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Existing research on electoral politics and financial markets predicts that when investors
expect left parties—Democrats (US), Labor (UK)—to win elections, market volatility
increases. In addition, current econometric research on stock market volatility suggests
that Markov-switching models provide more accurate volatility forecasts and fit stock price
volatility data better than linear or nonlinear GARCH (generalized autoregressive conditional
heteroskedasticity) models. Contrary to the existing literature, we argue here that when
traders anticipate that the Democratic candidate will win the presidential election, stock
market volatility decreases. Using two data sets from the 2000 U.S. presidential election, we
test our claim by estimating several GARCH, exponential GARCH (EGARCH), fractionally
integrated exponential GARCH (FIEGARCH), and Markov-switching models. We also
conduct extensive forecasting tests—including RMSE and MAE statistics as well as realized
volatility regressions—to evaluate these competing statistical models. Results from
forecasting tests show, in contrast to prevailing claims, that GARCH and EGARCH models
provide substantially more accurate forecasts than the Markov-switching models. Estimates
from all the statistical models support our key prediction that stock market volatility
decreases when traders anticipate a Democratic victory.

1 Introduction

In recent years, political scientists from different subfields have started analyzing how
certain exogenous and endogenous variables affect the variance and volatility of the
dependent variable. For example, recent work in the study of macropartisanship has

Authors’ note: An earlier version of this paper was presented at the 2003 Political Methodology Summer
Meetings, Minneapolis, MN. We are grateful to Charles Franklin, Robert Erikson, Christopher Wlezien, and
Andre Gibson of the Chicago Mercantile Exchange for providing their data. For comments and advice, we thank
three anonymous referees, Suzie De Boef, Mike Herron (our discussant at the methodology conference), Jasjeet
Sekhon, and other participants at the conference. We also thank Jude Hays, William Bernhard, and Brian Gains
for helpful discussions regarding the calculation of election night probabilities.
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focused on the degree of persistence and variation of partisanship at the aggregate and the
individual level (Mackuen et al. 1989; Stimson et al. 1995; Box-Steffensmeier and Smith
1996; Green et al. 2002). Likewise, numerous studies focus on volatility in presidential
approval ratings and public opinion across time (Beck 1991; Brace and Hinckley 1991,
1992; Brehm and Gronke 1994; Jackman 1995). In comparative political economy,
political scientists have examined how institutions, elections, and government partisanship
affect the volatility of financial markets and economic growth (Freeman et al. 1999, 2000;
Herron 2000; Quinn and Woolley 2001).

Although scholars have increasingly focused on how best to statistically model
volatility, few have attempted to estimate the generalized autoregressive conditional
heteroskedasticity (GARCH) model as a tool for studying volatility." This is surprising
because it is well known that the GARCH model—developed by Engle (1982) more than
two decades ago—provides a powerful and parsimonious method to examine the variance
and volatility of the dependent variable in time-series data. Instead, political scientists
who, for example, study how democratic politics affects financial markets use estimation
techniques such as nonlinear least squares (Herron 2000) and the Markov-switching model
(Freeman et al. 1999, 2000). In other areas, Box-Steffensmeier and Smith (1996) use
Sowell’s (1992) method to examine heteroskedasticity in individual partisan identification,
while the error-correction model has often been used to examine volatility in presidential
approval ratings and partisanship (Beck 1991; Stimson et al. 1995).

Given the surprising lack of attention paid to GARCH models not only in political
science in general but also in studies of democratic politics and financial markets—our
main focus—this paper has two objectives. First, at a broader level, we introduce readers
to a detailed formal treatment of various GARCH models such as the standard GARCH,
exponential GARCH (EGARCH), and the fractionally integrated exponential GARCH
models, which we believe are useful tools for examining the volatility of the dependent
variable, especially in time-series data. Second, we focus primarily on comparing the
forecasting performance of a variety of GARCH models to the Markov-switching model
using two data sets that contain information on the impact of elections, political
uncertainty, and partisan expectations on stock market volatility during the 2000
presidential election. We do so because numerous scholars—who statistically examine the
impact of political variables on the volatility of financial markets—favor the use of
Markov-switching models, claiming that these models are more accurate and provide
better forecasts than a variety of linear and nonlinear GARCH models (Turner et al. 1989;
Van Norden and Schaller 1997; Sola and Timmerman 1994; Kim et al. 2002). For
instance, in their empirical analysis of exchange rate volatility, Freeman et al. (2000, p.
459) find that Markov-switching models fit the data better than GARCH models.”
Likewise, Sola and Timmerman (1994) compare EGARCH and Markov-switching models
and find that the latter fit the data on daily U.S. stock returns better than various EGARCH
models that they estimate.

The claims of Freeman et al. (2000) and Sola and Timmerman (1994) are unwarranted.
This is because there is almost no work that seriously evaluates the statistical merits—
especially the relative forecasting performance—of these two competing sets of models

'Leblang and Bernhard (2000) use GARCH models to estimate the impact of partisanship, elections, and public
opinion on exchange rate volatility, while Brehm and Gronke (1994) use an ARCH model to examine the
volatility of presidential approval. These studies are, however, the exception rather than the norm.

’The finding of Freeman et al. (2000) is largely driven by the fact that their exchange-rate series does not contain
ARCH effects (see Freeman et al. 2000, p. 459n20). We believe that their finding is interesting but rare, since
arguably most financial time-series data are likely to contain ARCH effects.
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(GARCH versus Markov-switching).3 Hence, as noted above, we address here the
aforementioned lacuna in the empirical literature on politics and financial markets by
examining in some depth whether Markov-switching models provide more accurate
forecasts than GARCH models (or vice versa).

More specifically, we use several GARCH, EGARCH, FIEGARCH, and Markov-
switching models to analyze the impact of electoral information, uncertainty, and
partisanship on stock price volatility during the 2000 U.S. presidential election. We find,
using two different data sets, that GARCH-type models outperform Markov-switching
models in a number of important ways. Results from forecasting tests—which included
root mean square error (RMSE) and mean absolute error (MAE) statistics as well as
realized volatility regressions—conducted on a set of out-of-sample observations and on
the entire sample (for both data sets) show that the GARCH and especially the EGARCH
models more accurately forecast volatility than Markov-switching models. We will discuss
later why the GARCH models provide more accurate forecasts than the Markov-switching
models in our case and why this finding may be generalizable.

In addition, a central claim (and empirical finding) in the literature on politics and
financial markets is that the prices of various financial assets—exchange rates, stock
indices, bond prices—decrease, but become increasingly volatile when traders anticipate
electoral victory by a “left” party, i.e., Democrats in the United States or Labor in Britain
(Alesina et al. 1997; Freeman et al. 2000; Herron 2000). We take issue with this claim and
argue that stock price volatility decreases when traders anticipate that the Democratic
candidate will win the presidential election. Interestingly, estimates from our Markov-
switching and various GARCH models statistically support our theoretical claim.

This article is organized as follows. In the next section, we briefly present a literature
review and the theoretical rationale underlying the hypotheses that we test here. This is
followed by a discussion of the substantive and econometric reasons that motivated our
choice of estimating GARCH and Markov-switching models. In Section 4, we describe the
data, variables, statistical models—GARCH, EGARCH, FIEGARCH, and Markov
switching—and results obtained from estimating these models. We report and compare
the forecasts from all the estimated models in Section 5 and discuss why the Markov-
switching model provides poor forecasts. We end with a brief conclusion.

2 Literature Review and Testable Hypotheses

The causal logic underlying the central claim in the Democratic politics and financial
markets literature—that the value of financial assets (stocks, bonds, and exchange rates)
decreases but becomes increasingly volatile under left-wing governments—is rooted in the
vast literature on the effects of partisanship on the economy (Alesina and Rosenthal 1995;
Franzese 2002). Specifically, Herron (2000) and Freeman et al. (2000) assume that
inflation under left-wing administrations is consistently higher than under right-wing
administrations.* Based on this assumption, they argue that forward-looking traders in the

*To the best of our knowledge, only Pagan and Schwert (1990) have compared the forecasting performance of
GARCH, EGARCH, and Markov-switching models by using prewar U.S. stock return data. Our article,
however, differs from their work because our Markov-switching model is estimated with time-varying, not
constant, transition probabilities. Pagan and Schwert (1990) also do not compare forecasts between FIEGARCH
and Markov-switching models as we do here.

“For the United States, Alesina and Rosenthal (1995, p. 184) find that “the negative coefficient on the variable R
implies that inflation has been lower with Republican administrations than with Democratic administrations.”
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United States (Britain) rationally expect Democrats (Labor) to implement policies that
engender higher inflation and that are detrimental for the stock market.

