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Typically full Bayesian estimation of correlated event rates can be computationally

challenging since estimators are intractable. When estimation of event rates represents

one activity within a larger modelling process, there is an incentive to develop a more

efficient inference than provided by a full Bayesian model. We develop a new subjective

inference method for correlated event rates based on a Bayes linear Bayes model under

the assumption that events are generated from a homogeneous Poisson process. To reduce

the elicitation burden we introduce homogenisation factors to the model and, as an

alternative to a subjective prior, an empirical method using the method of moments is

developed. Inference under the new method is compared against estimates obtained under

a full Bayesian model, which takes a multivariate gamma prior, where the predictive and

posterior distributions are derived in terms of well-known functions. The mathematical

properties of both models are presented. A simulation study shows that the Bayes linear

Bayes inference method and the full Bayesian model provide equally reliable estimates. An

illustrative example, motivated by a problem of estimating correlated event rates across

different users in a simple supply chain, shows how ignoring the correlation leads to biased

estimation of event rates.
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1. INTRODUCTION

Estimating multiple event rates when these unknown rates are not statistically independent is challenging.

Practically there are many motivations for considering inference for multiple event rates in the presence of

correlation. For example, consider risk and resilience analysis of supply networks where a model should capture

the dependencies between events affecting suppliers, customers and the focal firm following some shock event (1)

or a safety risk analysis of a national rail network where the rates of passenger slips, trips and fall events at

multiple stations are to be estimated (2). The consequences of these events may vary in severity and be classified

as, say, minor injuries, major injuries and fatalities where correlation may exist between the event rates between

these severity classes for a specific station given the common environment experienced by passengers. Finally,

consider reliability databases, whether inter or intra-organizational, such as the German ZEDB database (3)

and the Nordic t-book (4). Typically these databases support estimation of event rates for relevant failure

modes based on experience data for multiple components of identical design specification that are operated

and maintained within industrial plants sited in different global locations. Such conditioning factors suggest

that correlation may exist between event rates for multiple items of the same type.

Many approaches to the practical problems discussed, including the methods developed in (5), assume an

underlying model where the event rates of each process are assumed to be statistically independent, conditional

on some unknowns. Within the context of Bayesian inference, if these unknowns are hyperparameters which

are specified exactly in the prior distribution, then the assumption of conditional statistical independence

is equivalent to saying that making observations on one of the rates would not change our estimates, when

updating, of any of the other rates. This in general will not be the case.

In the situation where correlation exists between event rates, we can define a full multivariate distribution

for all the unknown parameters to incorporate the dependence, for example using a copula, and then apply

Bayes Theorem in the light of observed data to update estimates (6,7). This allows correlations to be incorporated

into the modelling procedure and inform estimates of the rates based on information for many events. Doing

so within a full Bayesian framework ensures that the resulting estimates are coherent and theoretically sound.

Two-stage Bayesian models have been used in risk analyses (8,9,10) and particularly in the estimation of

failure rates in nuclear power plants (11,12). Typically, such models assume that events are realised from Poisson

distributions. Failure rates are then given a prior distribution and the rates are assumed independent conditional

on the hyperparameters of the relevant distribution. The hyperparameters are themselves then given prior

distributions. Such a model was utilised by (8) to estimate event rates as part of a probabilistic risk assessment. (9)

took a two-stage model considering initiating event frequencies at nuclear power plants. (10) criticised the two-
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stage Bayesian model for switching the order of integrals when calculating posterior distributions, indicating

that when such improper integrals do not converge uniformly over the parameter space this could affect the

solution. However, Hofer’s proposed solution to this appears to lead to conflicting assumptions in his model (12).

(11) used a two-stage Bayesian model to estimate failure rates in the Swedish nuclear sector. (12) considered

the approach used in the German ZEDB database and developed a two-stage Bayesian model. As part of

their model, (12) compared tree types of non-informative prior; Jeffrey’s prior, a uniform prior and the one

suggested by (11). In such a model, when observed failure events are rare, the assumption of the form of the

non-informative prior tends to dominate the inference.

Obtaining the posterior distribution generally involves numerical integration such as Markov Chain Monte

Carlo (MCMC) or simulation, and hence can be extremely computationally intensive (13). An alternative form

of subjective analysis that allows updating to be performed analytically is Bayes linear methods (14). A Bayes

linear analysis is based on expectations rather than probability distributions. Updating takes the form of

linear fitting rather than Bayes Theorem. Bayes linear kinematics (15,16), a form of Bayes linear analysis in

which changes in the belief about some unknowns can be used to update beliefs about others in a Bayes

linear structure, has potential computational advantages over full Bayesian updating for such problems. When

estimation of event rates represents one activity within a larger modelling process, such as is often the case

in risk analysis where event rates are estimated at component level but then feed into a larger system level

model, then there is an incentive to develop a more efficient inference than provided by a full Bayesian model.

While Bayes linear methods have previously been applied in reliability assessment by (17,18), these have been

to different problems from that considered here.

Another challenge within a risk context is that we often require estimates of rare events. Thus specifying a

subjective prior may be cognitively challenging for experts yet this prior will play a dominant role in estimates.

An alternative to eliciting a prior is to use an empirical Bayes procedure (19) where the events generated by each

process are pooled to estimate each event rate as a weighted average of the pooled event rate and the observed

frequency of that particular event from data. In (5), homogenisation factors are introduced in order to increase

the effectiveness of the pooling process and hence the accuracy of the estimates obtained. To date, empirical

Bayes inference for event rates has only been developed under an assumption of statistical independence. See,

for example, (20,5).

