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ABSTRACT

Trust Networks are a specific kind of social network where edges
in the network have positive and negative signs connoting friend-
ship/trust and antagonism/distrust respectively. While the last few
years have seen a rich body of work on generative models for so-
cial networks, there hasn’t been much work on understanding in
what ways trust networks differ from social networks and to cre-
ate generative models for them. In this work, we analyze the net-
work structure and properties of two online trust networks — Epin-
ions and Slashdot — using theories of structural balance and social
capital from social psychology and propose a generative model for
undirected graphs based on these theories that produces synthetic
graphs which agree with observed data on key network properties.
A generative model for directed graphs is part of ongoing work.

1. INTRODUCTION

Over the last few years, network analysis has attracted a lot of
interest in the computer science, sociology and economics research

communities. Unsurprisingly, this interest has coincided with widespread

adoption of social networking technologies such as email, IM, SMS,
etc. among the general population. This has resulted in the avail-
ability of large scale real world network data which has hereto-
fore been hard to find for sociologists and economists studying net-
works. It has also resulted in a number of interesting questions
being asked about the structure and dynamics of networks. Along
with efforts to understand the structure of networks, there have been
concomitant efforts to create realistic and tractable mathematical
models that explain the evolution and structural properties of net-
works observed in data. These mathematical models help create
synthetic networks that are similar to real networks when real net-
work data is hard to obtain. This is especially true in large-scale
machine learning applications that work on data collected off the
web where it is hard to find labeled “ground truth" that can be used
to train and/or evaluate algorithms.

A specific kind of social networks are trust networks. These
are graphs whose edges have positive and negative signs denoting
friendship/trust and antagonism/distrust respectively. A rich part of

social network theory is devoted to studying trust networks and the
notion of structural balance which governs the evolution and sta-
bility of trust networks. Trust networks have begun to proliferate
in the last few years as an increasingly larger number of websites
rely upon some notion of ratings/testimonials for facilitating inter-
actions between strangers. Some examples of such websites are
Ebay, Amazon, Epinions, CouchSurfing, etc.

This project aims to bring together these two branches of social
network theory — study of structure and evolution of social net-
works, and the study of structural balance and trust networks — in
trying to understand whether trust networks are structurally differ-
ent from other social networks studied heretofore. I will analyze
the structural properties of two (potentially three) trust networks
and compare and contrast them with results on similar-sized social
networks. I will then use ideas from structural balance theory to ei-
ther extend existing generative models to account for positive and
negative edges or come up with a new generative model that will
explain the properties observed in the data.

The next section overviews the rich literature on generative mod-
els from the last decade as well as concepts from structural balance
theory and some recent work on propagation of trust in networks.
Section 3 will contain a detailed analysis of the two trust networks
which we had access to, as well as a smaller Wikipedia who-votes-
for-whom trust network whose analysis we gleaned from an unpub-
lished manuscript. Finally, we will present our generative model
and compare synthetic graphs generative using the model with the
real-world networks that we analyzed.

2. BACKGROUND

Since the scale of real-world networks has exploded over the last
two decades or so, it has become harder to visualize what the net-
work looks like in its entirety and to reason about individual nodes
and their properties (e.g degree, centrality, etc.). This has given
rise to an active area of research identifying the macro-properties
of networks that best enable us to completely and accurately char-
acterize them. Some of the properties that have been especially use-
ful in distinguishing social networks from other naturally occurring
networks have been the degree distribution (which is heavy-tailed
in most social networks), the diameter (longest shortest-path be-
tween two nodes in a network, which is small for social networks),
clustering coefficient (a measure of the locality of edges, which is
significantly higher in social networks than in random graphs), and
densification (average degree per node increases with the size of
the network).