Since traders typically “lock in” expectations of higher inflation under a Democratic
(Labor) administration and when they anticipate a Democratic (Labor) victory, they are
also likely to rationally expect a decline in the real returns of stocks. This decreases the
demand for stocks and causes prices to fall. Ex ante expectations of lower stock returns
under left-wing administrations engender frantic stock selling by traders that can lead to
higher stock market volatility.> In contrast, traders expect stock returns to increase under
right-wing administrations and when they anticipate a Republican (Conservative) victory.
This is because right-wing governments are associated with lower inflation and taxes,
which benefit the stock market. Expectation of higher stock returns under right-wing
governments reduces uncertainty and helps to stabilize stock prices.

There are two main flaws in the arguments posited above. First, if traders anticipate
stock returns to decline under a Democratic (Labor) government, they have rational
incentives to reduce their level/volume of trading in order to decrease their average (and
marginal) trading costs to minimize ex post losses. If the volume of trading declines, stock
price volatility will logically decrease (and not increase), since it is well known from
existing empirical studies that a decline in trading volume leads to lower market volatility
(Gallant et al. 1992; Foster and Vishwanathan 1995). Second, if traders expect higher
stock returns under a Republican administration, it is likely that this will lead to a surge in
the inflow of capital and investment into the stock market. As shown empirically by many
financial economists, a sudden inflow of capital into the stock market leads to rapid
adjustment of prices of financial assets and higher trading volume, which consequently
increases stock market volatility.®

Building on the criticisms discussed above, we have constructed a model of speculative
trading between a group of risk-neutral traders and a market maker. The setup of the
formal model and its equilibrium results can be found at the Political Analysis Web site.
We provide a brief intuition of the model’s key predictions and causal logic here.
Specifically, in the model, traders and the market maker observe exogenous public signals
of electoral information, i.e., signals that convey information about which candidate will
win the election and the policies that the victorious candidate will implement ex post.
Results from the model provide the following insights.

First, we claim that when traders and the market maker expect the Democratic
candidate to win the presidential election, stock price volatility decreases. The intuition
here is that ex ante, traders expect the Democratic presidential candidate to implement left-
of-center policies—i.e., policies that lead to higher inflation—once she or he wins the
election. Since higher inflation decreases the real returns from stocks, the expected value
of the sum of discounted future dividends declines. We prove in our model that when
traders expect future dividends to decline under a Democratic administration, they have
incentives to reduce their volume of trading in order to stabilize their profits and reduce
their transaction costs of trading. Moreover, they have incentives to “hedge their bets” and
reduce their demand for stocks in this case. We find that the volatility of stock prices
declines in equilibrium when traders rationally seek to reduce their transaction costs and
their volume of trading.

5A rapid jump in selling activity implies higher trading volume, which is strongly correlated with high stock price
volatility (Gallant et al. 1992; Foster and Vishwanathan 1995).
6See, for example, Kothari and Shanken (1992) and Timmerman (1996).
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Second, our model proves that market volatility increases when traders expect the
Republican candidate to win. This result crucially relies on two key findings from the
literature on rational partisan theory’ and increasing partisan polarization of post-election
policies by Democratic and especially Republican administrations.® These are: (1)
Republican presidents aggressively attempt to reduce inflation after winning elections
(Alesina and Rosenthal 1995, p. 184), and (2) successive Republican administrations since
the 1970s have tended to deviate more toward the right by following more conservative
social and economic policies after winning elections.’

Based on these two findings, we argue that traders rationally anticipate that the
Republican presidential candidate will pursue more conservative economic policies that
promote lower taxes and inflation after winning elections. These policies are consequently
expected to generate higher stock returns and a bull market. Ex ante expectations of a bull
market increase the demand for stocks and lead to more volatile trading behavior that is
characterized by rapid, short-term switching between buying and selling stocks. Our model
proves that such volatile trading patterns increase the volatility in the price of traded assets
and thus engender higher stock price volatility.

Comparative statics from our model show that higher ex ante uncertainty about which
candidate will win the election engenders increased stock price volatility.'® They also
show a monotonic relationship between the arrival of political information about the
potential electoral outcome and stock price volatility. Our model thus provides the
following hypotheses that we test by estimating GARCH and Markov-switching models:

Hypothesis 1: Information arrival about electoral outcomes affects stock price volatility.
Hypothesis 2: Increased uncertainty about the electoral result increases volatility.

Hypothesis 3: If traders expect the Democratic candidate to win, then volatility
decreases.

Hypothesis 4: If traders expect the Republican candidate to win, then volatility increases.

3 Why GARCH and Markov-Switching Models?

We chose to estimate and compare the forecasting performance of various GARCH and
Markov-switching models for numerous substantive and econometric reasons. From
a substantive viewpoint, two factors have influenced our choice of the two estimation
techniques. First, as noted in the introduction, detailed statistical examination of variance/
volatility dynamics in time-series data has emerged as an important area of inquiry in
political science. Moreover, scholars such as DeBoef (2000) and Box-Steffensmeier and
Smith (1996) have emphasized that time-series data in political science—for example, in
the study of macropartisanship and presidential approval—are characterized by long
memory in volatility, i.e., fractional integration, which may not be adequately captured by
conventional estimation methods such as the error-correction model, for example.
Although political scientists increasingly focus on the volatility of their respective
dependent variable and recognize the presence of long memory in volatility, they largely do
not employ GARCH or Markov-switching models in their empirical analyses.'' This is

"For details, see Hibbs (1987), Alesina and Rosenthal (1995) and Alesina et al. (1997).

8For this, see McCarty et al. (2002) and Jacobs and Shapiro (2000).

For details, see McCarty et al. (2002) and Jacobs and Shapiro (2000).

9This concurs with the results of McGillivray (2003) and Freeman et al. (2000).

"I'The exception is Freeman et al. (2000), who estimate a Markov-switching model to estimate currency market
volatility. Freeman et al. do not estimate GARCH models.
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Fig. 1 Volatility clustering (log change of daily closing prices of S & P 500 Index, Jan. 2000—Nov.
2000).

surprising, because various GARCH and Markov-switching models provide a powerful,
flexible, and parsimonious approximation to capture conditional variance/volatility dy-
namics. In addition, fractionally integrated GARCH models directly capture long memory
in volatility that allows for more accurate estimation. Finally, both GARCH and Markov-
switching models jointly capture the conditional mean and variance dynamics as well as
nonlinearities in time-series data. This makes them well suited to analyze, for example, the
macropartisanship series. Hence a broader objective of this article is to systematically
describe the formal setup of linear and nonlinear (i.e., exponential) GARCH models as well
as fractionally integrated (exponential) GARCH and Markov-switching models. This can be
useful for political scientists who examine volatility dynamics in time-series data.

Second, and more specifically, scholars who have examined the impact of political
uncertainty and government partisanship on the volatility of financial markets have not
estimated GARCH models in their statistical analyses. Instead, techniques such as
nonlinear least squares (Herron 2000) and the Markov-switching model (Freeman et al.
2000) have been used to study the effect of democratic politics on financial markets. This
is problematic, because the failure to estimate GARCH models could lead to the fallacious
substantive empirical result that financial market volatility (which includes stock prices)
increases when agents expect the left-wing party (Democrats or Labor) to win elections.
Indeed, as we will show, GARCH and fractionally integrated exponential GARCH models
more accurately capture the degree and persistence of volatility in high-frequency time-
series data compared to other estimation techniques used in the empirical literature. This
has important substantive implications, because we find from estimating our GARCH
models that market volatility decreases when agents expect the left-wing party to win
elections, which confirms our theoretical rationale.

Our choice of GARCH and Markov-switching models has also been influenced by three
features of the data that are common to time-series processes. First, our data are characterized
by volatility clustering, which is common to most high-frequency financial time-series data.
This is illustrated in Fig. 1, where we graph the returns (log changes in daily closing prices
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Fig. 2 Kaurtosis in daily sample.

multiplied by 100) on the Standard and Poor’s (S&P) 500 index—our dependent variable—
from our sample of daily observations dated from January 6 to November 7, 2000. Volatility
clustering is immediately apparent in Fig. 1, where one can observe that large (small)
changes in the S & P 500 index are followed by large (small) changes.

A second feature of our financial time-series data is that it exhibits excess kurtosis or
“fat tails” (the relatively frequent occurrence of extreme values in the conditional second
moments). This is illustrated in Fig. 2, where the empirical distribution of the predicted
residuals that are obtained by regressing changes in the S & P 500 index (from June 1 to
June 11, 2000) on a constant and an error term. The excess mass in the tails of the
distribution in Fig. 2 is clearly visible. As shown in Bollerslev (1986, 1990), we need to
estimate GARCH models in order to account not only for volatility clustering but also for
such kurtosis in the data. Indeed, the unconditional distribution of a GARCH process is
symmetric and leptokurtic, which is precisely the feature that allows GARCH models to
account for volatility clustering and kurtosis. In particular, the unconditional leptokurtosis of
GARCH processes follows from the persistence in the conditional variance, which produces
the clusters of low and high volatility in the center and in the tails of the unconditional
distribution. Similarly, Meese (1990, pp. 129-130) and Hamilton (1989, 1994) have proved
that Markov-switching models can also account for the fat-tailed distributions of stock
returns, which is prevalent in our data.

