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ABSTRACT 

We compare a range of computational methods for the prediction of sublimation 

thermodynamics (enthalpy, entropy and free energy of sublimation). These include a model 

from theoretical chemistry that utilizes crystal lattice energy minimization (with the 

DMACRYS program) and QSPR models generated by both machine learning (Random 

Forest and Support Vector Machines) and regression (Partial Least Squares) methods. Using 

these methods we investigate the predictability of the enthalpy, entropy and free energy of 

sublimation, with consideration of whether such a method may be able to improve solubility 

prediction schemes. Previous work has suggested that the major source of error in solubility 

prediction schemes involving a thermodynamic cycle via the solid state is in the modeling of 

the free energy change away from the solid state. Yet contrary to this conclusion other work 

has found that the inclusion of terms such as the enthalpy of sublimation in QSPR methods 
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does not improve the predictions of solubility. We suggest the use of theoretical chemistry 

terms, detailed explicitly in the methods section, as descriptors for the prediction of the 

enthalpy and free energy of sublimation. A dataset of 158 molecules with experimental 

sublimation thermodynamics values and some CSD refcodes has been collected from the 

literature and is provided with their original source references. 

Introduction 

Sublimation thermodynamics has not enjoyed the attention received by its 

solvation/hydration and solution counterparts. This potentially stems from the experimental 

difficulties in determining thermodynamic values for sublimation.
1
 Historically, often only 

the enthalpy of sublimation was determined as the free energy was not accessible from the 

calorimetric measurements used.
2
 It has been estimated that there are 1.8 times as many 

enthalpies as free energies identified from experiment in the literature.
2
 The data available in 

the literature have been determined by a variety of challenging experimental techniques,
2,3

 

making it difficult to collect a reliable set in which the experimental noise is minimized.
3
 The 

entropy of sublimation is often back calculated from the enthalpy, free energy and 

temperature;
2,4,5

 this potentially makes error margins difficult to assess. In silico Quantitative 

Structure Property Relationship (QSPR) studies of solubility often lack an explicit account of 

sublimation thermodynamics in relation to solubility.
6
 Sublimation thermodynamics are 

essential in determining the strength of solid-state intermolecular interactions. Hence, 

sublimation thermodynamics have important effects in diverse industries including: dyes, 

agrochemicals, environmental contaminants, and pharmaceuticals (in determining solubility 

of drug candidates), to name but a few.
1,7–10

 As solubility modeling becomes increasingly 

widespread, with greater accuracy demands, there is a requirement for wider study of 

sublimation thermodynamics, as the free energy of sublimation is one of four the components 

in the two most commonly used thermodynamic cycles for solubility prediction. These 
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thermodynamic cycles are depicted in Figure 1. In the sublimation cycle (top of Figure 1), 

the free energy of solution (ΔGsol) is computed as the sum of the free energy of sublimation 

(ΔGsub) (solid to gas transition) and free energy of hydration/solvation (ΔGhyd/ΔGsol) (gas to 

solution). In the fusion cycle (bottom of Figure 1) the free energy of solution is computed as 

the sum of the free energy of fusion (ΔGfus) (solid to supercooled transition) and free energy 

of mixing (ΔGmix) (supercooled to solution transition). In previous work, we have 

demonstrated that the free energy of hydration is predictable to a good level of accuracy 

using theoretical chemistry calculations.
11

 In the same work, we found that the largest single 

error in the prediction of the solution free energy could be attributed to the sublimation free 

energy calculation.  In recent work, Docherty et al.
1

  have demonstrated a deconvolution of 

the effects of crystal packing and solvation on solubility, enabling a thorough analysis of the 

contributions to poor solubility of drug-like molecules. Salahinejad et al.
8
 have recently 

provided a novel QSPR model for predicting the enthalpy of sublimation with good accuracy 

using Volsurf and CPSA descriptors. Abramov
9
 has shown that the major source of error in 

solubility prediction via the fusion cycle can be attributed to the fusion step in QSPR models. 

It is suggested by Abramov that this may be due to a lack of suitable descriptors for the solid 

state. Salahinejad et al. have additionally provided a QSPR model for the prediction of 

aqueous solubility, which utilises two descriptors from physical chemistry, lattice energy and 

enthalpy of sublimation. Salahinejad et al. concluded that these descriptors did not improve 

the predictions of the models.
7
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Figure 1. Two thermodynamic cycles commonly used in solubility prediction. The first, the 

sublimation cycle, calculates the free energy of solution (ΔGsol) by summing the calculated 

free energy of sublimation (ΔGsub) and free energy of hydration (ΔGhyd). The second, the 

fusion cycle, calculates the free energy of solution by summing the calculated free energy of 

fusion (ΔGfus) and free energy of mixing (ΔGmix). 

One major research area where the thermodynamic cycles shown in Figure 1 are employed is 

in the complex multi-step drug discovery process, where experimental and predictive 

scientific methodologies need to be applied. The cycles themselves can be disguised by the 

calculation method; for example, the equations of the General Solubility Equation are based 

on the fusion cycle.
12

 Thermodynamic intrinsic aqueous solubility (the solubility of an 

unionised species in a saturated solution)
13,14

 is a key parameter in the process, due to its 
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determining contribution to bio-availability and its use in determining pH-dependent 

solubility. Thermodynamic solubility is a parameter considered throughout the drug 

discovery process, from lead optimization to formulation. In recent years, it has been 

suggested that up to 40% of new drug molecules are effectively insoluble
15

 and up to 75% are 

classified as having low solubility by the Biopharmaceutics Classification System (BCS).
16,9

 

At the lead optimization stage, it is not practical to carry out experimental determinations of 

thermodynamic solubility on large libraries of compounds. As a result, computational 

methods are employed to make predictions of numerous properties including solubility.
9,17,18

 

There are now numerous methods to predict solubility, with most varying in how the 

solvation/hydration step is modeled. Many of these solvation/hydration methodologies have 

been summarized in a recent review by Skyner et al.
19

 Commonly, QSPR methods are 

employed due to their speed, convenience and accuracy, when provided with a suitable 

training dataset.
10,20–22,23

 These methods represent the current state-of-the-art in practical 

solubility prediction. However, QSPR methods lack the theoretical basis of a fundamental 

physical theory, hence limiting their interpretability and the understanding that can be gained 

from their use. Recently, the standard dogma attached to these models, which stated that their 

accuracy was limited by the accuracy of the experimental data, has been challenged by 

Palmer and Mitchell,
24

 suggesting there is a limit inherent to current QSPR methodologies. 