The major contribution in this article is the development of more efficient Bayesian inference for correlated

event rates. Our new method is based on a Bayes linear Bayes model and we consider situations where we

have both subjective and empirical priors. We bound our study to the case where events are assumed to be
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generated from a homogeneous Poisson process and the marginal prior distributions for the rates are assumed to

be gamma. From the perspective of our motivating risk context this is not an unreasonable initial assumption

in many situations, such as when components are in a so-called useful life period. While we motivate and

illustrate our proposed methods by drawing upon examples from a risk context, the methods do have general

applicability.

In order to support comparison between our new method and existing theory, we begin by considering a

full Bayesian model. We express the predictive and posterior distributions in terms of well-known functions,

and derive desirable properties about the posterior estimates. Our new method is then introduced by adjusting

the prior estimates using a mixture of full Bayesian and Bayes linear kinematic updating to support faster and

easier calculations than in the full Bayes model. So far, the prior is assumed to be specified subjectively, but

we now provide a method for empirically obtaining priors and examine their statistical consistency. As well

as examining the theoretical properties of our inference methods, we discuss the comparative performance of

our proposed Bayes linear Bayes approach relative to full Bayesian inference based on a simulation study to

examine the relative accuracy of estimates. An illustrative example, motivated by a real industrial problem

across a supply chain but suitably de-sensitised, provides further insight into the use of the proposed inference

and allows us to examine not only the results under the alternative inference methods but also the impact of

failing to account for the correlation between events.

The remainder of the paper is structured as follows. Section 2 describes the full Bayesian model and

provides some useful properties of the model. In Section 3 the new Bayes linear Bayes inference procedure

for correlated event rates is explained. Section 4 then gives an alternative prior specification procedure based

on empirical Bayes. In Section 5 we present the findings of our simulation study to evaluate the alternative

Bayesian inference methods and in Section 6 we show the illustrative example. Finally, in Section 7, we suggest

future work as well as making some concluding remarks.

2. A FULL BAYES MODEL

We consider the situation which can be represented by a pool of p Homogeneous Poisson Processes(HPP)

where events for the i’th process are realised at a rate of λi and as such the conditional probability function

for the number of events realised in an interval of length t is expressed in the following

P (Ni = n|λi) =
(λit)

n
e−λit

n!
, λi > 0, i = 1, 2, ..., p, n = 0, 1, 2, .. t > 0.
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That is, Ni, Nj are conditionally independent given λi, λj . The realisations from the HPP are assumed to be

conditionally independent given the rates.

Many possible prior distributions can represent a situation in which the rates of different events, λi, λj , i 6=

j, are not assumed independent. We use one in which posterior distributions can be expressed in terms of well

known functions. This can then be used to model correlated event rates and then later as a measure of

comparison for the Bayes linear Bayes approach. Specifically, a multivariate Gamma distribution will be taken

as the form of the prior distribution. This is expressed in the following

π (λ) =





p
∏

i=1

(

φ+θ
hi

)r

λr−1
i e

−(φ+θ
hi

)λi

Γ(r)





(

φ

φ+ θ

)r

× 0Fp−1

(

[] , [r] , (φ+ θ)
p−1

θ

p
∏

i=1

λi
hi

)

, (1)

for λ = (λ1 . . . , λp), where r, φ, and θ are parameters associated with the marginal distributions and correlations

between the rates and 0Fp−1 (.) is the hypergeometric function. That is,

0Fp−1

(

[] , [r] , (φ+ θ)
p−1

θ

p
∏

i=1

λi
hi

)

=
∞
∑

m=0

[Γ(r)]p−1
[

(φ+ θ)
p−1

θ
∏p

i=1
λi

hi

]m

[Γ (r +m)]
p−1

m!
.

The parameter hi > 0 serves as a homogenisation factor, such that we construct a hierarchical model where

we assume the parameters λi are sampled from a multivariate Gamma distribution with identical marginal

distributions. We set h1 = 1. We assume the remaining homogenisation factors are provided through expert

judgement, see (5) for a further discussion on homogenisation factors within HPP’s. That is, we treat r, φ as

parameters which provide a “base rate” for the occurrence of any event and then elicit a quantity hi > 0 which

is used to provide a suitable order of magnitude for the rate of the event in question.

From (21) we know that the model described above has the following properties. Firstly, the marginal

distributions are Gamma as in the following

π (λi) =

(

φ
hi

)r

λr−1
i

Γ (r)
e
− φ

hi
λi , λi > 0, r > 0, φ > 0.

The parameter r acts as the shape parameter and the ration hi/φ is the scale parameter.That is,

we assume that each of the rates has the same marginal prior distribution up to the homogenisation factor.

Secondly, the correlation between two different rates is a constant (21). In particular, it is given by

Corr (λi, λj) =
θ

φ+ θ
= ρ, for i 6= j.

The predictive distribution for the number of events n = (n1, . . . , np) for each process within the pool can

be obtained by mixing the conditionally independent Poisson distributions over the multivariate gamma, to
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obtain

P (N = n) =

[

∏p

i=1

Γ(ni + r)

Γ(r)ni!

(

φ+ θ

φ+ θ + hit

)r (
hit

φ+ θ + hit

)ni
](

φ

φ+ θ

)r

×pFp−1

(

[ni + r], [r],

[

∏p

i=1

(

φ+ θ

φ+ θ + hit

)]

θ

φ+ θ

)

,

where the hypergeometric function pFp−1(·) is

pFp−1 =

∞
∑

m=0

Γ(r)p−1

Γ(r +m)p−1

p
∏

i=1

Γ(ni + r +m)p

Γ(ni + r)p
1

m!
×

[

(φ+ θ)p−1θ

p
∏

i=1

(

φ+ θ

φ+ θ + hit

)

θ

φ+ θ

]m

,

This multivariate distribution has a number of properties which can be calculated analytically. Firstly, the

marginal distribution for the number of events from a process is Negative Binomial:

P (Ni = n) =
∫∞

0
P (Ni = n|λi)π (λi) dλi

=
Γ(r + n)

Γ(r)n!