2.1 Overview of Generative Models

One of the first network models that explained heavy-tailed de-
gree distributions observed in data was Preferential Attachment by
Barabasi and Albert [2]. In this model, arriving vertices create
an edge with existing vertices with probability proportional to the
degree of the existing vertex. This leads to a rich-get-richer phe-
nomena which the authors observed in a wide variety of large-scale
networks such as citation networks, actor-collaboration networks,
power-grids, etc. A number of variations of this model appeared
subsequently such as the “coping model" in [5] and the “forest-fire
model" in [7]. While the original model does not have the “small-
diameter" property exhibited by real-world networks, the forest fire
model does exhibit a small (and shrinking) diameter, densification
as well as the power law distribution for in-degree and out-degree.

Another line of research started with the “small-world" model
in [8] which successfully explained the small diameter and high
clustering coefficient observed in real networks. The Kronecker
graph model in [6] uses a recursive graph construction model that
has the small-diameter property, the heavy-tailed degree distribu-
tion and the densification property. The paper analyzes the model
on a static graph of Internet Autonomous Systems and a temporal
graph of research collaborations in High-Energy Physics.

2.2 Overview of Trust Networks

One of the first analyses of structural balance in social networks
was done by Cartwright and Harary in the 1950s [3] where they
noted that a triad that has one or three negative edges is unstable
and went on to define the Structural Balance property for a com-
plete graph as: a complete graph is structurally balanced if all tri-
ads have either zero or two negative edges. In subsequent work
they also defined a weak structural balance property after observ-
ing that in real networks it is much more common to see triads with
one negative edge which leads to changes in network topology (e.g.
conversion of the negative edge to positive) and therefore they de-
fine complete graphs as being weakly balanced if none of the triads
have exactly one negative edge.

Note that the structural balance theory is a theory of undirected
edges, whereas in most real-world online applications the edges are
directed. Moreover, unlike regular (unsigned) social networks, the
existence of a directed signed edge from w to v cannot be assumed
to mean that an edge from v to w of the same polarity also exists. In
other words, directed signed networks cannot be converted to undi-
rected signed networks without some (and potentially critical) loss
of semantics. A competing theory in sociology is the theory of sta-
tus which is better suited to understand signed directed edges. This
theory says that edges in trust networks impute expertise, i.e., a pos-
itive edge from w to v implies that u puts v on a “higher pedestal”,
or considers v a greater expert. A direct consequence of this is that
if there is a negative edge from w to v and another negative edge
from v to w, then the theory predicts that there would be a negative
edge from w to w (in other words, distrust is transitive). This is
contrary to the theory of balance which says that “the enemy of my
enemy is my friend".

More recently, [1] studies the evolution of trust networks under
specific dynamics. In Local Triad Dynamics (LTD) at each time
step they pick a triad at random and flip a sign on it if it is unbal-
anced (i.e. has one or three negative edges). In Constrained Triad
Dynamics the number of imbalanced triads cannot increase with
any update. They show that as the propensity p for friendly links in
an update increases, the network undergoes a dynamic phase tran-
sition from steady state to one where all links are friendly. They

|| Epinions | Slashdot

Nodes 131,828 82,164
Edges 841,372 549,981
+ edges 85.3% 77.4%
—edges 14.7% 22.6%
Triads || 13,372,109 | 1,514,209

Table 1: Dataset Statistics

also show that a finite network always reaches a steady-state where
none of the links are negative.

There has also been some work on prediction of missing polar-
ities in trust networks based on the polarities and/or magnitudes
thereof of the surrounding edges. One of the first works on this was
[4] where they hid some of the labels in an Epinions trust network
and tried to propagate trust values from neighboring nodes/edges.
They couldn’t accurately predict values on edges (u, v) where (u, w)
and (w, v) were both negative, which can be explained by the struc-
tural balance theory.

However, there hasn’t been much work on trying to analyze the
structural properties of trust networks with a view to creating a gen-
erative model for them either by extending existing generative mod-
els or using ideas from theories of balance and/or status from the
social psychology literature.