Even more recently, it was demonstrated that such models have difficulty representing the 

state change from crystalline to liquid (fusion/melting process), possibly due to a lack of 

suitable descriptors for the solid state.
9
 The creation of standard experimental datasets for 

solubility prediction is on-going.
25

 

There are methods which apply physically motivated fitted equations
12

 or full calculations 

from first principles
11,26

 to solubility prediction. The fitted equation approach has shown good 

accuracy, but is limited by requirements for additional experimental input, although 
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promising attempts have been made to predict some of these quantities.
20,27–30

 There are 

examples in the literature which utilize predicted melting points and logP (octanol water 

partition coefficient) values for solubility predictions via the general solubility 

equation.
20,30,31 

The first principles calculation methods have generally been less accurate and 

more time consuming, but can provide more fundamental understanding of the process via 

physically meaningful decomposition of the predicted solution free energy. Recently, much 

work has focused on improving first principles calculation methods of hydration/solvation 

free energy and has resulted in much improved methods.
19,32–34

 Generally, full calculation 

methods for solubility prediction either use directly, or make reference to, one of the two 

thermodynamic cycles in Figure 1. We recently presented work showing that these methods, 

whilst not matching the accuracy of QSPR models, are now capable of reasonable predictions 

in an acceptable amount of CPU time.
11

  

In this work, we focus on addressing the issues of sublimation free energy prediction and its 

incorporation into such thermodynamic cycles. Our recent work showed that the majority of 

the solubility prediction error via a sublimation cycle originated from the sublimation 

calculation,
11

 which is in agreement with recent publications.
9
 We present predictions of the 

enthalpy (ΔHsub), entropy (ΔSsub) and free energy of sublimation (ΔGsub) using the following:  

 Theoretical chemistry calculations  

 QSPR models based on conventional 2D descriptors only  

 QSPR models based on predicted values from theoretical chemistry only  

 QSPR models based on both 2D descriptors and predicted values from theoretical 

chemistry  
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Our hypothesis is that the predictions from theoretical chemistry will be better, physically 

meaningful, descriptors for the solid state. The relevant terms are predicted from theoretical 

chemistry using the programs DMACRYS
35

, GDMA2
36,37

 and Gaussian 09 (G09).
38

  

Methods 

Dataset 

Sublimation data for a diverse range of organic crystals were found by searching the 

appropriate literature for data at 298 - 298.15 K that met our criteria: 

1. For each molecule experimental values for the enthalpy, entropy and free energy of 

sublimation must be available or calculable from a single literature source. 

2. A crystal structure should be available in the Cambridge Structural Database (CSD).
39

 

3. The literature should define the polymorphic state or pseudo-polymorphic state. 

Using the first criterion, a total of 158 molecules were identified (SUB-158 dataset). The 

second criterion caused the removal of 62 molecules (either the structure was not present or 

unusable in the current workflow), hence leaving a 96-molecule dataset. If we apply the final 

criterion the dataset would reduce to four molecules. Clearly this would be insufficient for 

our needs, but does highlight a lack of sublimation data with polymorphic information in the 

literature. When descriptors dependent upon polymorphic information are used, such as those 

from theoretical chemistry, it is very important that the experimental data are for the same 

polymorphic form. This is desired as different polymorphs can present very different 

physicochemical properties such as enthalpy of sublimation and solubility. Hence, if 

inconsistent experimental data are used in QSPR model training and descriptor generation, 

then very poor agreement may be obtained.
40

 In the present case, all of the theoretical 

chemistry terms are dependent on polymorphic information. Thus, in order to keep our 
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dataset at a sufficient size, we did not apply the final criterion in its original form. Instead, we 

opted to minimize, using DMACRYS,
35

 the lattice energy of all of the polymorphs reported 

in the CSD for each molecule in the dataset. We worked with the assumption that the 

polymorph with the lowest lattice energy was the most stable and therefore the form whose 

sublimation thermodynamics were reported. Whilst some may consider this assumption 

crude, we have applied the assumption previously and found promising results; it would be of 

interest to attempt similar analysis with improved data to determine whether such an 

assumption is generally reasonable. Due to the time-consuming nature of this approach, we 

chose a dataset of 60 molecules selected on the basis of the best available crystal structures. 

Minimization problems with some of the polymorphs meant that the 60 molecule dataset was 

eventually reduced to 48 compounds, which will be referred to as the SUB-48 dataset. In this 

work we utilize the SUB-48 dataset to test a variety of prediction methods. We utilise the 

SUB-158 dataset as a larger QSPR prediction dataset assessing the use of standard, 

computationally efficient, 2D descriptors for such predictions. Supporting Information Table 

S1 and Table S2 give the datasets, CSD refcodes and the SMILES structures used for the 

descriptor generation. 

Theoretical Chemistry Methods 

DMACRYS
35

 is a periodic lattice simulation program, capable of efficiently minimizing 

crystal structures within the rigid body approximation to a local minimum. DMACRYS uses 

distributed multipoles to accurately represent the electrostatic interactions. The multipoles are 

calculated by distributed multipole analysis
36

 in GDMA2 based on the density matrix from a 

prior quantum chemical calculation using Gaussian 09
38

 at the B3LYP/6-31G** level of 

theory.
41

 An empirical Buckingham potential is applied to account for repulsion and 

dispersion. The potential parameters are those from the FIT potential,
42,43,44

 and are provided 

in the Supporting Information of reference 1. DMACRYS directly yields calculated lattice 
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energies and is also capable of approximately assessing the crystalline entropy from the 

phonon modes. DMACRYS calculates the contribution from the optical phonons at the 

gamma point (k (Bloch wave vector) = 0) where the acoustic modes decay to 0. A hybrid 

Debye-Einstein approximation is applied to account for acoustic and optical phonon modes 

away from the gamma point.
35

 This approximation enables the calculation of the phonon 

density of states. The entropy is finally calculated as the negative of the partial derivative of 

the Helmholtz free energy with respect to temperature at constant volume.
45

 Vacuum 

(approximating the gas phase) calculations are carried out using Gaussian 09. A single 

molecule is extracted from the crystal and geometry optimized at the B3LYP/6-31G** level 

of theory to the vacuum local minimum. The entropy of the isolated molecule is evaluated 

considering the statistical thermodynamics of an ideal gas using the routines available in 

Gaussian 09.
46

  

From these data we can calculate approximations for the enthalpy, entropy and free energy of 

sublimation using the following equations: 

∆𝐻𝑠𝑢𝑏 = −𝑈𝑙𝑎𝑡𝑡 − 2𝑅𝑇 

Equation 1. 

∆𝐻𝑠𝑢𝑏 is the enthalpy of sublimation, 𝑈𝑙𝑎𝑡𝑡 is the lattice energy, R is the gas constant and T is 

the temperature in Kelvin. Equation 1 was originally given by Gavezzotti and Filippini
47

 and 

is arrived at on the following theoretical assumptions:  The enthalpy is defined as H = U + 

pV. Since for one mole of an ideal gas pV = RT, we approximate the environmental 

contributions by RT. The equipartition theorem is then applied to calculate the contributions 

from molecular motion. Gaseous rotations and translations provide 1½RT each per mole, 

hence 3RT in total. Crystal lattice phonon (collective lattice vibrations and rotations) 

contributions contain both kinetic and potential energy terms for six degrees of freedom per 
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molecule (three coordinates and three Euler angles) and thus provide 2 x 6 x ½RT = 6RT. 

Intramolecular vibrations are assumed to be the same in each phase and hence assumed to 

cancel out. Summing these contributions, and noting that for one mole of ideal gas we can 

simply write H = U + pV = U + RT, which leads to Hsub = (-Ulatt + RT) -6RT + 3RT  = 

-Ulatt  -2RT. In this way, the -2RT contribution to the enthalpy is derived from consideration 

of molecular and crystal degrees of freedom. Ulatt describes the energy of assembling the 

lattice from infinitely separated molecules, in essence the reverse of sublimation, and hence 

the equation for Hsub contains a -Ulatt term. The sublimation entropy is given by: 

 

∆𝑆𝑠𝑢𝑏 = 𝑆𝑐𝑟𝑦𝑠 − (𝑆𝑔𝑎𝑠
𝑡𝑟𝑎𝑛𝑠 +  𝑆𝑔𝑎𝑠

𝑟𝑜𝑡) 

Equation 2. 

∆𝑆𝑠𝑢𝑏 is the enthalpy of sublimation, 𝑆𝑐𝑟𝑦𝑠 is the crystalline phonon entropy, 𝑆𝑔𝑎𝑠
𝑡𝑟𝑎𝑛𝑠 is the 

gaseous translational entropy contribution and 𝑆𝑔𝑎𝑠
𝑟𝑜𝑡 is the gaseous rotational entropy 

contribution. We assume in Equation 2 that there is no change in the electronic entropy 

across the phase transition. We also assume the intermolecular and intramolecular vibrational 

and rotational contributions are decoupled in the crystal; there is therefore no net change in 

the intramolecular vibrational entropy over the phase transition.  