Third, to check for the presence of ARCH in the residuals, we employed Engle’s (1982)
Lagrange-multiplier (LM) test,'? which is as follows: (1) regress Y on X and obtain
residuals, €;; (2) regress sl2 on p lags of slz; that is, gtz =B+ 518;2_1 + .- Bpglzil; (3) assess
the joint significance of B; — P,. If the coefficient is statistically different from 0, then the
null of homoskedasticity can be rejected. In the case of our data, Engle’s LM test clearly
indicates the presence of ARCH in the residuals. This necessitates the use of GARCH
models to obtain accurate estimates (Engle 1982; Bollerslev 1986, 1990).

127 % R? is Engle’s LM test statistic. Under the null of homoskedasticity, it is asymptotically distributed as y2(g).
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4 Empirical tests

4.1 Sample, Data, and Variables

We test the hypotheses listed above on two distinct samples related to the 2000
presidential election. The first sample comprises daily observations during the 2000
presidential campaign—end-of-day returns for the S&P 500 and aggregated daily national
polling results. The second sample examines how actors trading S&P futures during the
night of November 7, 2000—the night of the election—responded to information
regarding the likelihood of a candidate winning the Electoral College. These samples are
discussed in turn.

4.1.1 The 2000 Presidential Campaign

We examine the response of stock market returns to the arrival of political information
using a sample of daily observations from January 6 to November 6, 2000. We use returns
(log changes in daily closing prices multiplied by 100) on the S&P 500 index as our
dependent variable."® To measure political information that captures expectations of a Gore
(i.e., Democrat) victory, we utilize polling data that indicates, for each day, Gore’s share of
the two major-party votes. These data, collected and used by Wlezien (2001) and Wlezien
and Erikson (2001), are based on an aggregation of 295 separate national polls conducted
during the 2000 presidential campaign. Missing values were filled in using linear
interpolation.'*

We also include additional variables to control for other unmeasured influences on stock
market volatility. These include two dummy variables capturing closing day'’s effects; that
is, effects on market activity that result from weekends or holidays. Closing day effects
variables measure the number of days before day ¢ that the market was closed and the
number of days after day 7 that the market will be closed. It is expected that these variables
will have a positive effect on stock market volatility. Finally, we include a variable
measuring (the log of) trading volume, because studies find that including trading volume
substantially accounts for observed volatility in stock market returns (Gallant et al. 1992).
Since volume data are not available for the S & P 500 indexes, we use total daily volume
traded on the New York Stock Exchange (hereafter, NYSE) as a proxy.

4.1.2. Election Night: November 7, 2000

A second laboratory within which to examine the effect of political information on stock
market volatility was created on the evening of November 7, 2000. As the evening
progressed, network and cable news outlets “called” the electoral outcome of each state.
These calls constitute the arrival into the market of political information that affects the
strategic decisions of traders.

The NYSE is open for trading between 9:30 am and 4:30 pm EST; it closes, therefore,
prior to the reporting of election results. After-hours traders can trade options and futures
contracts through the GLOBEX electronic trading system. Using the GLOBEX system,
individuals can trade a variety of futures, options, and interest rates.

3The S&P 500 index includes 80% industrials, 3% utilities, 1% transportation, and 15% financial companies. For
more details on the index, see www.standardpoors.com.
14See Wlezien (2001) for a detailed discussion of this variable.
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The GLOBEX system reports information on the price and volume for every individual
transaction during the trading session. We use this “tick” data to track the movements of
futures prices for the S&P 500 index.'” These tick data were aggregated to provide the
average price and total volume of trades for each minute during the trading session. To avoid
overlap with the NYSE, and because a five-minute lag is used, the sample period for the
overnight data set is from 4:35 pm on November 7 through 8:59 am on November 8.

We measure the arrival of political information by constructing a variable that estimates
the probability that Gore will win a majority of electors in the Electoral College and will
thus become the 43rd president. This measure is based on state-level polls for each of the
50 states and exploits the fact that these polls contain a degree of sampling uncertainty. As
each state is called over the evening of November 7 and into the morning of November 8,
traders update their priors regarding the likelihood of a Gore victory.

The prior for each state is calculated using the final state-level poll available. Table 1
reports information regarding the sample size of the poll (sample size), the percentage of
respondents responding with a preference for Gore (Gore %) and for Bush (Bush %), and
the share of the two-party vote for Gore (Gore/[Bush-+Gore]).'® This information is used
to test the null hypothesis that, in the population, Gore’s share of the two-party vote is
greater than or equal to 0.50001 against the alternative that Gore’s share is less than
0.50001. The p values for rejection of the null are also listed in Table 1. Higher p values
indicate the probability of making an error by rejecting the null that Gore will win the
state. For example, Gore’s share of the two-party vote in Massachusetts was 63.4%. The p
value for rejection of the null that Gore would get at least 50% and win the state is 1.00,
indicating that it is certain that an error will be made if that state’s electoral votes are given
to Bush. Likewise, the p value for rejection of the null for Texas is 0.000, meaning that
there is zero chance out of a thousand that Gore will win that state.

Since these polls contain sampling uncertainty, there is a probability that an error will be
made by rejecting the null hypothesis. The second step in variable construction is to
exploit this sampling uncertainty. This is done by randomly drawing from a uniform [0,1]
distribution and creating a variable Q with observations for each state. Denoting the p
value for rejection of the null hypothesis P, if Q is less than P, then Gore wins state i and
gets all of state i’s electoral votes. This is done for each state. If Gore wins sufficient states
to give him more than 270 electoral votes, then he wins the election. Third, the process in
Step 2 is repeated 1000 times and the proportion of Gore victories is recorded. This
measure constitutes the probability that Gore wins the Electoral College. Finally, this
probability is updated over the course of the election as each state is called by CNN. As
a state is called, the probability of winning the state in question goes to either zero or one,
depending on whether the state is called for Bush or for Gore, and Steps 2 and 3 are
repeated. Continuing this procedure until 6:21 am on November 8—when Wisconsin was
called—results in a variable that measures the probability, for each minute, that Gore will
win the Electoral College.

Similar to the daily data set, we control for the total volume traded during each minute.
We also control for the anticipated time interval between the current and previous trade.
Engle (1996) empirically implements this idea and argues that the expected duration
between trades should have a statistically significant effect on the mean and price changes.

'SA future is a legally binding agreement to buy or sell the cash value of the asset at a specific future date. In the
case of the futures used here, the maturity date was November 15, 2000.
1oWe are grateful to Charles Franklin (2001) and Chris Wlezien (2001) for sharing these data.
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Table 1 State probabilities, polls, and p values (overnight sample)

Sample  Gore Bush Gore/ Electoral Time called
State size % %0 (Bush+Gore) p value votes by CNN (EST)
Alabama 625 38 55 0.409 0.000 9 8:00pm (B)
Alaska 400 26 47 0.356 0.000 3 12:00am (B)
Arkansas 286 44 47 0.484 0.287 6 12:12am (B)
Arizona 423 39 49 0.443 0.010 8 11:51pm (B)
California 600 45 44 0.506 0.607 54 11:00pm (G)
Colorado 400 38 47 0.447 0.017 8 11:41pm (B)
Connecticut 447 48 32 0.600 1.000 8 8:00pm (G)
Delaware 625 42 46 0.477 0.127 3 8:00pm (G)
Florida 600 48 46 0.511 0.697 25 2:58 am (G)
Georgia 512 37 53 0.411 0.000 13 7:59pm (B)
Hawaii 261 50 31 0.617 1.000 4 11:00pm (G)
Idaho 633 30 56 0.349 0.000 4 10:00pm (B)
Tllinois 600 50 42 0.543 0.983 22 8:00pm (G)
Indiana 600 30 53 0.361 0.000 12 6:00pm (B)
Iowa 603 44 43 0.506 0.609 7 5:00am (G)
Kansas 600 32 55 0.368 0.000 6 8:00pm (B)
Kentucky 625 41 51 0.446 0.003 8 6:00pm (B)
Louisiana 660 38 46 0.452 0.007 9 9:21pm (B)
Maine 400 47 36 0.566 0.996 4 10:10pm (G)
Maryland 627 52 38 0.578 1.000 10 8:00pm (G)
Massachusetts 401 52 30 0.634 1.000 12 8:00pm (G)
Michigan 600 51 44 0.537 0.964 18 9:24pm (G)
Minnesota 1015 47 37 0.560 1.000 10 10:25pm (G)
Mississippi 625 41 52 0.441 0.002 7 8:00pm (B)
Missouri 600 46 46 0.500 0.498 11 10:47pm (B)
Montana 628 37 49 0.430 0.000 3 10:00pm (B)
North Carolina 625 41 48 0.461 0.024 14 8:14pm (B)
North Dakota 586 35 47 0.427 0.000 3 9:00pm (B)
Nebraska 1007 31 56 0.356 0.000 5 9:00pm (B)
Nevada 625 43 47 0.478 0.132 4 1:31am (B)
New Hampshire 801 39 45 0.464 0.021 4 12:07am (B)
New Jersey 843 41 36 0.532 0.970 15 8:00pm (G)
New Mexico 425 45 45 0.500 0.498 5 not called®
New York 700 54 37 0.593 1.000 33 9:00pm (G)
Ohio 600 43 50 0.462 0.032 21 9:19pm (B)
Oklahoma 625 39 54 0.419 0.000 8 8:00pm (B)
Oregon 600 45 44 0.506 0.607 7 not called®
Pennsylvania 600 50 42 0.543 0.983 23 9:24pm (G)
Rhode Island 370 47 29 0.618 1.000 4 9:00pm (G)
South Carolina 625 38 53 0.418 0.000 8 7:00pm (B)
South Dakota 300 33 51 0.393 0.000 3 9:00pm (B)
Tennessee 500 46 51 0.474 0.124 11 11:03pm (B)
Texas 625 30 64 0.319 0.000 32 8:00pm (B)
Utah 914 27 59 0.314 0.000 5 10:00pm (B)
Vermont 400 52 36 0.591 1.000 3 7:00pm (G)
Virginia 625 41 49 0.456 0.013 13 7:33pm (B)
Washington 500 50 42 0.543 0.974 11 12:08am (G)
West Virginia 536 39 41 0.488 0.280 5 10:46pm (B)
Wisconsin 400 39 44 0.470 0.113 11 6:21am (G)
Wyoming 412 32 57 0.360 0.000 3 9:00pm (B)

