceding it. Thus, Pi is either the empty path or ends

with a descending run of length L > m > n. Thus, P is uniquely parsed into the case Um+1Dn+1(PD)m−nP.

If ℓ > m+1 then, letting D0 denote the first time P returns to height 0, write

P =UP1D0P0.

Clearly, P0 ∈P , and P1 is a Dyck path shifted to height 1 and has the same restrictions on ascending runs

as P. Using the same argument as for Pi in the previous case, the descending runs in P1 also have the same

restrictions as P. This uniquely parses P into the case UPDP . Finally, it is obvious that UDP is contained

in UPDP , so the left-hand side of (1) is generated by the right-hand side.

It is clear that the cases on the right-hand side are disjoint, and the empty path is an element of P. Also,

UP1DP2 ∈ UPDP is contained in P if P1 is not the empty path, and is contained in UDP otherwise.

Um+1Dn+1(PD)m−nP is contained in P , since all ascending runs clearly avoid restrictions on P and the

descending runs are formed by concatenating down-steps to descending runs of length of at least n−1. Thus,

we have proved the grammar for the case m≥ n.

Now assume that n ≥ m. Applying the involution φ from equation 9.2, we can directly translate the

grammar 9.3 into the desired grammar 9.4.

Proposition 31. Let r,k ∈ Z+ and let P be the set of Dyck paths avoiding ascending runs of length {1, ...,r}

and descending runs of length {k+1, ...,r}. Then the ‘grammar’ of P is

P ∪UDP ∪U r+1Dk(DP)r+1−k = ε ∪UPDP ∪U r+1Dr+1P ∪U r+1(DP)r+1

Proof. If P ∈P is the empty path, then the grammar uniquely parses P. Otherwise, P begins an ascending

run of length ℓ > r, and we can deduce that it also ends with a descending run of length L > r. If ℓ > r+1,

then let D0 denote the first time that P returns to the x−axis and write

P =UP1D0P0.
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It is easy to see that P0 is a path in P and P1 is a Dyck path shifted to height 1. The initial ascending run in

P1 has length ℓ−1 > r. Thus, all ascending runs in P1 have length of at least r+1 and, since P1 is a shifted

Dyck path, the final descending run in P1 must also have length of at least r+1. From here, it is easy to see

that P1 has the same restrictions on ascending and descending runs as P. P is therefore uniquely parsed into

the case UPDP.

Suppose ℓ= r+1. Let Di be the step where P returns to height i for the first time and write

P =U r+1DrPr...D0P0.

Pi is a Dyck path for all i and, if Pi is not the empty path, it must end with a descending run of length r+1 by

restrictions on ascending runs. Thus Pi is a path in P , and P is parsed into the case U r+1(DP)r+1.

It is trivial that UDP is contained in UPDP and U r+1Dk(DP)r+1−k is contained in U r+1(DP)r+1.

Thus, the left-hand side is generated by the right-hand side. Note that, on the left-hand side,

UDP ∩P =UDP ∩U r+1Dk(DP)r+1−k = /0,

however

P ∩U r+1Dk(DP)r+1−k =U r+1Dr+1P.

Looking at the right-hand side, it is clear that ε,UPDP , and U r+1(DP)r+1 are disjoint, and U r+1Dr+1P

is contained in U r+1(DP)r+1. Note that this resolves the issue of double counting paths in U r+1Dr+1P on

the left-hand side. Thus, all that remains to show is that all the paths generated by the right-hand side are

contained in the left-hand side.

The path UP1DP0 in UPDP is clearly in P if P1 is not the empty path and in UDP otherwise. For W

in U r+1(DP)r+1, write

W =U r+1DrPr...D1P1D0P0.

Choose the smallest i such that Pr−i is not the empty path or, if no such i exists, set i = r. Then the first

descending run in W has length i+ 1. If i ≥ k then W is an element of U r+1Dk(DP)r+1−k. Otherwise, we

claim that W is a path in P . It is clear that W is a Dyck path and we have seen that nonempty Pj ∈P must

end in a descending run of length of at least r + 1. Thus, we only need to show that the first descending

run in W follows the restrictions in P. This is clearly true since i < k. Hence W ∈P , and P satisfies the

grammatical equation as desired.
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9.4 Conclusion

We have given several grammatical proofs of various combinatorial results about restricted Dyck paths and

established some infinite families of grammars. Our methods work because we are able to derive context-free

grammars describing certain restricted classes Dyck paths, namely when our restrictions involved sets of

arithmetic progressions.