(

φ

hit+ φ

)r (
hit

hit+ φ

)n

.

The correlation coefficient can be expressed as follows

Corr (Ni (t) , Nj (t)) =

(

θ

φ+ θ

)

√

hihjt2

(φ+ hit) (φ+ hjt)
. (2)

We can derive the posterior distribution for the rates. Doing so results in

π (λ|n) =











∏p

i=1

(

φ+ θ + hit

hi

)ni+r
(

λr+ni−1
i

)

e
−
(

φ+θ+hit

hi

)

λi

Γ (ni + r)











×
0Fp−1

(

[] , [r] , (φ+ θ)
p−1

θ
∏p

i=1

λi
hi

)

pFp−1

(

[ni + r] , [r] , (φ+ θ)
p−1

θ

[

∏p

i=1

(

φ+ θ

φ+ θ + hit

)]

θ

φ+ θ

) .

Thus we can calculate the marginal posterior distributions and expectations of the rates. From the posterior

marginal distribution we calculate the marginal posterior expectations. They are

E(λi | n) =
1

t

(

1−
φ+ θ

φ+ θ + hit

)

[

(ni + r)×
pFp−1

(

[ni + r + 1, nj + r], [r],
θ

φ+ θ

∏p

i=1

φ+ θ

φ+ θ + hit

)

pFp−1

(

[ni + r], [r],
θ

φ+ θ

∏p

i=1

φ+ θ

φ+ θ + hit

)

]

. (3)

We express both the posterior densities and expectations in terms of standard functions. However, due to the

nature of the generalised hypergeometric function, these quantities cannot be found analytically. Numerical

procedures will be necessary to evaluate such quantities in practice.

It is also possible to observe multiple time periods for each event. Thus, instead of observing ni occurrences
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of event i over time t we instead observe nik occurrences over time periods tk for k = 1, . . . , q. In terms of the

full Bayes model above, this distinction is trivial as using Bayes Theorem to update beliefs is a fully coherent

procedure. Thus making observations over multiple time periods does not alter the form of the posterior

distribution. This may not be the case in other forms of subjective inference and so has to be considered more

carefully.

2.1 Properties of the Model

Our full Bayes model has certain interesting properties, which we shall now derive allowing us to develop

an intuitive understanding of how the correlations between the λi’s affect the inference. We consider what

happens to the posterior expectations of the event rates when θ → 0, which corresponds to the independent

model, and when θ → ∞, which corresponds to perfect positive correlation between the rates. To do this we

assume all hi = 1.

Initially let θ → 0. In this case the ratio of the hypergeometric functions in (3) tends to 1 and so we have

lim
θ→0

E[λi | n] =
ni + r

φ+ t
.

Thus, using this model, as θ → 0, the posterior expectations of the rates tend to the posterior expectations we

would obtain under the independent full Bayesian conjugate model.

We now examine what happens when θ → ∞. First we note that the expectation of λi can be re-expressed

as

1

φ+ t

(

1−
θ

φ+ θ + t

)

[

ni + r +









p
∏

j=1

φ+ θ

φ+ θ + t





θ

φ+ θ





[

∏p

j=1(nj + r)

rp−1

]

×
pFp−1

(

[nj + r + 1], [r + 1],

[

∏p

j=1

φ+ θ

φ+ θ + t

]

θ

φ+ θ

)

pFp−1

(

[nj + r], [r],

[

∏p

j=1

φ+ θ

φ+ θ + t

]

θ

φ+ θ

)

]

. (4)

In order to develop an understanding of what happens when θ goes to infinity, we need to prove two properties

of generalised hypergeometric functions. The first is in the form of a lemma.

Lemma 1: If n < p then

lim
j→∞

(1− x)
pFn ([ai + 1 + j], [ci + 1 + j], x)

pFn ([ai + j], [ci + j], x)
= 1.

Proof. The proof is given in Section 1 of the Supplementary Material.
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We can then use this property in the proof of the following theorem.

Theorem 1: If n = p− 1, then

lim
x→1

(1− x)
d log (pFn([ai], [ci], x

p))

dx
=

p
∑

i=1

ai −

p−1
∑

i=1

ci.

Proof. The proof of this theorem is also given in Section 1 of the Supplementary Material.

In our case x = (θ + φ)/(θ + φ + t). We can also define z = ((t + φ)/t)xp − (φ/t)xp−1 allowing us to express

the posterior expectation of λi as

lim
x→1

(

1

t

)[(

t+ θ

t

)

xp −
φ

t
xp−1

]

(1− x)

(1− z)
(1− z)×

d log(pFp−1([nj + r], [r], z))

dz
.

By L’Hopital’s rule we know that

lim
x→1

1− x

1− z
= lim

x→1

t

p(t+ φ)xp−1 − (p− 1)φxp−2
=

t

pt+ φ
.

By Proposition 1 we know that

lim
z→1

(1− z)
d log(pFp−1([nj + r], [r], z))

dz
=

p
∑

j=1

(nj + r)− (p− 1)r

= lim
x→1

(1− x)
d log(pFp−1([nj + r], [r], x))

dx
.

Therefore,

lim
x→1

E(λi | n) = lim
x→1

(

1

t

)[

(t+ φ)xp − φxp−1

p(t+ φ)xp−1 − (p− 1)φxp−2

]

×

[

(1− x)
d log(pFp−1([nj + r], [r], x))

dx

]

=

∑p

i=1 nj + r

pt+ φ
,

which corresponds to the posterior expectation of the rate of event i for the usual (independent) Bayesian

model under the assumption that all of the observed number of events come from the same group. Thus in the

extremes of weak and strong correlation the full Bayes model is well behaved.