Finally, the free energy is given by the usual Gibbs equation (Equation 3) 

∆𝐺𝑠𝑢𝑏 = ∆𝐻𝑠𝑢𝑏 − 𝑇∆𝑆𝑠𝑢𝑏 

Equation 3. 

Cheminformatics Descriptors SUB-48 
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Descriptors were calculated from a SMILES
48

 representation of the molecules using the open 

source Java library, the Chemistry Development Kit (CDK).
49–51

 132 descriptors were found 

to contribute information, i.e. their variance was not zero, for the SUB-48 dataset. 

Additionally, to avoid the use of highly correlated descriptors, an inter-descriptor Pearson 

correlation threshold 0.9 was applied to remove highly correlated descriptors. Auto-scaling 

(subtracting the mean and dividing by the standard deviation) was applied to all remaining 

descriptors. Three descriptor sets were used for each thermodynamic term:  

1. Theoretical chemistry values 

2. CDK descriptors 

3. Theoretical chemistry values and CDK descriptors. 

A list of all descriptors is present in the Supporting Information (Table S3). For clarity, the 

theoretical chemistry descriptors used are as follows: the predicted ΔH of sublimation, 

predicted ΔS of sublimation, predicted ΔG of sublimation, phonon entropy, gas phase 

rotational entropy and finally gas phase translational entropy. This is a total of six descriptors. 

QSPR Descriptors SUB-158 

X-ray structures were not always available or suitable for all molecules in SUB-15852–105; the 

theoretical chemistry terms are therefore inaccessible for some of the molecules. The 

predictions of the sublimation thermodynamics of SUB-158 are therefore carried out with 

only CDK descriptors. A Pearson correlation threshold of 0.9 and auto-scaling were applied 

over all descriptor sets for SUB-158 dataset.  

QSPR models 

In this work, the QSPR models were generated from the descriptor sets by three methods: 

Random Forest (RF), Support Vector Machines (SVM) and Partial Least Squares (PLS). 
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These methods have been previously discussed in a number of publications
10,19,27,106

 and are 

only briefly outlined below. The workflow is outlined in Scheme 1. 

RF is an ensemble learning method that generates a forest of decision trees applicable to 

regression and classification tasks. Here we apply RF to a regression task. The method 

follows a general workflow of selecting, with replacement, a random sample from the 

training molecules. This sample is then in turn used to grow a regression tree to its maximum 

extent (as given by a parameter called nodesize that gives the number of data points in each 

node below which that node is not further subdivided), by calculating the best split available 

to the algorithm from a random subset of the descriptors. These steps are repeated until a 

defined number of trees are created.
107

 This eventually leads to a forest of regression trees. 

The RF prediction is the average prediction over all of the trees. 

SVM seeks an optimal regression function by projecting the features into a higher order 

feature-space. A parameter ε is selected, which quantifies a margin of acceptable error from 

the regression in the feature space. The SVM function then attempts to predict the y responses 

to the x input variables within the defined margin. A penalty is applied for any prediction that 

lies outside the margin. Additionally, the regression function is required to remain as flat as 

possible, to avoid over-fitting the function.
108

 

PLS is a regression method, which reduces the number of descriptors used by combining 

descriptors to form linear combinations based on their relative explanatory ability. These 

linear combinations are called latent variables. The method also attempts to maximally 

explain the co-variance between the latent variables and the y independent variable.
108

 As the 

number of latent variables is far less than the number of descriptors, the method protects 

against over fitting.  
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The QSPR models were generated using stacked ten-fold cross validations for training and 

testing, i.e. an external ten-fold cross validation making a random split of all of the data for 

training (90%) and testing (10%). Thus, we create ten separate models for each modeling 

method built from 90% of the data and tested on the remaining 10%, such that each instance 

is in the test set for one model, hence providing a prediction for each data point. The test set 

results for each fold is provided in the Supporting Information. An internal ten-fold cross 

validation (81%:9% of the original data) then optimizes the model parameters during 

training. In PLS we optimize the number of components (ncomp), which ranges between 1 

and 20. In RF, the number of descriptors in the random subset (mtry) is optimized (values 

range between 2 and 137 via grid searching in R’s train function), whilst the number of trees 

was set to a constant value of 1000. Finally, in the SVM model where a radial basis kernel is 

used, we optimize the cost parameter (C) (range of values 0.25 – 131072.00, with each step 

doubling the previous value) whilst the kernel (radial basis) parameter σ is selected using R’s 

train function and the epsilon loss parameter is set to 0.1.
109,110

 We use the RMSE as a fitness 

parameter. This is an efficient method to produce multiple QSPR models from different 

machine learning algorithms. The code is available from the corresponding author’s 

website
111

, GitHub
112

 and the Supporting Information. We have previously applied similar 

methodologies to full solubility prediction with some success.
10

 The overall workflow 

procedure is as follows: 



14 
 

 

Scheme 1. QSPR model generation scheme including descriptor set generation. 
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Statistics 

The following statistics were used to analyze the predictions. Respectively, Equations 4 – 7 

are: correlation coefficient (R
2
), the Root Mean Square Error (RMSE), the standard deviation 

of the prediction error (σ) and the bias.  

𝑅2 = 1 −
∑ (𝑦𝑝𝑟𝑒𝑑

𝑖𝑛
𝑖=1 − 𝑦𝑒𝑥𝑝

𝑖 )2

∑ (𝑦𝑒𝑥𝑝
𝑖𝑛

𝑖=1 − �̅�𝑒𝑥𝑝)2
 

Equation 4.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑒𝑥𝑝

𝑖𝑛
𝑖=1 − 𝑦𝑝𝑟𝑒𝑑

𝑖 )2

𝑁
 

Equation 5.  

𝜎 =  √
∑ (𝑦exp − 𝑝𝑟𝑒𝑑

𝑖𝑛
𝑖=1 − �̅�𝑒𝑥𝑝−𝑝𝑟𝑒𝑑)2

𝑁 − 1
 

Equation 6.  

𝐵𝑖𝑎𝑠 =  
∑ (𝑦𝑒𝑥𝑝

𝑖𝑛
𝑖=1 − 𝑦𝑝𝑟𝑒𝑑

𝑖 )

𝑁
 

Equation 7.  

where 𝑦𝑒𝑥𝑝
𝑖  is the experimental value for molecule i, 𝑦𝑝𝑟𝑒𝑑

𝑖  is its predicted value, 𝑦𝑒𝑥𝑝−𝑝𝑟𝑒𝑑
𝑖  is 

the difference between the experimental and predicted values, N is the number of data points 

and �̅� is the mean. A sample standard deviation is used to calculate the experimental standard 

deviation.  

R
2
 is a correlation measure representing how well the model fits the data. RMSE is a measure 

of the overall error of the model. Consideration of the bias and σ enables one to further 
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decompose the error. The bias is an estimate of the systematic error, whilst σ is an estimate of 

the random error of the model.  

In our analysis we will consider a statistically useful prediction to be one in which the RMSE 

of the prediction is lower than the standard deviation of the experimental data. If this criterion 

is not met, then the computational predictions are less accurate than the null model in which 

all molecules are predicted to have the same value as the mean of the experimental data. 

Whilst this is a useful statistical definition that provides a lower bound by which to define a 

useful model, it does not necessarily imply that methods that perform better than the null 

model are completely satisfactory. 