“New Mexico and Oregon were not called before markets closed on November 8, 2000.
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4.2 The GARCH, EGARCH, FIEGARCH, and Markov-Switching Models

Because we are interested in the effect of political information, expectations, and
uncertainty on stock market volatility, we utilize the GARCH model introduced by Engle
(1982) and extended by Bollerslev (1986). A GARCH model is composed of two
equations: one for the conditional mean and the other for the conditional variance. In the
GARCH (1,1) specification, the conditional mean can be written as:

In(AP;) = A +&, &~N(0, Gzz)’ (1)

where In(AP)) is the log change in closing price of the stock market index observed at time
t, A is a constant, and &, is an error term that is normally distributed with mean zero and
variance 012.17 Note that the mean is specified as following a random walk with a drift; no
exogenous variables are thought to influence the mean change in price.

The unique feature of GARCH models is that we can specify how the conditional
variance evolves (Gtz) over time in response to both past values and exogenous shocks. The
conditional variance for the standard GARCH (p, q) model is

g P
oi=0+y og+ ) Bioy . (2)
P P

Using the lag or backshift operator, a(L) = oL + --- + o, L7 and B(L) = BL + --- +
B,L?, Eq. (2) can be rewritten as

ol = o+ a(L)e? + B(L)o?. (3)

In most cases there is one ARCH and one GARCH term. With exogenous variables
affecting the conditional variance, the GARCH (1,1) can thus be written as

ol =w+ue’ | +Bor, + &l (4)

The variance 6,2, called the conditional variance, is the one-period-ahead forecast
variance based on all information available at time f—1. The conditional variance is
a function of four terms: the constant (), the ARCH term (81271), the GARCH term (ct{l),
and a set of exogenous variables (/; ). GARCH models are often used to analyze financial
time series because it is assumed that economic agents form expectations about this
period’s variance based on the long-term mean of the variance (®), the forecasted variance
from the prior period (67 ), and new information about volatility gleaned in the prior
period (81271).

While the standard GARCH model is useful, it has two limitations. First, it assumes
that positive and negative innovations or errors (¢7) have the same—i.e., symmetric—
effect on the conditional variance. This is problematic, since a positive (negative) shock or
innovation may have a larger effect on the conditional variance than a negative (positive)
one. The phenomenon of asymmetric effects of shocks on the volatility of stock returns
occurs quite frequently when traders engage in herding behavior: in such cases—which are
common—a negative shock (bad news) leads to greater volatility than a positive shock

"We can also use the generalized exponential, student-t, or double exponential distribution. We did not do so
because the residuals from our estimated models are conditionally normal.
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(good news). To take into account the possibility of asymmetric effects of shocks on
volatility, Nelson (1991) developed an exponential GARCH (EGARCH) model, which
relaxes the assumption of symmetric effects. More formally, from Eq. (3), the EGARCH
model can be written as

In(07) = o + ozt + ¥y (Jz-1] = E(lz1])) + By In(o7y), (5)

where z; represents standardized innovations (g,/c;) and E is the expectations operator. In
Eq. (5), the conditional variance is a function of four terms: the constant, the GARCH term
(8,271), and two ARCH terms—an asymmetric component (z,_;) and a symmetric
component (|z,_1| — E(|z,_1])).

Consider first the symmetric component of the ARCH term, (|z;,_1| — E(|z;_1])). This
component measures deviations between realized and expected innovations and can
therefore capture how unexpected innovations affect conditional volatility. 7y is typically
greater than zero. Hence standardized innovations that are larger in absolute magnitude
than the expected value (|z| > E|z,|) will increase future volatility higher than its average
level. However, if |z,| < E|z], then future volatility will be lower than average. The oz,
term provides for the asymmetric effect of the standardized innovations. If ¥ > 0, then
a positive (negative) value for o implies that positive (negative) shocks will have a larger
effect on future volatility than negative (positive) shocks. That is, an unexpected large
innovation will increase future volatility more than an unexpectedly small innovation will
decrease future volatility.

A second limitation of the standard GARCH model is that it cannot account for the
persistence of volatility in high-frequency time-series data. This is a serious drawback,
considering that persistent volatility is common to high-frequency time-series data. To deal
with this problem, Bollerslev and Mikkelsen (1996) developed the integrated GARCH
(IGARCH) model. The development of the IGARCH model follows from Eq. (3). To see
how, first rewrite the expression for the conditional variance in Eq. (3) by dropping the
exogenous variables, adding €7 to both sides, and moving o7 to the right-hand side:

e =+ (o +PBy)el | +vi— Byviet, (6)

where v, = 8? — 6,2. Note that the GARCH (1,1) representation in Eq. (6) can be thought
of as an Autoregressive Moving Average (ARMA) model for &2. It follows that the
GARCH (1,1) model is covariance stationary if and only if o; + B; < 1. As noted above,
persistence of volatility in high-frequency time-series data is common. In other words, it is
often the case that o; + B; = 1, which is an IGARCH model since a; + B; = 1 implies
a unit root for atz in Eq. (6). As in an ARMA model, the existence of a unit root means that
shocks to the conditional variance die out very slowly (Baillie et al. 1996, p. 15). This is in
contrast to the expectation that volatility is mean reverting. When the autoregressive
polynomial contains a unit root, the IGARCH model can be rewritten as

G(L)(1 — L)ef = @+ v; — Byviei. (7)

We mentioned earlier that in GARCH (1,1) models, the sum of the estimates of o; and
B, is typically close to 1, with oy small and B; large. This implies that the impact of shocks
on the conditional variance diminishes very slowly. However, the decay is still at an
exponential rate, which might be too fast to mimic the observed autocorrelation patterns of
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the empirical time series. Unfortunately, the IGARCH model in Eq. (7) is unable to
capture the rate of decay of the shocks and as a result can provide inaccurate estimates. To
solve the aforementioned problem, Baillie et al. (1996) suggested that the autocorrelations
of squared and even absolute stock returns decline only at a hyperbolic rate. This type of
behavior of the autocorrelations can be modeled by means of long memory in volatility or,
in other words, as a fractionally integrated process.

More formally, Baillie et al. (1996) introduced the fractionally integrated GARCH, or
FIGARCH, (p,d,q) model. Denoting the fractional integration parameter by d and adding
d to the first difference operator, the FIGARCH model is defined as

OL)(1 L)'l = o+ vi — B, (8)

where 0 < d < 1. As in standard Autoregressive Integrated Moving Average (ARIMA)
type models, the fractional differencing parameter, d, indicates the speed at which shocks
to 8,2 die out—that is, the rate of decay—over time. This solves the problem in the
IGARCH model mentioned above.