It is natural to ask if context-free grammars exist for other types of restrictions. Parikh’s theorem [Par66]

states that the set of lengths of any context-free language is the union of finitely-many arithmetic progressions,

so it seems likely that restrictions involving arithmetic progressions are essentially all that can be done.

However, addressing this question in full is beyond our current scope.
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Math. Intelligencer 1 (1979), pp. 195–203.

[Pud20] Lara K Pudwell. “From Permutation Patterns to the Periodic Table”. In: Notices of the American

Mathematical Society 67.7 (2020), pp. 994–1001.

[PW01] P. Peart and W.J. Woan. “Dyck paths with no peaks at height k”. In: J. Integer Seq. 4.1 (2001).

[PW13] Robin Pemantle and Mark C. Wilson. Analytic Combinatorics in Several Variables. Cambridge,

2013.

[PWZ97] Marko Petkovs̆ek, Herb Wilf, and Doron Zeilberger. A = B. AK Peters, 1997.

[RIS] RISC. ErgoSum Mathematica Package. https://www3.risc.jku.at/research/combinat/

software/ergosum/. Accessed 2024-02-07.

[RT07] Adrian Rice and Eve Torrence. ““Shutting up like a telescope”: Lewis Carroll’s “Curious” Con-

densation Method for Evaluating Determinants”. In: The College Mathematics Journal 38.2

(2007), pp. 85–95.

[RV01] Georges Rhin and Carlo Viola. “The group structure of ζ (3)”. In: Acta Arithmetica 97 (2001),

pp. 269–293.

[Ste96] Ian Stewart. “Tales of a Neglected Number”. In: Mathematical Recreations, Scientific American

274.6 (1996), pp. 102–103.

[Sto23] David Stoutemyer. “How to hunt wild constants”. In: Maple Transactions 3.1 (2023).

[SW79] P.R. Stein and M.S. Waterman. “On some new sequences generalizing the Catalan and Motzkin

numbers”. In: Discrete Math. 26.3 (1979), pp. 261–272.

[SZ94] Bruno Salvy and Paul Zimmermann. “Gfun: a Maple package for the manipulation of generating

and holonomic functions in one variable”. In: ACM Transactions on Mathematical Software

(TOMS) 20.2 (1994), pp. 163–177.

[Tef04] A. Tefera. “What is. . . a Wilf–Zeilberger pair”. In: AMS Notices 57.4 (2004), pp. 508–509.

[Vat22] Vince Vatter. “Social Distancing, Primes, and Perrin Numbers”. In: Math Horizons 29.1 (2022).

https://sites.math.rutgers.edu/~zeilberg/akherim/vatter23.pdf.

[Wik] Wikipedia. Perrin Number. URL: https://en.wikipedia.org/wiki/Perrin_number.

https://www3.risc.jku.at/research/combinat/software/ergosum/
https://www3.risc.jku.at/research/combinat/software/ergosum/
https://sites.math.rutgers.edu/~zeilberg/akherim/vatter23.pdf
https://en.wikipedia.org/wiki/Perrin_number


113

[Wil95] Andrew Wiles. “Modular Elliptic Curves and Fermat’s Last Theorem”. In: Annals of Mathemat-

ics Second Series 141.3 (May 1995), pp. 443–551.

[WZ85] Jet Wimp and Doron Zeilberger. “Resurrecting the asymptotics of linear recurrences”. In: J.

Math. Anal. Appl. 111.1 (1985), pp. 162–176.

[Zei03] Doron Zeilberger. “Computerized deconstruction”. In: Adv. Applied Math. 30 (2003). https:

//sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/derrida.html,

pp. 633–654.

[Zei07] Doron Zeilberger. “The Holonomic Ansatz II. Automatic Discovery(!) And Proof(!!) of Holo-

nomic Determinant Evaluations”. In: Annals of Combinatorics 11 (2007), pp. 241–247.

[Zei13] Doron Zeilberger. “The C-finite ansatz”. In: The Ramanujan Journal 31.1 (2013), pp. 23–32.

URL: https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cfinite.

html.

[Zei14] Doron Zeilberger. Two Motivated Concrete Proofs (much better than the usual one) that the

Square-Root of 2 is Irrational. 2014. URL: https://sites.math.rutgers.edu/~zeilberg/

mamarim/mamarimhtml/sqrt2.html.

[Zei24a] Doron Zeilberger. Maple Packages and Programs. https://sites.math.rutgers.edu/

~zeilberg/programs.html. Accessed 2024-02-05. 2024.
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