3. DATASET DESCRIPTION

We study the properties of two online trust networks — Epinions
and Slashdot. Epinions is a online product review website where
users can express trust or distrust of other users. Slashdot is a tech-
nology/science news aggregator website where users can state that
they are a “friend" or a “foe" of another user. A third trust network
that we planned to analyze but could not get access to in time was
the Couchsurfing network. Couchsurfing is a non-profit that allows
users to host other users that might be visiting from out-of-town
for a few days. Given the sensitivity of the real-world interaction
involved with Couchsurfing (i.e. the trust expressed by a user for
another user on the website is a manifestation of their interaction
in the real-world), it would be interesting to study its properties
and compare them to those from Epinions and Slashdot that exist
mostly in the online world. We plan to include Couchsurfing data
as part of extending this work (ongoing with Juré).

Both the datasets we analyze are directed signed networks (i.e.
the edges are positive or negative). The dataset statistics of the
undirected graph (i.e. ignoring direction) are listed in Table 1. Both
the networks are very sparse with the average degree of a node
being less than 10. The edges are overwhelmingly positive, and
perhaps interestingly, the ratio of positive edges p is close to 0.8 in
both cases. This is consistent with observations made with respect
to diverse settings such as fraction of positive votes on Amazon and
fraction of positive ratings on eBay that on the web, users are much
more likely to express positive opinions (of products, reviews, or
people) than to say bad things.

Both the positive and the negative degree distributions of both
networks follow a power law (see fig 1 and fig 2) but the positive
degree distribution has a smaller « (o = 2.03 for Epinions and o =
1.79 for Slashdot). The overall degree distribution is also a power
law with an exponent roughly equal to the respective exponent for
the positive subgraph.

An important difference between the two networks is the degree
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Figure 1: Epinions Positive Degree Distribution: Power law
with a = 2.03; Negative Degree Distribution: Power law with
a = 2.40.
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Figure 2: Slashdot Positive Degree Distribution: Power law
with o = 1.79; Negative Degree Distribution: Power law with
a = 2.04.

of clustering as evident by the number of triads. Epinions has a sig-
nificantly higher clustering coefficient compared to Slashdot. The
frequency of triads observed in the data (see table 3) is only partly
explained by the theory of balance. While the all-positive (1) tri-
ads were significantly more frequent than predicted by the sign dis-
tribution, so were the all-negative (1) triads (which are considered
unbalanced by the theory of balance, but consistent with the theory
of status). Therefore, it is clear even from the analysis of these net-
works as undirected graphs (i.e. ignoring the direction of the edges)
that the theory of balance does not fully explain the observed data.

Taking into account the direction of the edges, we find that ex-
pectedly, the indegree and outdegree distributions of both networks
also follow power laws (see fig 3 and fig 4).

We also looked at how many edges are reciprocated (i.e. where
there is an edge from w to v and from v to u) and a surprisingly high
number of edges are reciprocated. On Epinions, 259,752 (30%) of
the edges are reciprocal whereas on Slashdot 97,482 (18%) of the
edges are reciprocal. An overwhelmingly large fraction (compared
to chance) of the reciprocal edges are (4, +) which is consistent
with observations in other datasets that people feel obligated to re-
ciprocate praise/trust leading to high incidence of “mutual admira-
tion societies". At the same time, the fraction of (—, —) is in line
with that predicted by chance which could be explained by the fact
that most trust networks (including Epinions and Slashdot) do not
expose a user’s distrust ratings (i.e. they do not list all the users
that a given user distrusts). If this data were displayed on a user’s
profile along side trust ratings, it would likely lead to a “tit-for-

Symbol | Description
#T; Number of triads of type ¢
A Total number of triads in the network
14 fraction of positive edges in the network

p(T3) Fraction of triads T}, p(T;) = #1; /A
po(T3) | A priori prob. of T; (based on sign dist.)

Table 2: Table of Symbols

Epinions
To 11,658,420 | 0.872 | 0.621
Th 926,945 0.069 | 0.054
T> 698,951 0.052 | 0.322
Ts 87,793 0.007 | 0.003
Slashdot
To 1,271,899 | 0.839 | 0.464
Th 109,584 0.072 | 0.406
Ts 116,428 0.077 | 0.119
Ts 16,298 0.012 | 0.011

Table 3: Triad Counts (see table 2 for description of symbols)
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Figure 3: Epinions In-degree and Out-degree distributions fol-
low a power law.
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Figure 4: Slashdot In-degree and Out-degree distributions fol-
low a power law.



|| Epinions | Slashdot

Reciprocal Edges || 259,752 | 97,482
++ edges 96.09% 86.6%
+-edges 2.09% 4.0%
——edges 1.82% 9.4%
Table 4: Reciprocity
tat" behavior resulting in a significantly higher fraction of (—, —)

edges.