While the FIGARCH model captures the rate of decay as long memory in volatility
(i.e., fractional integration), it does not account for the asymmetric effect of shocks. Hence
Bollerslev and Mikkelsen (1996) introduced the fractionally integrated exponential
(FIEGARCH) model, which accounts for both long memory in volatility and the
asymmetric effect of shocks on volatility. The FIEGARCH model is simply a combination
of the FIGARCH and the EGARCH models and is developed as follows. First, rewriting
Eq. (5) using the backshift operator yields

In(o7) = o+ [1 = BL)]'[1 + %L)]g(zi-1), ©)

where g(z;) = 0z; + Y[|z — E|z|]. Factorizing the autoregressive polynomial as [1 — B(L)] =
oLy — L)d, Bollerslev and Mikkelsen (1996) derive the FIEGARCH model:

In(o7) = o+ G(L) " (1 = L)“[1 + L)) (z-1)- (10)

Adding the set of exogenous variables, (8;x;,), to Eq. (10) yields

In(07) = o+ &l + (L)~ (1= L)1 + o(L)]g(z1)- (11)

In Eq. (11), [1 — B@]™" = ¢@)(1 — L) and g(z) = 0z + vllz| — Elz ). Ignoring the
g(z;1) term for a moment, equation Eq. (11) says that (the log of) volatility is a function of
the constant (), a set of exogenous variables (5;X;,) measured at time #, the ARCH term
(o), the GARCH term (B), and the fractional integration parameter (d). As in standard
ARIMA models, d measures the speed at which shocks to the dependent variable (in this
case, the variance) die out over time. If d equals zero then shocks have no memory and Eq.
(11) collapses to the standard EGARCH model. However, if d equals 1 then Eq. (11)
becomes the integrated EGARCH model.

Turning our attention to the g(z,_;) term in Eq. (11), this part of the equation captures the
idea that volatility responds differently to good news than to bad news. Nelson (1991) noted
that “to accommodate the asymmetric relation between stock returns and volatility
changes . .. the value of g(z,) must be a function of both the magnitude and the sign of z.”
This is accomplished with the 6 and y terms in g(z,_;), where 0 captures the sign and
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v captures the magnitude of past errors. Substantively this term means that the negative
errors in the prior period will have a larger effect on the conditional variance than positive
shocks. If 8 and v in g(z,_;) equal zero then Eq. (11) becomes the FIGARCH (p,d,q) model.

We also test our hypotheses by estimating a Markov regime-switching model with
time-varying transition probabilities (Diebold et al. 1994).'® A critical advantage of the
Markov-switching model—in addition to correcting for volatility clustering, kurtosis, and
serial correlation—is that it can capture “switches” in stock price mean and volatility. That
is, it can capture switches from a state of low mean and volatility to a state of high mean
and volatility (or vice versa) in stock prices. This is important because application of the
Hansen (1992) and Garcia (1998) tests on our daily and overnight sample rejects the null
hypothesis of no switching in the mean and variance at the 1% level in both data sets."”

Since the Hansen (1992) and Garcia (1998) tests reveal the existence of switching
between two states of the mean and volatility of stock prices in our data, we assume that
the stock price series in our Markov-switching model is governed by a two-state, first-
order Markov-switching process. Each state is characterized by a high (or low) variance
and mean that correspond to a separate regime. The series that we observe is thus
a “mixture” of these two regimes?’ where this mixture is determined by a probabilistic
transition between the two states. More formally, we estimate an autoregressive
specification in which the mean and variance are subject to switches between two states
that evolve according to a first-order Markov process:

In(AP) = g, + d(Apiot — s, ) + &, &~N(0,05), S € {0,1}
s, =Sy + (1 =S,
o3 =S01+(1-5)03 (12)
AP, ~N(y, 67); AP, ~ N(j,, 03).

In Eq. (12), p; denotes high mean and G% high variance, while 1, represents low mean
and G% low variance. ¢ denotes the AR coefficient. The states, S, are generated by
a realization of the first-order Markov process with transition probabilities,

PT(SIZI |Sz—1:1):P117 Pr(S,:2|S,,1:1):1—p11
PI’(S; =2 | Si—1 = 2) = P22, PI‘(S, =1 | Si—1 = 2) =1 — pP2. (13)

p11 denotes the probability of the state of high volatility, S, = 1, and p,, indicates the
probability of the low volatility state S, = 2. From Eq. (13), the transition probability
matrix can be defined as

185 Markov-switching model can also account for nonstationarity, clustering, serial correlation, and fat-tailed
distributions of stock price volatility (Hamilton 1989, 1994).

YGarcia (1998) and Hansen (1992) provide likelihood-ratio tests of the null of a single regime in the mean and
variance. Garcia derives the asymptotic null distribution of the LR statistic to obtain critical values; in his test,
the 1% critical value for rejecting the null is 17.67. Hansen (1992) uses empirical process theory to derive the
upper bound of his standardized LR statistic. Moreover, for the daily sample, Wald tests reject the null
hypothesis of equality of means (7.97) and variances (12.85). For the overnight sample, Wald tests reject the
null hypothesis of equality of means (6.83) and variances (12.46).

2Similar to Hamilton’s (1994, pp. 685-696) Markov-switching model, stock prices and volatility in our Markov
model are drawn from a mixture of two normal densities. Following the theoretical finance literature, we assume
that high volatility corresponds to a high mean and low volatility to a low mean (Turner et al. 1989).
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Pr(S, =j| S =i,x-1) =py, i,j=1,2, (14)

where x;_; is a (k X 1) vector of exogenous economic or political variables plus a constant
that affect the state’s transition probabilities. To examine the effect of these exogenous
variables on volatility, we allow the transition probabilities in Eq. (14) to depend on
electoral uncertainty, information arrival, partisanship, and trading volume via

. . exp(x;—1B; .
Pr(Sl:l‘Sl—l :laxt—l;Bi):l_i_:)Epz(xirBl)B_) l:1727 (15)

where f3; is a (k X 1) vector of parameters to be estimated. Notice in Eq. (15) that if ; >
0 (B; < 0), then % >0 (g)‘:% < 0) Vx;_; € R,. This implies that if the coefficient of B,
is positive (negative), then the probability of remaining in a state of high volatility and
mean increases (decreases). Likewise, if the coefficient of B, is positive (negative), then
the probability of remaining in state of high volatility and mean increases (decreases). The
log-likelihood of the Markov-switching model in Eq. (12) is given as

T
Lr(0) = > logf(y, |y, ;1 %-1;8). (16)
t=1 -

The steps used to derive the log-likelihood can be seen at the Political Analysis Web site.
We use the EM algorithm (Diebold et al. 1994, pp. 690-695) to estimate our Markov-
switching model, which is as follows:

1. Assign an initial guess to 8.

2. Generate the following smoothed state probabilities conditional on 8 Vr:

Pr(S; =1 |X;’)—Ct39(0>>
Pr(S;=21y,x; 0()
Pr(S;=1,8-1=1]y,x;

(

(

(

9(0))
Pr(S,=2,5_1 =1 |Xt,§,;9(0))
9(0))
9(0))

Pr(S, = laStfl =2 | X[’Et;
Pr(S, =281 =2y,x;

-AO)
X75077)
4. Produce updated parameter estimate 0" from arg max E[f( XT,§T|,)_CT;9(O))]

conditional on the smoothed state probabilities obtained in Step 2.

5. Iterate Steps (2)—(4) to convergence, i.e., until |8 — 8™ ™V| < &.

3. Generate complete data log likelihood conditional on 8?: E log f( Y7.ST

4.3 Results from the GARCH, EGARCH, FIEGARCH, and
Markov-Switching models

We estimate GARCH models on the daily and overnight samples. The results of these
models are contained in Tables 2 and 3. Cell entries in both tables are maximum likelihood
parameter estimates with Bollerslev-Wooldridge semirobust standard errors in parentheses.
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Table 2 Daily GARCH models (n = 218 in all models)
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(1) (2) (3)
Mean
Intercept —0.009 0.005 —0.001
(0.074) (0.075) (0.072)
Variance
Intercept —60.267* —82.08* —53.82*
(0.378) (0.285) (1.81)
ARCH 0.138 0.134 0.136
(0.084) (0.127) (0.139)
GARCH 0.628%* 0.726* 0.704*
(0.144) (0.207) (0.254)
Before —0.656 -1.09 —0.313
(0.739) (1.78) (0.818)
After 0.572%* 0.545 0.822
(0.228) (0.308) (0.551)
log(Volume) 3.14* 4.195* 2.49%
(0.003) (0.015) (0.009)
Gore —0.134*
(0.007)
Entropy —0.07*
(0.003)
D(Gore) —0.175
(0.154)
Diagnostics p value p value p value
LB(10) 0.1742 0.1742 0.1742
LB2(10) 0.1050 0.0978 0.0965
Jarque-Bera 0.6201 0.6209 0.6207

Note. Cell entries are maximum likelihood estimates with semirobust standard errors in parentheses.
*10% level, ¥*5% level, ***1% level.

Beginning with the daily sample in Table 2, we note that the Ljung-Box Q statistic,
indicating no residual serial correlation, suggests that the differenced S&P price series
follows a random walk. The squared Ljung-Box statistic is also statistically insignificant;
this suggests that there is no remaining ARCH in the residuals. The Jarque-Bera statistic also
prevents us from rejecting the null hypothesis of normally distributed residuals.