We have established that the limit of the posterior mean for a rate, as the correlation between the rates

approaches 0, i.e., ρ = 0, tends to the same estimate as obtained with an independent model. Further, as the

correlation between the rates approaches 1, i.e., ρ = 1, the posterior estimate tends to the same as the one

which we would obtain by treating the data as having been realised from the same underlying Poisson model.
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The relationship between the posterior mean and the correlation coefficient however is not linear and can have

local extrema in the interval for ρ between 0 and 1.

Figure 1 illustrates the relationship between the posterior mean and the correlation for a pool of two

processes. Consider the posterior mean for one rate with the number of events realised ranging between 0 and

4 with a prior mean of 10 (i.e., r = 10, φ = 1, t = 1), so that the posterior mean with the independent model

ranges between 5 and 7. The second process in the pool is assumed to have realised 6 events and as such is

also below the pool mean. The intercept on the vertical axis increases by 1/2, i.e. 1/(φ+ t), for each additional

event realised by the process, but on the right side of the figure, such increments are half the magnitude as it

increases the average of the pool by less.

The values for the illustration in Figure 1 were chosen to demonstrate the possibility of a local minimum

for situations where the posterior mean ultimately decreases, remain the same and ultimately increases as

correlation increases towards 1. That is, initially the estimator will head in the direction of the geometric mean

of the pool but eventually converge to the arithmetic mean.

The initial effect on the posterior estimate of a rate having introduced correlation amongst the pool is to

decrease (increase) the estimate if the geometric average of the posterior means of the other rates are below

(above) the prior mean. As the correlation approaches 1 the posterior estimate will tend towards the arithmetic

average of the pool as the data will be treated as exchangeable. This creates the prospect of local extrema for

the posterior mean with respect to the correlation, which is described in Proposition 2. Such a situation creates

the possibility that the estimates for all rates within a pool and as such the aggregate estimate of the rate of

occurrence from the pool may initially decrease with the inclusion of correlation, although ultimately increase.

These conditions highlight a need for careful investigation during a sensitivity analysis, for example, through

calculation of credible intervals as the extremes are not at the limits of the parameter space.

The following theorem provides conditions for the existence of local minima.

Theorem 2: Assume a collection of m homogeneous Poisson processes whose rates of occurrence are

realised from the multivariate gamma distribution specified in (1), where each pairwise comparison of rates as

the same correlation 0 < ρ < 1, then the posterior mean of the i’th process, i.e. E[λi | n], has a local minimum

with respect to ρ if the following conditions are met.

(1)
r + ni
φ+ t

<
r +

∑m

i=1 ni
φ+mt

,

(2) m−1

√

∏m

j=1,j 6=i

r + nj
φ+ t

<
r

φ
.

A local maximum exists if the inequalities in the two conditions are reversed.
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Fig. 1. The relationship between the posterior mean for a process as a function of the correlation in a pool of 2 illustrating the

possibility of a local minima for situations where the posterior mean is ultimately increasing, remaining the same or decreasing.

Proof. The proof is given in Section 1 of the Supplementary Material.

3. THE BAYES LINEAR BAYES MODEL

In the previous section we considered a Bayesian model to estimate the unknown event rates. Updates were

performed using a numerical procedure because the posterior distributions were not analytically tractable. In

this section we consider a model which utilises Bayes linear methods. Bayes linear methods are, like Bayesian

methodology, a form of statistical analysis which utilises subjective expert knowledge. Whereas a Bayesian

analysis is based on subjective probability in the form of a probability distribution for the unknowns in the

analysis, Bayes linear methods are instead based on expected values. Of course it is simple to move between

the two concepts since a probability is just the expected value of an indicator variable.

In a Bayes linear analysis, for each unknown, X, an expectation E0(X) and variance Var0(X) is specified

in the prior and, between every two unknowns, X1 and X2, a covariance Cov0(X1, X2) is also given. This is

known as a second order specification. Such a specification is adjusted on observation of data, not by Bayes

Theorem as in a Bayesian analysis, but by minimising the expected squared loss between the unknowns and

the observations. This gives the Bayes linear adjusted expectations and variances of the unknowns. More

information on Bayes linear methods is given in Section 2 of the Supplementary Material.

Now, let Nik denote the number of events of type i observed over time interval k, where the length of
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interval k is tk. We can model this using the HPP

Nik | λi ∼ Po(λitk),

as previously, for i = 1, . . . , p and k = 1, . . . , q. The rates are assumed to have priors in the form of marginal

gamma distributions which incorporate the use of homogenisation factors as in the previous section. That is,

λi ∼ gamma(r, φ/hi),

for parameters r, φ and homogenisation factor hi. The prior expectation and variance of λi are

E0(λi) =
rhi
φ
, Var0(λi) =

rh2i
φ2

.

Having specified the prior distributions in the form of specific values for r, φ, hi and γ, we shall update the

parameters using a mixture of full Bayesian and Bayes linear methods. This is known as a Bayes linear Bayes

model (15).

However, in our case, we are not simply adjusting specifications directly as a result of observations as

described for Bayes linear methods above. Rather, the expectation and variance of a single rate will change,

using Bayes Theorem, as a result of of an observation on that rate. It is this change that we wish to propagate

through to the other rates using Bayes linear methods. In the full probabilistic setting this situation is equivalent

to that of probability kinematics, in which probabilities change over elements of a partition and these changes

are then used to update the probabilities of some further events. The approach makes the assumption that the

conditional probabilities of a future event B conditional on the elements of the partition A1, . . . , Ap do not

change, i.e., Pr1(B | Ai) = Pr0(B | Ai), for different specifications Pr0(Ai) and Pr1(Ai). The unconditional

probability of B is then found in the usual way.