Results and Discussion  

This section is set out in the following manner: Firstly QSPR predictions are presented using 

only molecular descriptors for the SUB-158 data. Unfortunately we cannot carry out 

theoretical chemistry predictions for SUB-158 due to a lack of suitable crystallographic input 

structures. These QSPR predictions, over the SUB-158 dataset, provide a useful frame of 

reference in which to consider the accuracy of QSPR predictions for the different sublimation 

terms (enthalpy, entropy and free energy). Secondly, we provide predictions for the SUB-48 

dataset. We can perform theoretical chemistry calculations for the molecules in this dataset. 

We present predictions exclusively from the theoretical chemistry methods, followed by 

QSPR model predictions using one of three descriptor sets in turn: theoretical chemistry 

terms, CDK descriptors and both theoretical chemistry terms and CDK descriptors. We note 

at this point that the dataset is small and that ideally this would be done over a larger dataset. 

This analysis demonstrates the use of a different source of descriptors i.e. theoretical 

chemistry. Due to the size of this dataset the statistical power is low, but the results provide 

an indication of what may be expected from the incorporation of theoretical chemistry terms 
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as descriptors for this problem. A comparison and analysis of the SUB-48 and SUB-158 

results is then given. Finally, we provide a summary discussion of the errors found in these 

models with reference to the Supporting Information. 

SUB – 158 Dataset QSPR Predictions 

Tables 1 - 3 and Figures 2, 4 and 6 present the QSPR predictions for enthalpy, entropy and 

free energy of sublimation over the SUB-158 dataset. For each prediction a plot of the best 

performing model is given. The Supporting Information contains plots for other models. 

Figures 3, 5 and 7 show a summary boxplot of the ten most important descriptors found in 

the RF algorithm for each predicted property. The variable importance was calculated in the 

R package randomForest. 
107

  

Table 1. Enthalpy of sublimation predictions using QSPR models for the SUB-158 dataset 

(RMSE in kJ/mol), σ is the standard deviation. Experimental σ = 17.81 kJ/mol, range = 

105.80 kJ/mol. 

Data/Measure RF ± σ SVM ± σ PLS ± σ 

CDK R2 0.62 ± 0.01 0.56 ± 0.02 0.65 ± 0.02 

CDK RMSE 11.19 ± 0.15 11.95 ± 0.33 10.71 ± 0.33 
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Figure 2. Enthalpy of sublimation predictions using the PLS model for the SUB-158 dataset. 

(see Figures S1 – S3 for plots of all models)  

 



19 
 

 

Figure 3. Enthalpy of sublimation variable importance from RF. The x-axis displays the 

percentage of predictions in which a descriptor is rated as important with the box and 

whiskers representing the 95
th

 percentile. Dark blue lines in the boxes represent the median 

and the blue boxes extreme values. The y-axis states the descriptor. 

Above, the PLS model provides the highest R
2
 and lowest RMSE with σ values comparable 

to those of the other methods. We therefore suggest this is the best performing of the three 

models. The models all meet our statistical usefulness criterion, with RMSE’s within the 

experimental standard deviation. We note several important topological descriptors such as 

Kappa shape indicia 1, Kier Hall cluster (SC.6),
51113

 and the topological polar surface area 

(TPSA)
114

 These descriptors make some physical sense describing the shape and polarity of a 

molecule. 
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Table 2. TΔSsub predictions using QSPR models for the SUB-158 dataset (RMSE in kJ/mol), 

σ is the standard deviation. Experimental σ = 10.79 kJ/mol, range = 63.13 kJ/mol. 

 

Data/Measure RF ± σ SVM ± σ PLS ± σ 

CDK R2 0.62 ± 0.01 0.54 ± 0.03 0.48 ± 0.02 

CDK RMSE 6.72 ± 0.08 7.37 ± 0.28 7.8 ± 0.13 

 

 

Figure 4. TΔS of sublimation predictions using the RF model for the SUB-158 dataset. (see 

Figures S4 – S6 for plots of all models) 
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Figure 5. TΔS of sublimation variable importance from RF. The x-axis displays the 

percentage of predictions in which a descriptor is rated as important with the box and 

whiskers representing the 95
th

 percentile. Dark blue lines in the boxes represent the median 

and the blue boxes extreme values. The y-axis states the descriptor. 

Above, the RF model provides the highest R
2
 and lowest RMSE with σ values equal or lower 

than σ values from the other two methods; hence we consider this model to be the best 

performing model. Figure 5 expounds the variable importance from the RF model for the 

TΔS of sublimation. We find similar descriptors to be important to those for the enthalpy of 

sublimation, such as the Kier Hall kappa shape indices. Additionally, we find highly-ranked 

descriptors one might expect from a physical perspective such as the number of rotatable 

bonds (nRotB) and the weighted path (WTPT.4) descriptor. These descriptors relate directly 

to the flexibility and extent of a molecule. One may have expected to see the molecular 

weight also ranked highly, however this is not the case here. 
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Table 3. Free energy of sublimation predictions using QSPR models for the SUB-158 dataset 

(RMSE in kJ/mol). σ is the standard deviation. Experimental σ = 15.53 kJ/mol, range = 92.92 

kJ/mol. 

Data/Measure RF ± σ SVM ± σ PLS ± σ 

CDK R2 0.73 ± 0.01 0.64 ± 0.03 0.76 ± 0.02 
CDK RMSE 8.21 ± 0.18 9.23 ± 0.42 7.55 ± 0.39 

 

 

Figure 6. The free energy of sublimation predictions using the PLS model for the SUB-158 

dataset. (see Figures S7 – S9 for plots all models) 
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Figure 7. Free energy of sublimation variable importance from RF. The x-axis displays the 

percentage of predictions in which a descriptor is rated as important with the box and 

whiskers representing the 95
th

 percentile. Dark blue lines in the boxes represent the median 

and the blue boxes extreme values. The y-axis states the descriptor. 

The PLS model has superior R
2
 and RMSE values compared to the RF and SVM models. We 

present the PLS model here as the best performing model. Figure 7 summarizes the 

important descriptors for free energy of sublimation prediction using the RF algorithm on the 

SUB-158 dataset. We see that many of the descriptors important here were also important for 

the prediction of the enthalpy and/or entropy of sublimation.  

We can see that in all cases the SUB-158 models make a useful prediction of the 

thermodynamics of sublimation, according to our statistically useful prediction criterion. We 

find all models making a useful prediction from CDK descriptors with an RMSE of 

approximately 11 kJ/mol. Whilst this is not a quantitatively useful level of accuracy, recent 
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work utilizing more advanced and computationally demanding descriptors, was able to 

achieve a standard error of prediction of 7.88 ± 0.35 kJ/mol.
8
 We believe these results suggest 

the enthalpy of sublimation is a predictable property.  

The entropy of sublimation appears the most difficult thermodynamic parameter to predict. 

Considering the differences between the RMSE of the best performing QSPR models and the 

experimental standard deviation, for each thermodynamic term over the SUB-158 dataset, we 

can see that proportionally the smallest difference between these terms is in the prediction of 

the TΔS values. This suggests the QSPR models are able to explain less of the variance in the 

TΔS data than either of the other properties. We find correlations comparable with those of 

the enthalpy predictions. PLS produces the poorest prediction, suggesting that linear models 

may not be suitable for predictions of the entropy of sublimation.  

The free energy of sublimation is well predicted by PLS and RF. The predictions are all well 

inside the experimental standard deviation with good R
2
 values. SVM makes a poorer 

prediction here than PLS and RF.  