Turning our attention to the specification in column 1 in Table 2, the ARCH term (o) is
not statistically significant while the GARCH term () is significant at the .05 level. This
means that while random errors from the prior period (81271) do not significantly affect the
conditional variance at time ¢, the conditional variance fgom time 7—1 does. We also note
that the sum of the ARCH and GARCH terms (& + PB) is significantly less than zero,
indicating a nonintegrated GARCH process.

In column 1 we test the third hypothesis, which predicts that expectation of Gore'’s
victory decreases stock market volatility. Column 1 uses the percentage of people polled
expressing a preference for Gore to test Hypothesis 3.%' The coefficient on the GORE

2'We report the results of contemporaneous information arrival—that is, at time t. There is no substantive or
statistical difference if we use lagged measures of information arrival.
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Table 3 Overnight GARCH models (n = 985 in all models)

(1) (2) (3) (4) (5)
Mean
Intercept —0.001* —0.0004 —0.0004 —0.0004 —0.0004
(0.0003) (0.0004) (0.0004) (0.0005) (0.0005)
AR(1) 0.025 0.413* 0.279%* 0.274%* 0.268*
(0.26) (0.159) (0.150) (0.130) (0.133)
MA(1) 0.066 —-0.239 —0.151 —0.131 —0.132
(0.248) (0.175) (0.167) 0.167) (0.150)
Duration —0.0027* —0.0005 —0.0005 —0.0006 —0.0005
(0.0010) (0.001) (0.001) (0.002) (0.003)
Variance
Intercept 0.0015* —1.64* —3.09%* —3.67* —4.603*
(0.00003) 0.117) (0.344) 0.373) (0.487)
ARCH 0.158%* 0.30* 0.459%* 0.468* 0.443*
(0.026) (0.03) (0.045) (0.046) (0.045)
GARCH 0.686* 0.801%* 0.049 0.063 0.120
(0.008) (0.014) (0.048) (0.048) (0.048)
EGARCH 0.025 0.060 0.089* 0.081*
(0.068) (0.037) (0.040) (0.038)
Fraction (d) 0.121* 0.124%* 0.071*
(0.018) (0.018) (0.018)
Duration 0.0001 0.120* 0.332% 0.350* 0.399*
(0.001) (0.015) (0.034) (0.034) (0.036)
Volume 0.001* 0.018* 0.080* 0.080* 0.085*
(0.0001) (0.002) (0.006) (0.007) (0.007)
P[Gores] —0.0024* —0.406* —1.11%*
(0.0004) (0.075) (0.218)
Entropy, s 0.232%*
(0.100)
Info Arrival,_s 1.544%*
(0.700)
Diagnostics
LB(12) 0.5176 0.5043 0.5269 0.4764 0.4682
LB%(12) 0.0725 0.1151 0.1345 0.1254 0.1201
Jarque-Bera 0.0000 0.0000 0.0000 0.0000 0.0000

Note. Cell entries are maximum likelihood estimates with semirobust standard errors in parentheses.
*10% level, **5% level, ***1% level.

variable is negative and statistically significant. This indicates that a higher likelihood that
Gore will win the popular vote for president in 2000 decreased the volatility of the S&P

500 index, as predicted in Hypothesis 3.

Hypothesis 2 suggests that electoral uncertainty increases stock market volatility. In
column 2 we operationalize the idea of uncertainty by calculating a measure of entropy
E =1 — 4(p — .5)*> where p is Gore's share of the two-party vote. The entropy measure is
greatest when p is closest to .5, the intuition being that there is little uncertainty about an
outcome when the probability of an electoral victory is .10 or .90 and great uncertainty
about an outcome when the probability is equal to .5 (see Freeman et al. 2000). The
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entropy measure is substituted for the GORE variable in column 2. Interestingly, when
incorporated in the GARCH model the entropy variable has a negative, as opposed to its
hypothesized positive, effect on stock market volatility. This is not only contrary to
expectations but to prior (e.g., Freeman et al. 2000) research as well as to the results we
report later using the overnight sample. Testing Hypothesis 1 is difficult to operationalize
using polling data. We conceive of information arrival in terms of changes in the
percentage of the population reporting a preference for Gore. We use the change in GORE
to measure this concept. As indicated in column 3, this variable is negative but not
statistically significant.

A second laboratory within which to examine the effect of political information,
expectations, and uncertainty on stock market volatility was created the evening of
November 7, 2000. As the evening progressed, network and cable news outlets (as well as
the major wire services) “called” the electoral outcome of each state. These calls
constitute the arrival into the market of political information, information that affects the
strategic behavior of traders.

Table 3 includes a variety of econometric specifications to capture the price dynamics
of S&P futures the night of November 7, 2000. In the initial specification of the GARCH
model, residual diagnostics revealed remaining serial correlation so AR(1) and MA(1)
terms were included. This is consistent with Bollerslev and Mikkelsen (1996) and the
findings summarized in Dacorogna et al. (2001) that volatility in high-frequency financial
data is persistent. In addition, because the Jarque-Bera test consistently rejects the null
hypothesis of normality we utilize Bollerslev-Wooldridge semirobust standard errors.

Column 1 is the basic GARCH specification that includes the lagged (by five minutes)
variable measuring the probability that Gore will win the electoral college.”> While the
coefficient on this variable is negative and statistically significant—providing support for
hypothesis three—the Ljung-Box test reveals remaining ARCH in the residuals. We re-
estimate the model in column 1 using an EGARCH specification under the assumption that
accounting for the asymmetric nature of shocks to volatility will render the residuals as
white noise. This intuition is borne out in column 2: again the variable measuring the
probability that Gore will win the Electoral College is negative and statistically significant
and the diagnostics reveal no remaining ARCH. Solving one problem, however, leads to
another, as we now see that the sum of ARCH and GARCH terms (& + ﬁ) is significantly
greater than zero, indicating the existence of an integrated GARCH process.

The solution, as presented in columns 3-5, is to estimate a FIEGARCH model. The
coefficients for these models lend support for our third hypotheses. The FIEGARCH
model using the probability that Gore will win the Electoral College is well behaved and
passes all diagnostic tests. The coefficient on GORE is negative and statistically
significant, providing support for Hypothesis 3. Political uncertainty, operationalized as
entropy, exerts a positive and statistically significant effect on stock market volatility.
Finally, the arrival of political information, measured by the calling of “tossup” states,
increases volatility.

We obtain the same results if we substitute the return on NASDAQ futures for S&P
futures. (Unfortunately, futures for the Dow Jones Industrial Average did not exist in
2000.) The results are also unchanged if we include a set of dummy variables reflecting the
times when Florida was called for and subsequently taken away from both Gore and Bush.

24 five-minute lag was chosen because that is the average amount of time it takes for a trade to be executed by
the GLOBEX system.
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Table 4 Markov-switching estimates for daily sample (n = 218)

(1) (2) (3) (4)

Parameters Entropy Gore Information Volume

Ly 1.113 0.392 0.413 —0.141
(1.720) (1.654) (1.429) (1.807)

Lo 0.702 1.436 1.031 0.375
(1.663) (7.073) (4.225) (4.573)

B1 2.254 —0.415 —0.397 0.698
(3.371) (1.047) (1.221) (6.345)

c 1.710 0.895 0.593 0.190
(3.339) (1.609) (1.422) (1.341)

B> —0.471 3.142 2.119 0.423
(1.629) (7.954) (6.540) (1.596)

c 1.587 1.280 0.977 0.147
(1.622) (1.675) (1.314) (1.080)

G% 2.360 0.183 0.237 0.598
(7.492) (0.813) (1.590) (3.960)

G% 0.325 3.134 1.874 0.147
(0.505) (6.121) (4.472) (1.441)

o} 0.334 0.359 0.293 0.264
(0.927) (7.479) (5.745) (3.940)

P 0.966 0.712 0.664 0.950

(12.048) (1.216) (2.235) (4.439)

§2% 0.684 0.974 0.955 0.708
(1.293) (5.381) (4.462) (3.093)

Wald tests

Hy:pp=p, 7.97%*

Hy: G% = CY% 12.85%*

H() P = 1 - P11 59.61%%*

LRT tests:

Garcia 85.14%**

Hansen 5.98%%*

Log-likelihood —245.342 —230.246 —211.348 —316.022

Ljung-box Q-statistics

LB-1
LB-3

0.141 (0.718)
0.925 (0.428)

0.157 (0.697)
0.976 (0.411)

0.125 (0.724)
0.912 (0.433)

0.158 (0.530)
0.934 (0.522)

Note. t statistics reported in parentheses.
*10% level, **5% level, ***1% level.