In a Bayes linear setting the equivalent assumption is that the adjusted expectation and variance of

unknowns X do not change under different second order specifications S0(X) and S1(X). Imposing this

condition leads to Bayes linear kinematics and provides a method for calculating the adjusted expectations of

the unknowns. For more information on Bayes linear kinematics see Section 2 of the Supplementary Material.

In our case, we update estimates within groups using Bayes Theorem as marginally the prior and likelihood

are conjugate. Bayes linear kinematics is then used to update the estimates, given the full Bayes update in a

certain group, in all of the other groups.

(16) discuss the application of Bayes linear kinematics to modelling failure rates and failure time

distributions. They recommend performing updates on an unrestricted scale, i.e., R as opposed to R
+, in order
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that the linear fitting is being performed most appropriately. A discussion of the suitability and effectiveness

of such transformations is given in Section 2.4.2 of (16). Thus we shall also define

ηi = log λi. (5)

The prior mean and variance of ηi are

E0(ηi) = ψ(r)− log φ+ log hi, Var0(ηi) = ψ1(r),

where ψ(·) and ψ(·) are the digamma and trigamma functions respectively. Derivations are found in (16).

Probability kinematics suffers from a lack of commutativity when successive updates of Pr(A1), . . . ,Pr(Ap)

are made. That is, if updates are performed in different orders it is possible to get different answers for the final

probability of B. Much work has been conducted to establish the conditions for when commutative solutions

exist in probability kinematics - when updates performed in any order always give the same answer (22,23,24).

Multiple Bayes linear kinematic updates are also not necessarily commutative. (15) give necessary and sufficient

conditions for a unique, commutative Bayes linear solution to exist. We utilise these conditions later when we

update the rates on observation of the numbers of events. The transformation taken above will be helpful in

providing a commutative solution.

First, however, consider the specification of prior correlations between the rates.

3.1 Specifying a Prior Covariance Structure

We require a prior covariance structure between all of the unrestricted parameters ηi, i = 1, . . . , p. The

specification Bayes linear relationships between the transformed parameters means that the only

restriction on the correlations which can be specified is the usual one that the correlation matrix

must be positive semi-definite. How to specify this will vary from problem to problem. However, below we

give a brief indication of how this might be tackled in general.

In the model given in Section 2 all of the correlations between the rates are equal. This means that

Corr0(λi, λj) = ρ =
θ

φ+ θ
, (6)

for correlation parameter 0 < ρ < 1. We use this form in all examples in this paper. It will not always be

reasonable to assume an exchangeable structure like this. In particular, we may believe that the correlations

between rates depend on the degree of similarity of the events in question, with more similar events given

higher correlations than very different events.
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(25) discusses general methods for specifying covariance structures based on the idea of uncertainty factors,

zero expectation quantities which can be common to many rates and serve to reduce the number of number of

elicitations required to specify a full correlation structure in complex problems. Specific examples are given in

the paper to show how uncertainty factors can be used in practice.

Of course it is important when specifying correlations to do so in such a way as to ensure that the resulting

correlation matrix is positive definite. One way to do so utilises the structure of Markov Trees (26). We introduce

a latent rate λL, such that,

λL ∼ gamma

(

r,
φ

h̄

)

,

where h̄ = 1
p

∑

i hi. That is, λL represents an average event rate. If we assume that λi, λj are independent

conditional on λL for i 6= j, then we can construct correlations between the event rates by specifying

Corr0(λL, λi) = αi. If we specify each αi = α then this results in constant correlations as in (6) with

Corr(λi, λj) ≈ α2. Specifying non-constant αi’s results in non-constant correlations between the rates. For

example, the correlations between rates could depend on hL/hi Defining the correlations using this structure

ensures that the resulting correlation matrix is positive definite.

3.2 Bayes Linear Kinematic Updating

Suppose we have a full second order prior specification for η = (η1, . . . , ηp) and so can update the estimates

of the rates using Bayes Theorem and Bayes linear kinematics. Further, suppose that we observe each count

for event i, that is Nik = nik over time periods tk, k = 1, . . . , q. Then, through conjugate Bayesian updating,

the rate of event i becomes λi | ni1, . . . , niq ∼gamma(r+
∑

k nik, (φ/hi)+
∑

k tk). Thus the mean and variance

of ηi become

E(ηi | ni) = ψ

(

r +
∑

k

nik

)

− log

(

φ/hi +
∑

k

tk

)

,

Var(ηi | ni) = ψ1

(

r +
∑

k

nik

)

,

where ni = (ni1, . . . , niq). We can use Bayes linear kinematics to update our beliefs about all of the other

transformed rates given observation of ni. Using the formula from Appendix B, the adjusted expectation and



14

variance of η are

E1(η;ni) = E0(η) + Cov0(η, ηi)Var
−1
0 (ηi) [E(ηi | ni)− E0(ηi)] ,

Var1(η;ni) = Var0(η)− Cov0(η, ηi)Var
−1
0 (ηi)Cov0(ηi,η)

+ Cov0(η, ηi)Var
−1
0 (ηi)Var(ηi | ni)Var

−1
0 (ηi)Cov0(ηi,η).

One update of this kind is made for each i. A sufficient condition for a unique, commutative solution to exist

for this to case, requires satisfying the general conditions of (15), ψ1(r +
∑

k nik) < ψ1(r) for some i. Clearly

this shall always be true because the trigamma function is monotonically decreasing on the positive real line.