Theoretical Chemistry Predictions of SUB-48 

Figure 8 shows the prediction of the enthalpy of sublimation from theoretical chemistry 

calculations. The standard deviation of the experimental data is 15.94 kJ/mol, marginally 

greater than the RMSE from the predictions (15.26 kJ/mol). These results therefore just 

qualify as a statistically useful prediction, applying our criterion above. A reasonable positive 

correlation exists with R
2
 = 0.56. Interestingly, σ is larger than the bias and therefore the 

largest contribution to the error is random error. The results lead to the conclusion that a large 

amount of random variation is found in the data, which cannot be explained by the present 

method. 
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Figure 8. Predictions of ΔHsub from theoretical chemistry. Experimental σ =  15.94 kJ/mol 

Figure 8 shows the TΔSsub predictions made using theoretical chemistry methods. These 

predictions were made assuming rigid-body behavior, i.e. all intramolecular contributions are 

consistent over the phase transition. 



26 
 

 

Figure 9. Predictions of TΔSsub from theoretical chemistry. Experimental σ = 9.33 kJ/mol. 

Clearly, Figure 9 shows no correlation between the predicted and experimental TΔSsub. As 

with the enthalpy of sublimation, the RMSE is just marginally within the experimental data’s 

σ (9.33 kJ/mol). Once again the major contribution to the RMSE comes from random errors. 

There are two possible causes for the poor results in Figure 9: First, there may be a vital 

contribution missing in our model, namely dynamic body as opposed to rigid body 

contributions; for instance, coupling between intra- and intermolecular modes. Second, the errors 

quoted in the experimental data may be too small. We note here that the experiments to 

obtain these values are very complex. The Supporting Information shows plots of enthalpy-

entropy compensation (Figure S10) and molecular mass against TΔSsub (Figure S11). We 

applied constant corrections for the lack of internal motion in the crystalline models in the 

form of Rln(2) and Rln(3) terms per rotatable bond (Figure S12). This showed no real 

improvement in the prediction and so does not appear in the final models. We additionally 
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neglect energy associated with conformational change between phases. A global optimization 

in the vacuum could provide an improvement to these models.  

Finally, we combine predictions from Figures 8 and 9 to predict the free energy of 

sublimation. 

 

Figure 10. Predictions of ΔGsub from theoretical chemistry. Experimental σ = 15.61 kJ/mol. 

Figure 10 displays a weak correlation between the predictions and the experiment. As in 

Figures 8 and 9, the RMSE is largely due to random error. Additionally, the RMSE of the 

prediction is greater than the standard deviation of the experimental data, and fails to meet 

our criterion for a statistically useful prediction. The experimental standard deviation is 15.61 

kJ/mol for the free energy of sublimation. We note that in all clearly outlying points, nitrogen 

containing functional groups are present (Figure S13), this is especially true of functional 

groups containing N=O moieties. In our experience these groups can be difficult to accurately 
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represent with the current model, which suggests a problem with the intermolecular potential 

for groups containing this atom.  

Overall these predictions suggest it is not possible to quantitatively predict all of the 

sublimation thermodynamic properties using these approximate theoretical chemistry 

methods. Previous work has demonstrated the predictability of the enthalpy of 

sublimation
2,8,115

 using QSPR methods on datasets varying in size from 213 to 1302,
8,115

 

which again is seen here to be the most predictable term, although with lower accuracy than 

previously reported. However, the entropy and ultimately the free energy of sublimation, 

appear to be poorly predicted. Predictions of TΔSsub show effectively no correlation with the 

experimental values. The free energy of sublimation, although missing our statistically useful 

prediction criterion, does show some correlation between predictions and experiment. It may 

be that employing more advanced theoretical chemistry methods, such as periodic DFT, 

could improve this situation, although at a much increased computational cost (second 

derivatives will be required for phonon mode calculations). Compared to the QSPR 

predictions over the SUB-158 dataset, these predictions are far inferior, suggesting a more 

advance quantum mechanical method needs to be employed to achieve useful predictions 

from theoretical chemistry alone. It is not clear from these results if the major error is a result 

of noisy or imprecise data, or emanates from the approximations and methodological options 

employed in the modeling. The experimental and predicted results are all reported in the 

Supporting Information (Table S4).   

QSPR Predictions of SUB-48 

Tables 4 – 6 present the results of the QSPR models developed using the SUB-48 dataset. 

We present 27 QSPR models (three machine learning algorithms tested on three input 

datasets for each of three thermodynamic quantities: enthalpy in Table 4, TΔS in Table 5 and 
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free energy in Table 6 3x3x3=27 models). An inter-descriptor correlation cut-off of 0.9 was 

applied all datasets. The remaining features under went auto-scaling (standardization of the 

mean and standard deviation of each descriptor) on all datasets. The different datasets are 

represented in the first column of the tables: Predicted Thermodynamics (PT) refers to the 

dataset that uses thermodynamic values predicted from the previous section using theoretical 

chemistry methods as descriptors. Chemistry Development Kit (CDK) refers to the dataset 

that uses CDK descriptors, calculated from a SMILES representation of the molecules in the 

dataset. All refers to both sets of descriptors used together. 

Table 4. Enthalpy of sublimation predictions using QSPR models for SUB-48 (RMSE 

kJ/mol). σ is the standard deviation. Experimental σ = 15.94 kJ/mol, range = 58.70 kJ/mol. 

(Figures S14–S22)  

Dataset/Measure RF (± σ) SVM (± σ) PLS (± σ) 

PT R
2
 0.53 ± 0.03 0.49 ± 0.04 0.44 ± 0.04 

PT RMSE 10.92 ± 0.35 11.27 ± 0.48 11.88 ± 0.45 

CDK R
2
 0.37 ± 0.03 0.44 ± 0.04 0.33 ± 0.06 

CDK RMSE 12.46 ± 0.31 11.86 ± 0.57 13.35 ± 0.9 

All R
2
 0.56 ± 0.03 0.54 ± 0.02 0.36 ± 0.06 

All RMSE 10.45 ± 0.31 10.69 ± 0.29 13.08 ± 0.81 

 

Table 5. TΔSsub predictions using QSPR models for SUB-48 (RMSE kJ/mol). σ is the 

standard deviation. Experimental σ = 9.33kJ/mol, range = 42.40kJ/mol. (Figures S23–S31) 

Dataset/Measure RF (± σ) SVM (± σ) PLS (± σ) 

PT R
2
 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 

PT RMSE  9.71 ± 0.34 9.82 ± 0.6 9.63 ± 0.26 

CDK R
2
 0.29 ± 0.06 0.05 ± 0.03 0.26 ± 0.05 

CDK RMSE 7.77 ± 0.28 9.17 ± 0.29 8.01 ± 0.31 

All R
2
 0.32 ± 0.07 0.06 ± 0.04 0.26 ± 0.06 

All RMSE 7.62 ± 0.35 9.06 ± 0.31 7.97 ± 0.33 
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Table 6. Free energy of sublimation predictions using QSPR models for SUB-48 (RMSE 

kJ/mol). σ is the standard deviation. Experimental σ = 15.61 kJ/mol, range = 74.00 kJ/mol. 