Results from estimating the Markov-switching model on the daily data set (see Table 4)
provides strong support for our theoretical hypotheses. Specifically, the coefficient of B,
for the entropy variable in model (1) of this table is positive and significant. The estimated
transition probability p;; = 0.966 is significant and almost equal to 1. This implies that
increased uncertainty over the presidential electoral outcome in 2000 significantly
increased the probability that stock prices entered and remained in a state of high volatility.

In model (2) of this table, the coefficient of B; is negative and significant and the
coefficient of low variance o3 is roughly 17 times higher than the coefficient of high
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(3) (6) (7) (8) 9)

Parameters Entropy Gore Bush Information Volume

1 1.462 0.282 0.564 0.555 —0.156
(1.715) (1.709) (1.837) (1.728) (1.925)

10 0.341 1.012 0.196 0.482 0.450
(0.636) (3.222) (0.680) (1.393) (4.891)

B 1.941 —0.335 2.424 0.276 0.677
(5.237) (1.120) (7.895) (1.491) (5.549)

c 1.027 0.583 0.632 0.373 0.208
(6.491) (1.729) (1.497) (1.952) (0.660)

Ba —0.558 3.529 0.714 0.459 0.222
(1.754) (8.586) (1.798) (1.471) (1.597)

c 0.664 1.119 0.878 0.248 0.135
(1.672) (1.624) (1.681) (1.265) (0.784)

o2 1.862 0.185 4.056 0.458 0.662
(8.541) (0.811) (8.227) (1.563) 4.797)

o3 0.265 2977 0.386 0.677 0.148
(0.646) (6.891) (1.762) (1.531) (1.701)

0] 0.455 0.413 0.298 0.340 0.236

(16.851) (6.891) (8.764) (0.615) (3.868)

P11 0.988 0.771 0.991 0.797 0.932
(7.904) (3.849) (7.803) (0.403) (6.427)

125 0.701 0.989 0.698 0.824 0.783
(1.174) (6.773) (4.950) 1.977) (4.099)

Wald tests

H() DU =W 6.83%%*

Hy: o} =03 1246%*

Hy: ppo=1—p; 39.21%*

LRT tests:

Garcia 85.27%#*

Hansen 7.25%*

Log-likelihood —127.686 —165.801 —138.452 —179.062 —314.311

Ljung-box Q-statistics

LB-1
LB-3

0.104 (0.836)
0.819 (0.514)

0.129 (0.784)
0.929 (0.371)

0.157 (0.695)
1.233 (0.299)

0.138 (0.755)
1.011 (0.205)

0.215 (0.731)
1.226 (0.512)

Note. t statistics reported in parentheses.
*10% level, *#5% level, ***1% level.

variance o7. The estimated transition probability p,, = 0.794 here is close to 1 and highly
significant. These results demonstrate that as the probability of a Democrat’s (i.e., Gore’s)
victory increases, stock price volatility declines and the persistence of the low-volatility

state increases, as predicted in Hypothesis 3.7

ZThe coefficient of the parameter ¢ is also highly significant in all four columns in Table 5. Finally, the Ljung-
Box (LB) Q-statistics for lags 1 and 3 for each model show that the Markov-switching model eliminates serial

correlation.
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Table 6 Forecasts from GARCH models for out-of-sample observations

Daily sample Overnight sample

GARCH FIEGARCH
GARCH GARCH  (info. GARCH EGARCH FIEGARCH (info.
(RpctGore) (entropy) arrival) (P[Gore]) (P[Gore]) (P[Gore]) arrival)

Panel A. Error forecasts

RMSE 0.134 0.134 0.134 0.001 0.001 0.001 0.001
MAE 0.011 0.011 0.011 0.0003 0.0003 0.0005 0.0005
Panel B. Volatility regression

o 1.32%* 1.33%*%  0.94 0.0001 0.0002%* 0.0001 0.0001
(0.58) 0.57) 0.51) (0.0001)  (0.0001) (0.0001) (0.0001)

[36,27, —0.07 —0.068 0.13 0.26%* 0.328%*:* —0.0001 —0.0001
(0.28) (0.26) (0.23) (0.087)  (0.101) (0.0001) (0.0001)

R’ 0.0009 0.0009  0.0037  0.0261 0.0252 0.023 0.022

Note. Standard errors in parentheses.
*10% level, **5% level, ***1% level.

Results from estimating the Markov-switching model on our overnight sample (see
Table 5) also support our hypotheses. The positive and significant coefficients of B; and o2
for the entropy variable in model (5), Table 5, show that there was certainly a significant
correlation between increased uncertainty over which candidate would win the election
and higher volatility during the night of November 7. In contrast, the positively significant
coefficients of §, > 0, G% > 0 for the Gore variable in this data set (see model [6]) suggest
that when expectations of a Gore (a Democrat’s) victory increased on the night of
November 7, stock market volatility decreased. Finally, the significant coefficients of B; >
0 and G% > 0 for the Bush variable in model (6) show that when expectations of a Bush
victory increased on that night, stock volatility increased.”*

5 Comparing Volatility Forecasts

We examine below which estimato—GARCH, EGARCH, FIEGARCH, or the Markov-
switching model—provides more accurate volatility forecasts by first comparing out-of-
sample forecast errors from all the estimated models. Out-of-sample tests are effective since
they control for the possibility of overfitting and hence provide a useful framework for
evaluating the merits of competing models. We used 80 observations from August 17,2000,
to November 6, 2000, in the daily data set for the out-of-sample forecast evaluation.”
Similarly, we used 350 observations from the last six hours in the overnight data set for the
out-of-sample forecast evaluation.”® Two well-known criteria were used to evaluate the
forecast errors from the models across both data sets. These are the RMSE and the MAE.?’
Panel A of Table 6 reports the RMSE and MAE statistics for the GARCH, EGARCH, and

%*The AR parameter ¢ is highly significant in all five models in Table 6. The LB Q-statistics demonstrate that
each Markov-switching model eliminates serial correlation.

2We estimated the GARCH and Markov-switching models on this smaller subsample of 80 observations (results
not reported here). We then evaluated the out-of-sample-error forecasts.

26We estimated the GARCH, EGARCH, FIEGARCH, and Markov-switching models on this smaller subsample
of 359 observations (results not reported here) and then evaluated the out-of-sample error forecasts.

?'The (root) mean squared error provides a quadratic loss function, which weighs large forecast errors more
heavily relative to mean absolute error.
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Table 7 Forecasts from Markov-switching models for out-of-sample observations

Daily sample Overnight sample

Markov Markov Markov Markov ~ Markov — Markov Markov
(RpctGore) (Entropy) (info. arrival) (P[Gore]) (Bush) (Entropy) (info. arrival)

Panel A. Error forecasts

RMSE  1.227 1.273 1.351 1.184 1.878 1.367 1.421
MAE 0.385 0.379 0.371 0.329 0.401 0.388 0.390
Panel B. Volatility regression

a —0.406 —0.418 —0.402 -0327 —-0319 —-0.334 —0.309
(0.284) (0.288) (0.291) (0.290)  (0.279)  (0.293) (0.282)

[36,271 3.993%*  4.112%* 4.079%* 5.643**  5.187**  5.889%* 5.074%%*
(1.048) (0.997) (1.023) (1.482)  (1.311)  (1.263) (1.107)

R’ 0.0003 0.0002 0.0005 0.0009 0.0011 0.0012 0.0010

Note. Standard errors in parentheses.
*10% level, **5% level, ***1% level.

FIEGARCH models, while Panel A of Table 7 reports the RMSE and MAE statistics for all
the Markov-switching models from the out-of-sample observations in both data sets.

Note that for the daily data set, the RMSE statistic of all the GARCH models is 0.134
and the MAE statistic is 0.011. These values are substantially lower than the lowest RMSE
(1.227) and MAE (0.319) statistics from the Markov-switching models for this data set.
The RMSE value for the GARCH, EGARCH, and FIEGARCH models based on 350
observations from the overnight data set is 0.001, while the MAE statistic is either 0.0003
or 0.0005 for these models. Once again, these values are significantly lower than the
lowest RMSE (1.184) and MAE (0.329) statistics obtained from the Markov-switching
models for this data set. Put together, the RMSE and MAE statistics unambiguously
demonstrate that all the GARCH, EGARCH, and FIEGARCH models provide more
accurate forecasts and fit the data better than any of the Markov-switching models.

To check and compare the out-of-sample volatility forecasts, we also estimated the
following ex post volatility regression®® for each GARCH and Markov-switching model,

ol = o+ B67 | + u. (17)

In Eq. (17), the measure of ex post (i.e., realized) volatility, ctz, is the square of log change
of daily closing prices (X 100) of the S&P 500 index for the daily data set and the square
of log change of prices (X 100) of S&P 500 futures for the overnight data set. The term
62, denotes the forecasted conditional variance derived from the estimated out-of-sample
GARCH and Markov-switching models. The procedure that we adopted to estimate the
above volatility/variance regression is as follows. We first estimated each of the GARCH
(Table 2), GARCH, EGARCH, FIEGARCH (Table 3), and Markov-switching (Tables 4
and 5) models on the out-of-sample observations from the daily and overnight data sets.
We then derived the forecasted conditional variance for each of these estimated models.