Thus we have a unique, commutative solution and, from Section 2 of the Supplementary Material, the

commutative adjusted expectation and variance are

Var−1
p (η;n)E−1

p (η;n) =

p
∑

i=1

Var−1
1 (η;ni)E1(η;ni)− (p− 1)Var−1

0 (η)E0(η),

Var−1
p (η;n) =

p
∑

i=1

Var−1
1 (η;ni)− (p− 1)Var−1

0 (η),

for n = (n1, . . . ,np). A simple way to recover estimates of the rates on the correct scale is to reverse the

transformation given in (5). If we make the assumption that the posterior marginal distributions for the rates

are still of the form of gamma distributions, that is, λi;n ∼ gamma(R,Φ), then the posterior parameters R,Φ

can be recovered from

E(ηi;n) = ψ(R)− log Φ, Varp(ηi;n) = ψ1(R)

Thus using this procedure all updates are made using analytic formulae. Consequently, obtaining posterior

quantities can be achieved more quickly than when using full Bayes models which require numerical or

simulation methods. In particular, for the full Bayesian approach the number of computations required is

dominated by the hypergeometric functions and hence exponential in p whereas in the Bayes linear Bayes

model it is dominated by the matrix inversion and so o(p3). However it is important to investigate whether

this procedure also gives estimates of event rates similar to those of the full Bayes model of Section 2. We shall

explore this further in Sections 5 and 6.

4. PRIOR SPECIFICATION USING EMPIRICAL BAYES

So far we have considered the specification of the prior as a subjective exercise in which observable quantities

are to be elicited from experts and then used to provide values for r, φ, ρ, and h1, . . . , hp. In practice, however,
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there may be occasions where problem experts may be either unwilling or unable to fully specify all of these

values. For example, when we wish to estimate the rates of many rare events, the prior will tend to dominate

the inference. Therefore those with an interest in the analysis may be reluctant to provide expert judgements

to specify the prior, especially in situations in which estimates will be in the public domain or used to inform

public safety policy and so there is a need for seemingly defensibly objective methodologies.

Empirical Bayes offers a procedure to empirically estimate the parameters in the prior distribution or the

Bayes linear parameters. For our model, to provide empirical Bayes estimates, the events generated by each

of the Poisson processes are pooled and an estimate of the pooled event rate can be obtained. The accuracy

of empirical Bayes estimates depends on the degree of homogeneity of the pool. The elicited homogenisation

factors increase the effectiveness of the pooling process and hence the accuracy of the estimates obtained.

We can thus use empirical Bayes to estimate the prior values of r, φ, ρ. We could estimate the parameters

r, φ using maximum likelihood, however this proved to be analytically intractable in the independent model

of (5). Instead they used the method of moments (27). Whilst utilising a numerical procedure to evaluate the

maximum likelihood estimates is possible, see (20), the method of moments produces consistent estimates quickly

and without computational burden.

In order to use the method of moments we require the first two moments of Nik, which are given by

E(Nik) = Eλi
[E(Nik | λi)]

=
rhi
φ
tk, (7)

E(N2
ik) = Eλi

[

E(N2
ik | λi)

]

=
rhi
φ
tk +

(

rh2i
φ2

+
r2h2i
φ2

)

t2k. (8)

We also wish to estimate ρ. For i 6= j, the cross moment between Nik and Njk is

E(NikNjk) = Eλi,λj
[E(NikNjk | λi, λj)]

= ρ
r

φ2
hihjt

2
k +

r2

φ2
hihjt

2
k.

We can now use the method of moments to estimate r, φ and ρ. Doing so gives the empirical Bayes estimates

r̂ =
U2

V − U2
, φ̂ =

U

V − U2
ρ̂ =

W − U2

V − U2
,
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where

U =

∑

i

∑

kNik
∑

i

∑

k hitk
, V =

∑

i

∑

kN
2
ik −

∑

i

∑

kNik
∑

i

∑

k(hitk)
2

,

and

W =

∑

i

∑

j 6=i

∑

kNikNjk
∑

i

∑

j 6=i

∑

k hihjt
2
k

.

The estimators r̂, φ̂ and ρ̂ are all unbiased and each is also a consistent estimator as p→ ∞. A proof of this is

given in Section 3 of the Supplementary Material.

5. SIMULATION STUDY TO COMPARE METHODS

To examine the relative accuracy of estimates obtained using the Bayes linear Bayes method in Section

3 compared with the full Bayesian model described in Section 2, we report the results from a simulation

experiment. We use both approaches in conjunction with the empirical Bayes prior estimates developed in

Section 4. However, having made the prior specifications using the empirical approach, all of the comparisons

between the two models are valid independently of the approach used to set the priors. That is, the results

are equally valid for subjective priors specified using expert elicitation, under the assumption that the

quantities, such as quantiles, elicited from experts are consistent with the gamma distribution

for some parameter values.

We simulate data from the full Bayesian model with known parameter values. This will allow us to see how

well we are recovering the true model in each case and how well the Bayes linear Bayes model is approximating

the full Bayes model.

Let us consider just two events with rates λ1 and λ2. Further suppose that we have observed realisations

of both events over 100 time periods each of length 1 time units. That is, we simulate 100 pairs of counts

(N1k, N2k). The assumed homogenisation factors are (h1, h2) = (1, 10) and the parameter values used in the

simulation are

r = 1, φ = 3, ρ = 0.2.

Using the procedure outlined in Section 4 we obtain the empirical Bayes estimates of the parameters from a

single simulation. They are

r̂ = 1.022, φ̂ = 2.982, ρ̂ = 0.288.
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Fig. 2. The empirical Bayes parameter estimates for the simulation example resulting from different numbers of simulated

observations.

Thus, for a reasonable sample size, the empirical Bayes estimation procedure appears to provide reasonable

estimates of the true parameter values in the prior. Figure 2 shows the parameter values found using empirical

Bayes under different numbers of observations from the same sample. We see that each of the parameters

converges towards its correct value with large numbers of observations, but estimates are still relatively good

for smaller numbers of observations in this sample.

Estimates are updated using the Bayes linear Bayes model to obtain the adjusted expectations for each of

the rates as

E2(λ1;n) = 0.389, E2(λ2;n) = 3.382.