(Figures S32–S40) 

Dataset/Measure RF (± σ) SVM (± σ) PLS (± σ) 

PT R
2
 0.27 ± 0.02 0.31 ± 0.02 0.16 ± 0.04 

PT RMSE 13.59 ± 0.33 13.04 ± 0.29 14.49 ± 0.63 

CDK R
2
 0.48 ± 0.03 0.37 ± 0.05 0.5 ± 0.03 

CDK RMSE 11.13 ± 0.25 12.34 ± 0.55 10.97 ± 0.4 

All R
2
 0.57 ± 0.02 0.47 ± 0.04 0.5 ± 0.08 

All RMSE 10.17 ± 0.17 11.26 ± 0.38 11.05 ± 1.08 

 

Table 6 shows consistent improvement in predictive accuracy related to the free energy of 

sublimation when compared to the theoretical chemistry methods alone. In all cases the 

statistical usefulness prediction criterion is now met, i.e. for all predictions the RMSE is 

lower than the experimental standard deviation (15.61 kJ/mol). It has previously been 

reported that for solubility, combining descriptors from theoretical chemistry with 2D 

cheminformatics descriptors does not notably improve the model (the descriptor sets were 

non-complementary).
10

 However, for sublimation thermodynamics, it seems that the two 

descriptor sets are complementary. A reduction in prediction RMSE is accompanied by an 

improvement in R
2
 for the models that combine the two descriptor sets. This suggests that the 

incorporation of descriptors specifically related to the crystal can have an impact on the 

predictive accuracy. Despite this improvement, the overall level of predictive accuracy is still 

fairly low for most applications, with sizeable RMSE values found even after coupling the 

two descriptor sets.  We therefore suggest that whilst these PT descriptors fail to provide the 
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level of improvement required, these preliminary results suggest that there is a potential 

complementarity between such descriptor sets.  

In Tables 4 and 5 we see a divergence in the predictability between the enthalpy of 

sublimation and TΔSsub respectively. All predicted enthalpy of sublimation RMSE values are 

well within the experimental standard deviation. This result is in agreement with previous 

work suggesting that the enthalpy of sublimation is predictable by QSPR methods.
8,116

 It 

seems that, in terms of enthalpy of sublimation predictions, the 2D CDK descriptors provide 

either similar information in the case of SVM or less information in the case of RF to the 

models compared to the PT descriptors, as only a modest improvement is found on 

combining the descriptor sets.  When the PLS algorithm is employed the prediction becomes 

worse when 2D CDK descriptors are used, suggesting a level of redundancy in the descriptor 

set. PLS consistently makes a worse prediction of the enthalpy of sublimation compared to 

the other methods. This was not seen in the SUB-158 dataset, suggesting it is an artefact of 

the small dataset. 

The opposite appears true when we consider TΔSsub. In this case, 2D CDK descriptors appear 

to offer more information to the machine learning models than the PT descriptors. The model 

built on the PT descriptors actually shows zero correlation and represents a useless model in 

terms of predictability. Perhaps this should not be such a surprise given the poor correlation 

between the theoretical chemistry predictions and experimental TΔSsub. All algorithms fail to 

provide a reasonable prediction with only the PT descriptors. The RMSE values for all 

machine learning algorithms dramatically improve when provided with 2D CDK descriptors, 

with SVM showing the least improvement. All models provide a statistically useful 

prediction of TΔSsub, according to our criterion, when the descriptor sets are combined (All). 

However, the low R
2
 values show a poor correlation at best. We believe that, as a reasonable 

prediction can be made by these algorithms with the SUB-158 dataset, the literature values do 
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correspond to genuine entropic contributions; however, it is possible that the theoretical 

chemistry terms used here express only partial contributions to the experimental value of 

TΔSsub. RF and PLS both outperform SVM in this task. None of these machine learning 

algorithms produce a statistically useful prediction, judged by our criterion, of TΔSsub from 

the PT descriptors alone. Whilst we acknowledge the poor quality of these predictions, hence 

the descriptor importance cannot be assumed to be generally important to TΔSsub predictions,  

Figures S41 and S42 present the descriptors rated as important in this case. Several 

descriptors were consistently rated amongst the most important in TΔSsub predictions: 

weighted path, the number of nitrogen atoms, Kier Hall smarts (group counting based on 

molecular fragmentation) and topological surface area (TPSA). When PT descriptors are 

provided in the all descriptor set ΔS
PT

 and ΔG
PT

 also feature in the top ten most important 

variables. From a physical standpoint, one might expect to find descriptors such as the 

number of rotatable bonds and molecular mass rated as highly important, as molecules with a 

high number for either of these properties would generally be expected to have larger 

entropy. Whilst the number of rotatable bonds does feature in the top ten important 

descriptors when CDK descriptors are used alone, the molecular weight does not. However, 

weighted path descriptors, which describe the degree of molecular branching, do feature as 

the top descriptor. These descriptors differ from those found to be important for the larger 

SUB-158 dataset above in several cases. We note also occurrences in Table 5 in which the 

standard deviation of the R
2
 values implies a potentially negative R

2
 value. This is an artefact 

of the calculation suggesting there is no correlation i.e. R
2
 is zero, hence only the upper 

bound should be considered as a valid value. It is possible, given the small dataset resulting 

from the limited amount of information available fulfilling our criteria, that in some of these 

cases the models have been over fitted. 
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These results provide evidence for the predictability of the enthalpy of sublimation. Previous 

work has shown this quantity to be accessible via QSPR models
1,2,7,116

 to reasonable 

accuracy. In the current work we show that the addition of theoretical chemistry terms as 

descriptors provides an improvement in the prediction, above that of the conventional 2D 

descriptors from the CDK. We therefore suggest values from theoretical chemistry could be 

considered in the future as descriptors for QSPR models of sublimation thermodynamics 

(enthalpy and free energy of sublimation) where experimental (or predicted) data permit. The 

computational cost of the theoretical chemistry procedure (a few hours per molecule) is 

expensive compared to some descriptor calculations, but with an improvement of up to 

16.1% (RF(all):RF(CDK) enthalpy SUB-48) and 8.6% improvement (RF(all):RF(CDK) free 

energy SUB-48) in the RMSE, we feel this computational time is worthwhile. TΔSsub shows 

mixed behavior. This quantity is only poorly predicted by RF and PLS, but owes much more 

of the useful information to the CDK descriptors rather than the theoretical calculations. It 

appears that the theoretical quantities used here as alternative descriptors do not provide 

much, if any, useful information above that of the descriptors from the CDK. However, given 

the poor correlation of the theoretical predictions with experiment this is not so surprising and 

suggests that a more sophisticated first principles theory is required to provide entropy values 

of greater accuracy and use. However, these more sophisticated first principles methods can 

be extremely expensive and therefore are not amenable to use in QSPR models. Alternative 

descriptors are required to capture information about the entropic contributions.  

In summary, it appears that the enthalpy and free energy can be modeled using QSPR 

methods to satisfy our statistical usefulness criterion with CDK descriptors alone (see SUB-

158). For these terms the SUB-48 results show a potential complementarity between the 

descriptor sets of CDK descriptors and PT descriptors specific to the crystal structure. The 

level of predictive accuracy over the SUB-48 data however, falls below that required for 
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quantitative use and the small sample size prevents us from suggesting this as a general 

finding. The entropy of sublimation appears to be less predictable. It is possible that a more 

rigorous calculation may be needed to achieve an accurate prediction; there may also be 

significantly larger errors in the experimental data than are reported in the literature. Methods 

capable of such predictions are likely to be too expensive for use in QSPR models.  

Compared to the SUB-158 predictions, the SUB-48 predictions are poor. Indeed for the 

entropy of sublimation the models based upon PT descriptors are in effect useless, which is 

unsurprising given the poor correlation between the PT values and the experimental values 

for TΔSsub. However, these preliminary results have suggested a potential complementarity 

between the CDK descriptors and the PT descriptors, indicating that further exploration of 

QSPR modeling for free energy and enthalpy of sublimation will be worthwhile.    