4. GENERATIVE MODEL & RESULTS

In this section we present a generative model for undirected signed
graphs and compare graphs produced by the model with the Epin-
ions and Slashdot datasets along some of their undirected graph
properties. The properties that we are particularly interested in
is the power law distribution of positive and negative degrees, the
fraction of positive and negative edges and the numbers and frac-
tions of the four types of triads. A generative model for directed
graphs is part of ongoing work with Juré.

4.1 What Doesn’t Work

A natural first attempt at a generative model for trust networks
is to take an existing model for unsigned networks and extend it
for signed networks by labeling edges + or — in post-processing.
We tried this approach using the preferential attachment model by
Barabasi and Albert [2]. We constructed a graph using their model
and then used some heuristics to label the edges + or — (first ran-
domly labeling and edge + with probability p and later, using the
embeddedness of the edge to determine its sign). While this model
gives us the power law degree distributions for positive and nega-
tive edges it does not give us the number of triads. The datasets
have a significantly larger number of triads (and consequently a
higher clustering coefficient) than that produced by the basic PA
model. Therefore, we abandoned this approach in favor of one
where we construct the graph from scratch and label edges as we
go based on principles from the theories of balance and status.

4.2 Our Model

We base our model loosely on the copying model in [5]. This
gives us the power law degree distributions since it has a “rich-
get-richer" flavor. Additionally, it also gives us a higher clustering
coefficient than the simple PA model.

4.2.1 Intuition

The intuitive idea behind the model is that when a user ¢ joins the
network, he begins interacting with other users. If their interaction
with a user j is positive, then over time ¢ discovers the users that j
knows. If 4 trusts j then ¢ will trust anyone that 5 trusts. However,
if ¢ trusts j, he won’t automatically start distrusting everyone that
Jj distrust. However, the likelihood that ¢ will trust user k will go
down (to 50% in our model) if j distrusts k. On the other hand, if
1 does not think highly of j (i.e. if (¢, ) is negative), then he will
automatically form negative edges with everyone that j distrusts.
However, ¢ will disregard people that j trust because ¢ doesn’t have
a high opinion of j to begin with. This model is based in spirit
on the theory of status, although there is an asymmetry in creating
edges to friends of a user that you don’t trust versus the enemies of
your friend. The probability r, determines the fraction of neigh-
bors of j that ¢ discovers given that (7, j) is positive whereas the
probability r,, determines the fraction of neighbors of j that ¢ dis-
covers given that (i, 7) is negative. We impose the constraint on

Algorithm 1 Trust-Copy Model (n, p, 7p, )

for i = 1tondo
Pick a node j uniformly at random from {1,...,7 — 1}
Create edge (4, j)
Label the edge + with prob. p, and — with prob. (1 — p)
for all neighbors £ of j do
if (¢, 7) is + then
Create edge (4, k) with prob. 7.
if (j, k) is + then
Label edge (i, k) +.
else
Label edge (4, k) + or — with prob. 1/2.
end if
else
if (4, k) is — then
Create edge (4, k) with prob. r,.
Label edge (i, k) —

end if
end if
end for
end for
|| Epinions | G(119287, 0.58, 0.75, 0.23)
Nodes 119,287 119,287
Edges 841,372 915,864
+ edges 85.3% 84.5%
—edges 14.7% 15.5%

Table 5: Graph Statistics: Epinions v/s Synthetic Graph

the model that 7, > r, which intuitively corresponds to the fact
that ¢ is much more likely to interact with j’s neighbors if (4, j) is
positive.