The “approximate” posterior expectations can be compared to the “exact” posterior expectations found

using the full Bayesian posterior distribution in (3). For our assumed data set, we find the “exact” posterior

expectations to be

E(λ1 | n) = 0.387, E(λ2 | n) = 3.360.

For this particular example, we obtain a close match between the “approximate” and “exact” values.

These are, of course, just results for a single simulation of 100 pairs of observations with a

single set of parameter values. In order to obtain greater insight into how the models compare

we have simulated 100 pairs of samples for each of three sets of parameters values (r, φ) =
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Table I . The differences between the posterior expectations from the full Bayes and Bayes linear Bayes methods,
E(λi | n)− E2(λi;n), given the same priors under a number of different parameter values.

Group 1 Group 2
(r, φ) ρ Stream 1 Stream 2 Stream 1 Stream 2

(1,3) 0.2 0.00722 0.00239 0.00724 0.00117

0.4 -0.00129 -0.00221 -0.00590 -0.00249
0.6 -0.00124 -0.00494 -0.00296 -0.00350
0.8 -0.0231 -0.0144 -0.019 -0.0199

(2,2) 0.2 0.00706 -0.00887 0.00721 -0.00839

0.4 0.00667 -0.0124 0.00690 -0.0128
0.6 -0.0104 -0.00544 -0.0113 -0.00516
0.8 -0.0276 -0.00137 -0.0298 -0.00223

(3,1) 0.2 -0.00427 -0.00338 -0.0529 -0.0384

0.4 0.00056 0.00425 -0.0321 -0.228
0.6 -0.0806 -0.0192 -0.0966 -0.0378
0.8 -0.0418 -0.0318 -0.0576 -0.0965

(1, 3), (2, 2), (3, 1) at four different correlations ρ = (0.2, 0.4, 0.6, 0.8) using homogenisation factors as

above. We repeat each simulation twice, and call the two runs of the simulation at the same

parameter values two different “streams”. The results given in Table I show the differences

between the posterior expectations resulting from the two methods, E(λi | n)− E2(λi;n).

The results in the table suggest that the methods overall are performing very similarly over the range of

different marginal parameter values and correlations. The relative differences between the estimates from two

methods are almost never above 4% and are typically below 1%. The majority of the differences in the table

are negative indicating that in the simulations, the posterior expectation from the Bayes linear Bayes model

was higher than that of the full Bayes model. However, there are some occasions when the full Bayes model

results in a higher estimate.

The posterior expectations from the two methods can also be compared for different numbers of observed

intervals (sample sizes) for some chosen parameter values and correlations. Figure 3 shows the differences

between the expectations of λ1 and λ2 under the two procedures for sample sizes between 1 and 200 for each

of the two event rates using (r, φ) = (1, 3) and ρ = 0.2. Our results show that with increasing sample size,

the difference between the estimates from the Bayes linear Bayes and full Bayes approaches becomes smaller.

Even for small sample sizes the differences are small. We perform a further simulation, as before, to find the

differences between the full Bayes and Bayes linear Bayes estimates of the posterior means of the rates but

this time using ρ = 0.6. Plots for λ1 and λ2 are given in Figure 4. As previously, even for small sample sizes

the Bayes linear Bayes and full Bayes methods are still producing results which are close. Both sets of plots

suggest that the pattern of the differences between the means for the two methods are similar for λ1 and λ2.

This is due to the fact that the same simulated data were used for (a) and (b) and similarly for (c) and (d).
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Fig. 3. The difference between the full Bayes and Bayes linear Bayes posterior expectations of λ1 in (a) and λ2 in (b), E(λi |

n)− E2(λi;n), for different sample sizes, with ρ = 0.2.
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Fig. 4. The difference between the full Bayes and Bayes linear Bayes posterior expectations of λ1 in (c) and λ2 in (d), E(λi |

n)− E2(λi;n), for different sample sizes, with ρ = 0.6.

We can also compare the estimates resulting from the Bayes linear Bayes inference to the observed rates

given sample sizes for a particular simulation. A plot of these quantities for λ1 for sample sizes between 10

and 50 are given in Figure 5. The dashed line in the figure is the theoretical rate used for the simulation,

r/φ = 0.33. The plot shows that the posterior expectations under our inference procedure become closer to the

observed rate with increasing sample size. For smaller sample sizes the estimated rate from the Bayes
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Fig. 5. The adjusted expectation of λ1, E2(λ1;n) (circles  ) and observed rate of λ1 (squares �) for different sample sizes.

linear Bayes model tends to be less extreme than the observed rate, both when the obseved

rate is much higher and much lower than the theoretical rate. This is partly as a result of the

correlation in the model. It is also apparent that both the data and the Bayes linear Bayes estimate are

converging towards the correct rate.

6. ILLUSTRATIVE EXAMPLE

6.1 Background

A large engineering firm designs and manufactures electronic systems that are supplied to customers

worldwide. For one high-valued product, the firm requires estimates of the failure rates experienced by each

customer for different failure modes. There are over 2500 customers of the firm, each of whom have very

different operational usage patterns. It is believed that these usage patterns are dominant over, for example,

environmental conditions. Data are available for the counts of number of events experienced by each customer

for a 5 year period together with the annual operating usage figures. Events related to the two major failure

modes, labelled A and B, are identified and it is anticipated that their rates of occurrence will not be statistically

independent due to the characteristics of the failure modes under different operating stresses. Further, it is

considered reasonable to assume that the rates of events are constant given the stage of the product lifecycle.

While this example is motivated by a real problem, we have de-sensitised the data and so all results are
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indicative. However the example allows us to illustrate the proposed method and to understand the value of

capturing the correlation between events.