Analysis of the SUB-48 TΔS predictions 

To help to determine the sources of the errors in the entropy predictions and data, we have 

plotted the experimental and predicted TΔS against physical properties one may expect it to 

correlate with, namely number of rotatable bonds and molecular mass. Additionally we 

provide a QSPR prediction of the TΔSsub values predicted using theoretical chemistry 

methods, using the same molecular descriptors as the results presented above (i.e. replace the 

experimental data with the DMACRYS-G09 predictions to see to what extent CDK 

descriptors can model these predictions).  
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Figure 11. The number of rotatable bonds against TΔS of sublimation.  

 

Figure 12. Molecular mass against TΔS of sublimation.  



36 
 

Table 7. QSPR predictions of calculated DMACRYS-G09 TΔS RMSE presented in kJ/mol. 

DMACRYS-G09 σ = 2.82 kJ/mol, range = 9.76 kJ/mol. 

Dataset/Measure RF (± σ) SVM (± σ) PLS (± σ) 

CDK R
2
 0.78 ± 0.02 0.67 ± 0.03 0.73 ± 0.02 

CDK RMSE  1.31 ± 0.06 1.61 ± 0.06 1.46 ± 0.05 

 

We can see in both Figure 11 and 12 that the predicted entropy values cluster around quite a 

tight region of the TΔS axis spanning ~10 kJ/mol. The experimental TΔS values vary much 

more dramatically, spanning a range of over 40 kJ/mol. Given that one would naturally 

expect a reasonable correlation between TΔS and the molecular mass or number of rotatable 

bonds, it seems odd that the experimental terms do not reflect this. The average error margin 

for the TΔS of sublimation quoted in the original literature source for the   SUB-4852–105 

dataset is 0.79 kJ/mol (range 0.09 –2.68 kJ/mol). The full SUB-48 data set and references to 

the original sources are given in the Supporting Information Table S1. These data are not 

enough to conclude that the difficulty in the prediction of entropy is due to noise from 

different experimental techniques. Our own prediction methods are inherently approximate 

and a perfect correlation is therefore not expected. Our own methods also contain a number 

of assumptions which are unlikely to be generalizable across all of chemical space, but which 

are accepted as useable assumptions within the community, such as rigid body behavior. It is 

highly likely that this assumption has a notable effect on the accuracy of the TΔS prediction. 

Table 7 shows that there is a good correlation with approximately 1.5 kJ/mol RMSE’s in the 

QSPR predictions of the calculated TΔSsub from theoretical chemistry methods. This is a 

much improved prediction compared to the equivalent predictions of the experimental data. 

The predictions here easily meet our statistically useful prediction criterion. This may well be 

expected given the large reduction in range of the TΔSsub values calculated from theoretical 

chemistry compared to experiment. These data do suggest it would be useful to have a 
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standard dataset provided by experimental colleagues in order to test prediction models in the 

future. 

Y-scrambling of the SUB-158 and SUB-48 datasets 

Table 8 presents the results of a y-scrambled run for all of the models. The predictions 

presented above are summarised next to the y-scrambled results for comparison purposes. 

Table 8. Prediction and y-scrambling data for all models.  

    Predictions     Y-scambled     

Dataset Measure RF ± σ SVM ± σ PLS ± σ RF ± σ SVM ± σ PLS ± σ 

SUB-158 
enthalpy 
autoscale CDK R2 0.62 ± 0.01 0.56 ± 0.02 0.65 ± 0.02 0.01 ± 0.01 0 ± 0 0 ± 0 

  
CDK 
RMSE 11.19 ± 0.15 11.95 ± 0.33 10.71 ± 0.33 18.28 ± 0.17 18.27 ± 0.2 18.57 ± 0.28 

SUB-158 
entropy 
autoscale CDK R2 0.62 ± 0.01 0.54 ± 0.03 0.48 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 

  
CDK 
RMSE 6.72 ± 0.08 7.37 ± 0.28 7.80 ± 0.13 11.55 ± 0.13 11.01 ± 0.07 11.64 ± 0.18 

SUB-158 
free energy 
autoscale CDK R2 0.73 ± 0.01 0.64 ± 0.03 0.76 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 0 ± 0.01 

  
CDK 
RMSE 8.21 ± 0.18 9.23 ± 0.42 7.55 ± 0.39 15.63 ± 0.18 15.75 ± 0.24 16.92 ± 0.25 

SUB-48 
enthalpy all 
descriptors 
autoscale All R2 0.56 ± 0.03 0.54 ± 0.02 0.36 ± 0.06 0.04 ± 0.02 0.03 ± 0.02 0 ± 0.01 

  All RMSE 10.45 ± 0.31 10.69 ± 0.29 13.08 ± 0.81 17.45 ± 0.33 17.09 ± 0.55 17.17 ± 0.3 

SUB-48 
enthalpy 
CDK 
descriptors 
autoscale CDK R2 0.37 ± 0.03 0.44 ± 0.04 0.33 ± 0.06 0.01 ± 0.01 0.04 ± 0.03 0.03 ± 0.03 

  
CDK 
RMSE 12.46 ± 0.31 11.86 ± 0.57 13.35 ± 0.9 15.95 ± 0.22 17.47 ± 0.74 16.79 ± 1.53 

SUB-48 
enthalpy PT 
descriptors 
autoscale PT R2 0.53 ± 0.03 0.49 ± 0.04 0.44 ± 0.04 0 ± 0 0.01 ± 0.02 0.01 ± 0.01 

  PT RMSE 10.92 ± 0.35 11.27 ± 0.48 11.88 ± 0.45 17.29 ± 0.36 16 ± 0.38 16.48 ± 0.51 

SUB-48 
entropy all 
descriptors 
autoscale All R2 0.32 ± 0.07 0.06 ± 0.04 0.26 ± 0.06 0.02 ± 0.02 0.04 ± 0.03 0.04 ± 0.03 

  All RMSE 7.62 ± 0.35 9.06 ± 0.31 7.97 ± 0.33 9.32 ± 0.27 9.91 ± 0.28 9.68 ± 0.49 

SUB-48 
entropy CDK CDK R2 0.29 ± 0.06 0.05 ± 0.03 0.26 ± 0.05 0.04 ± 0.02 0.04 ± 0.02 0.01 ± 0.01 
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descriptors 
autoscale 

  
CDK 
RMSE 7.77 ± 0.28 9.17 ± 0.29 8.01 ± 0.31 9.17 ± 0.24 9.11 ± 0.17 9.94 ± 0.43 

SUB-48 
entropy PT 
descriptors 
autoscale PT R2 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.01 ± 0.01 0.02 ± 0.02 0.02 ± 0.02 

  PT RMSE  9.71 ± 0.34 9.82 ± 0.6 9.63 ± 0.26 9.78 ± 0.29 9.24 ± 0.13 9.62 ± 0.2 

SUB-48 free 
energy all 
descriptors 
autoscale All R2 0.57 ± 0.02 0.47 ± 0.04 0.5 ± 0.08 0.01 ± 0.03 0.02 ± 0.03 0.01 ± 0.01 

  All RMSE 10.17 ± 0.17 11.26 ± 0.38 11.05 ± 1.08 16.29 ± 0.66 16.26 ± 0.26 17.7 ± 0.7 

SUB-48 free 
energy CDK 
descriptors 
autoscale CDK R2 0.48 ± 0.03 0.37 ± 0.05 0.5 ± 0.03 0.01 ± 0.01 0 ± 0 0.04 ± 0.01 

  
CDK 
RMSE 11.13 ± 0.25 12.34 ± 0.55 10.97 ± 0.4 15.94 ± 0.36 16.4 ± 0.47 16.23 ± 0.39 

SUB-48 free 
energy PT 
descriptors 
autoscale PT R2 0.27 ± 0.02 0.31 ± 0.02 0.16 ± 0.04 0.02 ± 0.02 0 ± 0 0 ± 0 

  PT RMSE 13.59 ± 0.33 13.04 ± 0.29 14.49 ± 0.63 16.16 ± 0.43 16.26 ± 0.34 16.01 ± 0.2 

 

y-scrambling was performed in order to test the results of the predictions compared against 

randomised prediction targets. One would expect to see a notable reduction in R
2
 and an 

increase in the RMSE. Looking at the raw numbers, one does indeed find a notable change in 

the expected directions for all cases with the exception of the TΔSsub predicted by the PT 

descriptors, in which the results remain similar making clear that the original model was very 

poor.  