The parameter p along with the parameter 7, controls the frac-
tion of edges in the generated graph that get labeled +, whereas 7,
and r,, control the number of triads and their relative frequencies.

4.3 Results

In this section we compare the graphs generated using our model
with the Epinions and Slashdot trust networks using key network
properties.

Table 5 compares the basic statistics of the Epinions graph with
that of a graph consisting of the same number of nodes generated
using our model with parameters (p = 0.58,7, = 0.75,r, =
0.23). The graph generated by our model closely resembles the
Epinions network in terms of the basic graph statistics. The gener-
ated graph also exhibits a power law distributions of positive and
negative degrees (see fig 5). The negative degree distribution has
a higher « than the positive degree distribution just like that for
Epinions. Table 6 compares the graph generated by the model with
the Epinions networks in terms of triad density and the frequencies

|| Epinions |G(119287,0.58,0.75,0.23)

To 0.872 0.901
T 0.069 0.059
Ts 0.052 0.030
Ts 0.007 0.010
Number of Triads || 13,372,109 11,170,091

Table 6: Triad Frequencies: Epinions v/s Synthetic Graph
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Figure 5: Synthetic Epinions-like graph: Positive (o« = 2.02)
and Negative (o« = 2.57) Degree Distribution

|| Slashdot | G(82164, 0.67, 0.58, 0.25)

Nodes 82,164 82,164
Edges || 549,981 418,367
+ edges 77.4% 84.2%
—edges 22.6% 15.8%

Table 7: Graph Statistics: Slashdot v/s Synthetic Graph

of various triad types, and again finds a high degree of consistency
between the two sets of numbers.

Next we generated a graph consisting of the same number of
nodes as the Slashdot network with parameters (p = 0.67,7r, =
0.58,7, = 0.25). Table 7 compares the basic statistics of the
Slashdot graph with those of the graph generated by our model.
We note that the Slashdot graph has a much lower clustering co-
efficient compared to the Epinions graph, and our model does not
resemble the Slashdot graph as closely as it does the Epinions graph
(with somewhat fewer number of edges, our graph has many more
number of triads).

Figure 6 shows the positive and negative degree distribution of
the generated Slashdot-like graph. While the a values of the two
distributions are higher than the corresponding values for the Slash-
dot graph, they are not significantly different. A potential fix to this
might involve parameterizing the prob. that (i, k) is positive given
that (, 7) is positive and (j, k) is negative (that probability is cur-
rently fixed at 1/2).

S. CONCLUSION & FUTURE WORK

This work analyzed the structural properties of the Epinions and
Slashdot trust networks and showed how the structural balance the-
ory and the theory of status don’t fully explain the sign patterns
in the data. We described a model that does not work well and
explained the reasons for it. We also proposed a model that uses
a combination of the theory of balance and status and produces
graphs that closely resemble the Epinions and Slashdot networks
in terms of degree distribution of positive and negative edges, the
density of triads and the fraction of various triad types.

|| Slashdot | G(82164,0.67,0.58,0.25)

To 0.839 0.867
Th 0.072 0.063
Ts 0.077 0.049
T3 0.012 0.019
Number of Triads || 1,514,209 2,038,774

Table 8: Triad Frequencies: Slashdot v/s Synthetic Graph
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Figure 6: Synthetic Slashdot-like graph: Positive (o« = 2.02)
and Negative (o« = 3.57) Degree Distribution

There are three directions to extend this work in. The first in-
volves analyzing the CouchSurfing dataset (once we obtain it) and
validating our model against the Couchsurfing network. That val-
idation will be significant because the Couchsurfing network is
much closer to a real-world trust network compared to Epinions
and Slashdot since it is based on real life interactions of users, and
the social psychology theories that form the basis of our model
also stem from real-world social interactions. The second direc-
tion is to extend our model to account for the direction of edges
and in particular account for the reciprocity patterns that we ob-
served in the datasets. Lastly, we would like to obtain theoretical
results about the degree distributions (positive, negative, in-degree
and out-degree), clustering coefficient, and triad frequencies. All
these directions will be explored as part of ongoing work with Juré.
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