6.2 The Model

For each customer, we observe the numbers of failures for both modes A and B yearly together with the

annual usage figures, which represents our exposure time. That is, we have,

Nik | λik ∼ Po(λikti),

where Nik represents the number of failures of mode k for customer i, λik is the rate of failures and ti is the

usage by the customer. Given that we believe correlations may exist between the two failure modes for each

customer, then, λik is not independent of λjl for j 6= l. However, it is unlikely that there will be the same

number of events for each failure mode. Therefore the priors proposed for the rates are

λik ∼ gamma(r, φ/hk),

for homogenisation factors hk associated with each failure mode. It is further assumed that failure rates between

different customers are statistically independent.

6.3 Failure Rate Estimation

We choose to specify the prior empirically using the approach described in Section 4. We obtain

r = 2.24, φ = 6.13, ρ = 0.57,

and so establish that correlation between failure modes is evident. Through a structured process, we elicit

subjective assessments of the homogenisation factors and hence set these to be h = (1, 2) for failure modes A

and B respectively. We can use these prior specifications to compare both the effect of including correlation in

the modelling process and estimates obtained under the Bayes linear Bayes inference method with that under

the full Bayes model.

Figure 6 gives the ratios of the posterior means of the failure rates for each customer under the full Bayes

model to those found under the independent model using the same prior parameter values (but with ρ = 0). It

is shown that the correlation between different failure modes for each customer is having an effect. Virtually

all of the estimated rates under the correlated model are below those of the independent model for both failure
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Fig. 6. Histogram of ratios of posterior means for each customer using the full Bayes correlated and independent models for

(a) failure mode A and (b) failure mode B.

mode A in (a), and failure mode B, in (b). The mean of the correlated rates is 77.0% that of the independent

model for failure mode A events and 75.1% for failure mode B events suggesting it is important to include

correlations in the model.

We also compare the Bayes linear Bayes model posterior means to both the independent and full Bayes

models. Figure 7 gives a plot of the ratios of the posterior expectations of the full Bayes model to the Bayes

linear Bayes model. In this case, the ratio is more evenly spread around one. The modes for both failure modes

A and B are larger than 1, suggesting that, on average, the full Bayes estimates are slightly lower.

A comparison of the Bayes linear and independent models provides a better insight into how the Bayes

linear Bayes model is performing. A plot of the posterior ratios for all customers is given in Figure 8. A similar

picture emerges to that found on comparing the full Bayes model with the independent model. The Bayes

linear model typically provides lower estimates than the independent model.

A more comprehensive comparison of the Bayes linear Bayes model in relation to the fully Bayesian model

is obtained by plotting the posterior means of the rates for the two methods against each other as in Figure 9.

This figure indicates that the two methods are actually producing results which are very similar, in real terms,

for all customers. Hence, the Bayes linear Bayes model provides a good approximation to the full Bayesian

model for these data.
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Fig. 7. Histogram of ratios of posterior means for each customer using the full Bayes correlated and Bayes linear Bayes

models for (a) failure mode A and (b) failure mode B.
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Fig. 8. Histogram of ratios of posterior means for each customer using the independent and Bayes linear Bayes models for
(a) failure mode A and (b) failure mode B.

7. CONCLUSIONS AND FURTHER WORK

A new method of Bayesian inference is developed to estimate event rates which are considered correlated.

The approach we have taken is subjective Bayesian, although guidance has also been given on an empirical

Bayes method for specifying prior parameter values as we recognise that in many real life problems experts

may be reluctant to include such explicit subjective information in their estimates.
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Fig. 9. The posterior means for the rates of (a) failure mode A and (b) failure mode B for each customer for full Bayes and

Bayes linear Bayes models.

For our problem of correlated rates of events realised from a homogeneous Poisson process, we first

considered a full Bayesian solution to the problem. We have derived the posterior and predictive distributions,

as well as the posterior expectations, for the model in terms of hypergeometric functions. We have also showed

that the model has desirable properties as correlation goes to 0 and 1. For this model it has been necessary to

calculate posterior expectations numerically.

A new method based on a combined tractable full Bayes update for data within a group with Bayes linear

kinematic updates between groups has been developed. We have found that our new method is relatively

fast and efficient to implement, in contrast to the intensive calculations in the full Bayesian model. For our

particular problem, using the full Bayesian approach the number of computations required is dominated by the

hypergeometric functions and hence exponential in p whereas in the Bayes linear Bayes model it is dominated

by the matrix inversion and so o(p3). Thus, when the estimation of the rates is part of a larger model, or the

number of rates in the study and the number of observations is very large, the Bayes linear Bayes method

could offer a solution when full Bayes methods do not.

We have evaluated the new Bayes linear Bayes model in comparison with the full Bayes model via a

simulation study in which we simulate data from the full Bayes model with known parameter values and use

an empirical prior. Our findings indicate that the empirical Bayes procedure provides accurate estimates of all

three prior parameters for a sample size of 100 in each group. As sample size increases the inferences from both

models were converging, with the models showing good agreement for even fairly small sample sizes.
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Future work can progress in various directions. In our study we have used an empirical prior in our

simulations and illustrative example even though we initially introduced the models with a subjective prior. A

structured method for eliciting a subjective prior remains to be developed. We have assumed particular forms

of the underlying point process and the nature of the correlation structure. We can relax the assumption that

the rate of events is constant and hence consider, for example, events generated by non-homogeneous Poisson

processes. In a reliability context such processes would allow us to capture growth or decay in the rate of events.

Similarly, more complex correlations are inherent in some of the practical examples we discuss to motivate this

work. Consider, for example, the temporal dependencies and more complex correlations we might expect in

supply, transportation or power networks. While some of these types of problems could have an empirical Bayes

solution based on current theory, there is future research to obtain a full Bayesian model.
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