Discussion and comparison of SUB-158 and SUB-48 

In terms of models available in the literature, which have explored related methodologies, we 

believe that the models presented here offer a new insight. Recent work has presented 

excellent QSPR models for the prediction of sublimation enthalpy. Those models utilize a 

multiple linear regression methodology and four descriptor variables. That model 

demonstrates a much more accurate QSPR prediction than the models for the enthalpy of 

sublimation in this work. However, as was seen in previous work we also find a fairly linear 



39 
 

relationship between our descriptors and the property when we consider the statistical results 

showing PLS performing well on the SUB-158 dataset. We also find a generally positive 

correlation between the number of rotatable bonds and the thermodynamic terms (Figures 

S43 – S45). Our work additionally tackles the prediction of TΔS sublimation and the free 

energy of sublimation. These terms have received less attention than the enthalpy of 

sublimation. 

Perlovich et al.
2
 provided QSPR models for the enthalpy and free energy of sublimation 

utilizing the HYBOT descriptors. The entropy of sublimation was then estimated as the 

difference between the enthalpy and free energy. This work also generally finds an improved 

prediction of the free energy compared to the enthalpy of sublimation. 

Salahinejad et al.
7
 created a very promising model for intrinsic aqueous solubility prediction 

over a diverse chemical space and investigated the incorporation of lattice energy and 

enthalpy of sublimation as descriptors. Salahinejad et al. found that these descriptors offered 

little to the model. This is an unexpected finding, as the general assertion is that lattice 

interactions play an important role in solubilizing a compound. Here we apply a full range of 

physically motivated sublimation descriptors, including those used by Salahinejad et al. 

(lattice energy and enthalpy of sublimation), to predict the sublimation terms rather than 

solubility. If one can predict sublimation free energy to a reasonable accuracy, then in 

principle it can be combined with any other method for the prediction of hydration free 

energy and provide a more physically interpretable prediction of solubility than that 

achievable by a QSPR model for solubility prediction.  

We can see from the results presented above that the small SUB-48 dataset contains a number 

of poor predictions compared to the SUB-158 predictions. We would have preferred to work 

with the SUB-158 dataset for all aspects of this work, but were unable to due to the absence 
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of suitable crystallographic data for some molecules. A standard dataset with all 

thermodynamic terms and polymorphic information available would be a highly prized asset 

to aid modeling in this area.  

The most difficult term to predict, the TΔS of sublimation term, is however consistent 

between the two data sets. For the SUB-48 dataset, using the PT descriptors, very low if any 

correlation was found between the predictions and the experimental data. A better correlation 

is found when CDK descriptors are used, although the correlations are still very low. This is 

rectified in the SUB-158 prediction by increasing the dataset size. This may suggest the 

entropy is more sensitive to the dataset than the other thermodynamic parameters. 

Given that the free energy is predicted well from CDK descriptors, and appears to be 

complemented by the inclusion of theoretical chemistry data in SUB-48 predictions, one may 

expect the constituents of the free energy to be predicted to a similar accuracy. It appears 

from this analysis that such an assertion is not necessarily the case. Neither the enthalpy nor 

the entropy of sublimation can here be predicted using CDK descriptors to the same level of 

accuracy as the free energy of sublimation. In terms of solubility prediction, this suggests that 

separate QSPR models, one making predictions of the free energy of sublimation and a 

second one making predictions of the free energy of hydration/solvation, may be a viable way 

forward to ensure that both steps of the solution process are explicitly accounted for in QSPR 

predictions of solubility. This would allow limited physical insight to be gained from QSPR 

predictions of solubility although it is unlikely to be as accurate as a single model predicting 

solubility.  

Conclusion 

We have presented an approximate theoretical method and a number of QSPR methods for 

the prediction of sublimation thermodynamical properties. We find generally that QSPR 
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methods can provide a reasonable, although not necessarily quantitatively useful, prediction 

of each thermodynamic terms over the SUB-158 data set. The TΔS term appears to be the 

most difficult property to predict over the SUB-158 dataset. For this dataset we find that PLS 

performs the best over all regression methods, with RF providing the best single prediction of 

the entropy of sublimation. Additionally, the free energy appears to be the easiest of the three 

terms to predict. We also note that for both the enthalpy and free energy the importance of the 

descriptors reduces much more rapidly over the top ten most important compared with those 

for the entropy.  

Over the SUB-48 dataset, we test the application of theoretical chemistry terms as descriptors 

and their complementarity with CDK 2D descriptors. We find that the enthalpy is marginally 

better predicted by combining theoretical chemistry methods and QSPR models for the SUB-

48 dataset. The free energy of sublimation is reasonably predicted by QSPR models 

employing 2D descriptors alone, although some improvement is found by combining CDK 

and PT descriptors. The entropy of sublimation is predicted with poor to modest correlation 

against experiment and a higher sensitivity to the data provided for training and testing. The 

entropy in this study appears to be the least predictable of the thermodynamic quantities 

tested here. We note that whilst the overall predictive accuracy from the SUB-48 dataset is 

not currently sufficient to improve sublimation prediction, this method may provide a more 

chemically informed perspective due to the inclusion of theoretical chemistry terms. We hope 

this may provide a path to improved sublimation thermodynamics predictions. It may be of 

interest to explore the removal of difficult to predict groups and to produce independent 

models for different chemical classes. More advanced feature reduction algorithms may also 

benefit these prediction schemes.  

 We find that the inclusion of theoretically calculated energetic values as descriptors for the 

crystalline transition marginally improves the predictive accuracy of the enthalpy and free 
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energy of sublimation by QSPR models. We therefore recommend the use of similar 

descriptors, where possible, in future studies. A larger dataset is required to thoroughly test to 

possible improvements. However, there is clearly much work to be done in improving 

affordable theoretical methods. The lack of intra-molecular flexibility is a key issue in these 

models. We have seen that simple corrections for the number of rotatable bonds are 

insufficient and do not provide any significant improvement in this case, (Figure S12) 

although a generally increasing trend is found between the experimental thermodynamic 

parameters and the number of rotatable bonds (Figures S41 – S43). For future work, it is 

possible that flexible models and global energy minimization in the crystal
117

 and vacuum 

structure could provide a significant improvement, especially in terms of entropy. This issue 

may require more advanced treatment of the multipolar electrostatics, such as fast 

multipoles
118

 or even machine learning models to predict the multipoles allowing for fast 

updates to the multipolar electrostatics and hence, the inclusion of intra-molecular flexibility 

where such a multipolar series is convergent.
119

  

Finally, there is a need for a standard experimental dataset containing all relevant 

thermodynamic terms (enthalpy, entropy and free energy), experimental conditions and 

where possible the polymorph or pseudo-polymorph involved. These data could help greatly 

in the advancement of this field. We include our own dataset in the Supporting Information, 

which has been curated from a wide variety of literature52–105 for use in sublimation 

thermodynamics prediction. 

ASSOCIATED CONTENT 

Full experimental data with references to the original work: Plots of, Enthalpy- Entropy 
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and DMACRYS predictions. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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