The method used to estimate the forecasted conditional variance from the Markov-
switching models is as follows: Let p, = o;S; + ol and Gi =S, + m,; recall €, ~ N(0, Gi).

ZThis regression is also known as the Mincer-Zarnowitz (1969) regression.
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Suppose that the stock price index was in regime 1 at # — 1. From Pagan and Schwert (1990:
275), 67 is derived from

[E{5(S:) | it = D +var{o(S) | Szt = 1} + E{[u(S)) — E(u(S))]* | Si1 = 1},
(18)

which yields

[0)2+601P11]2+03%P11(1—P11)+O€%P11(1—Pll)- (19)

Suppose that the stock price index was in regime 2 at # — 1. Then 67 is derived from

E{0(5) | 51 = 23 Hvar{o(8,) | Sy = 2} + E{n(S) — E@S)? | 5,1 =2}
(20)
[0 + o1 (1 —p))* + i pn (1 — pxn) + oaipn(l — pn). (21)

Multiplying Egs. (19) and (21) by the estimates of the conditional probabilities of being in
each state given data through ¢ — 1 gives the estimate of 6?, which is then lagged to obtain
62 .

After estimating Eq. (17) for each model, we checked to see if & = 0 and B =1 (in each
case) because the aforementioned hypothesized values indicate that the relevant model
provides perfect forecasts. Note that if the estimated B for a model is f > (<) 1, then that
model underestimates (overestimates) the true realized volatility in the data (Pagan and
Schwert 1990, p. 283). Results from estimating Eq. (17) for each GARCH and Markov-
switching model for the daily data set are reported in Panel B, Table 6 and Panel B, Table
7, respectively. The estimated coefﬁcjent, a, from the GARCH models for the daily data
set is well above 0. The estimated B coefficient of the same GARCH models (—0.07,
—0.068, 0.13) is insignificant and below 1. The estimated & of all the GARCH, EGARCH,
and FIEGARCH models for the overnight data set is approximately equal to zero. It is also
significant for the EGARCH [p(gore)] and FIEGARCH (entropy) models. The estimates of
B for the FIEGARCH models are disappointing since they are insignificant and well below
1. However, the estimated 3 for the EGARCH model is slightly encouraging because it is
significant and marginally different from 1.

The intercept & estimate from all the Markov-switching models for the daily and
overnight data sets is much below 0, while the insignificant slope coefficient estimate B of
these models is much higher than 1. This demonstrates that there exists a substantial bias in
the forecasts from the Markov-switching models and that these models are under-
estimating the degree of volatility in the daily data set. It also suggests that the GARCH
models provide relatively better forecasts than the Markov-switching models, even though
the volatility forecasts from the GARCH models are not very accurate. Finally, note that
the R? statistics from the volatility regressions estimated for the GARCH models are higher
than the R? statistics from the Markov-switching models for both data sets. In short, our
out-of-sample forecasting tests indicate that the GARCH models certainly fit both of the
data sets much better than the Markov-switching models.>’

The RMSE, MAE, and realized volatility regression results from the full daily and overnight sample also
indicate that the various GARCH models fit the data better than the Markov-switching models. For details, see
the reported results at the Political Analysis Web site.
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The results presented above raise a key question: Why do Markov-switching models
provide poor volatility forecasts relative to the GARCH models? We posit three reasons in
answer to this question. First, note that in each specification for the standard linear and
fractionally integrated GARCH model, we introduced numerous explanatory and control
variables. In contrast, we introduced only one explanatory variable in each specification of
the various Markov-switching models. This was not deliberate; rather, we could introduce
only one explanatory variable in each of the Markov-model specifications because it is
impossible to achieve convergence of the EM algorithm and hence estimate the Markov-
switching model when we introduce more than one variable. The aforementioned
constraint that occurs while estimating a Markov-switching model is crucial, since the
inability to control for more than one variable at a time weakens the power of the Markov
model to accurately forecast volatility.

Second, unlike the Markov-switching model, the EGARCH and FIEGARCH models
formally capture the persistence of volatility and the differential effects of positive and
negative shocks on stock price volatility. This can be seen mathematically. For example,
the EGARCH model captures the impact of persistent volatility via its ARCH (oiz,_;) and
GARCH [, ln(Gf_l)] terms, while the FIEGARCH model does so through ¢(L)(1 — Ly
=1 — B(L) and 1 + a(L). Likewise, the EGARCH model accounts for the impact of
shocks on volatility through v,(|z,_| — E|z,_1|)) and the FIEGARCH model does so via
8(z9) = 0(|z] —E|z|)). The Markov-switching model, in contrast, merely contains an AR(1)
term, ¢(.), and does not account for the presence of ARCH and GARCH effects.
Moreover, in terms of its mathematical construction, a Markov-switching model can
capture volatility switches only from the previous period; that is, it cannot capture
persistence of volatility over longer periods of time. The Markov-switching model in Eq.
(12) also does not conceptualize the differential effects of shocks on stock price volatility.
These are all serious shortcomings of the Markov-switching model, since the significant
coefficients of the ARCH and GARCH terms in most of the GARCH models demonstrate
that volatility persistence and differential effects of shocks clearly affect the degree of
realized volatility in our data sets.

Third, Pagan and Schwert (1990, p. 283) have demonstrated that the Markov-switching
model places an upper bound on the conditional variance that is too small. As a result,
volatility estimates from the Markov-switching models are typically too low, which
weakens their ability to predict realized volatility. This problem is evident in our case, where
the estimates of B from the volatility regressions of the Markov-switching models show that
these models are seriously underestimating the degree of volatility in the two data sets.

One could plausibly argue that we should estimate a Markov-switching ARCH
(SWARCH) model (Hamilton and Susmel 1994) rather than a standard Markov-switching
model. While SWARCH may provide better forecasts, the SWARCH model—like the
Markov-switching model—captures neither the persistence of volatility nor the
asymmetric effects of shocks on volatility in time-series data. This is problematic because
the fact that the EGARCH and FIEGARCH models provided superior forecasts in our case
suggests that persistent volatility and asymmetric effect of shocks are common in high-
frequency time-series data. Hence, the failure to explicitly model the aforementioned
factors—which is the case with the SWARCH model—can lead to poor forecasts.

6 Conclusion

This paper makes two main contributions. First, in contrast to the existing literature, we
have argued and empirically demonstrated that anticipation of a Democratic victory
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decreases stock price volatility. Second, in sharp contrast to methodological claims in the
literature, our forecasting tests show that the GARCH and EGARCH models provide more
accurate forecasts of stock volatility than the Markov-switching models.

The empirical analysis in this paper gives rise to two questions. First, how generalizable
is the substantive and original finding presented here that agents’ expectations of electoral
victory by the Democrats, a left-wing party, serve to decrease, not increase, stock market
volatility? To answer this question, we estimated various GARCH models to analyze the
impact of partisan expectations on stock market volatility in each presidential election year
from 1944 to 2000 (Leblang and Mukherjee 2004). The results from the additional
presidential election years show unambiguously that expectation of a Democratic victory
decreased stock market volatility, thus indicating the generalizability of our substantive
result (Leblang and Mukherjee 2004).

Second, why do our results on partisanship and stock market volatility differ from those
in the current literature? The answer to this question lies in the fact that there are significant
differences in the econometric models and specifications that we estimated compared with
the models in the literature. For example, as noted earlier, existing studies on democratic
politics and financial markets simply do not estimate nonlinear fractionally integrated
GARCH models and thus wrongly ignore the potential consequences of “long memory,”
autoregressive conditional heteroskedasticity, nonlinearities, and volatility persistence on
the conditional variance of financial market returns in the data. We believe that the failure
to directly model autoregressive conditional heteroskedasticity, and volatility persistence
in particular, could have led to erroneous results in existing empirical analyses. In addition,
note that unlike the Markov-switching model of Freeman et al. (2000), the Markov-
switching model estimated here not only directly introduced an AR(1) component, but also
examined how this component is affected by switches in the mean and variance of stock
market returns. This allowed us to capture temporal correlation in the data more
comprehensively than the model used by Freeman et al. (2000) and could explain why our
results differ from the literature. Finally, with respect especially to our GARCH
specifications, we controlled for critical variables such as trading volume, duration of time
between trades, and information arrival, which was not done by Freeman et al. (2000) or
Herron (2000). Our use of a more comprehensive specification—with less room for key
omitted variables—could have also contributed to different substantive results.

Our analysis will be more cogent if we sample our data sets at different intervals and if
we compare the different estimation techniques on data from additional election years. We
lack the space to do either or both of those tasks. However, in future research, it is likely
that we will extend our analysis to strengthen the results presented here.
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