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Abstract

Predicting sales is important for e-commerce companies to meet the demand of products. Accurate

sales forecasts can lead to less excess stock and less lost sales, which cuts the costs and increases

revenue. In this thesis, it is shown how a STAR model is estimated and how forecasts on STAR

are made. Sales (particularly, sales peaks) of weather related products are predicted by means

of a STAR model for different forecasting steps. Adding temperature as a variable to time series

models improves forecasting accuracy for weather related products. The best forecasting technique

to STAR is where we include Monte-Carlo simulated error terms. Consequently, this cuts the costs

of excess stock and lost sales compared when we use default AR model forecasts.
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1 Introduction

In this thesis, sales prediction of specific product groups of an e-commerce company in Europe is

researched, and this company is referred to as the e-commerce company in this entire work. In

the e-commerce sector, products are sold online. At the e-commerce company, external partners

are also able to sell their products on the platform. It is important for e-commerce companies to

maintain enough stock, such that customers do not miss out on buying their desired products. On

the other hand, it is important not to have too much stock, because having stock costs money. This

is especially important during a phenomenon called sales peaks: a high peak in the amount of sales

in a period of time, deviating from other periods around the peak.

At the e-commerce company, it sometimes occurs that products in certain product groups are

sold much more than in a previous period. For example, sleds whenever snow is forecast, swimming

pools whenever hot weather is forecast, toys getting popular suddenly, face masks after new measures

by the government, etc. These sales peaks occur frequently. At the e-commerce company, three

main drivers of sales peaks are:

1. Seasonal peaks, like Thanksgiving and Christmas;

2. Climate peaks, like high temperatures and high precipitation;

3. Trend/hype peaks, like fidget toys1 and face masks.

Even though all these types of peaks are of importance to the e-commerce company, climate

peaks are not completely integrated yet in the e-commerce company’s strategy. Nevertheless, ob-

taining an insight in when these peaks occur and in what quantities products are bought during

these peaks brings major advantages to partners and logistics. It is known that when temperature

increases above a certain threshold (or, e.g., when a heat wave occurs), sales of products such as

swimming pools and fans will rise. However, we do not know for which exact temperatures this

holds, and moreover, to what extent the sales are influenced. Does an increase in temperature of

one degree Celsius lead to a sales increase of 50%, 200%, etc. If the e-commerce company or a

partner knows the demand beforehand, they can anticipate on this by matching their stock to the

demand. In this research, we will make an econometric model such that we can predict sales and

possibly sales peaks.
1Fidget toys are brightly colored silicone toys that went viral on social media apps like TikTok, YouTube and

Instagram. At the e-commerce company, fidget toys are sold in the chunk ’fidget’. Its sales increased heavily in the

beginning of 2021.
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Forecasting climate driven sales peaks is of relevance for the e-commerce company. They need

these sales predictions for their own forecasts, marketing, delivery times, etc. Moreover, the e-

commerce company needs this to inform their partners. Partners do not have an insight on the

total sales of a product or product group, and hence they are limited to the sales of their own

products. Moreover, partners do not have the capacity to make forecasts of the sales and are

therefore not able to anticipate on sales peaks.

With the forecasts, we can make predictions of the amount of sales in the next days. With

these predictions, the e-commerce company and its partners can order stock such that we can meet

the demand of a product with the amount of stock. When predicted sales are more accurate, then

we can maintain a stock that matches better with the demand. On the one hand, this leads to a

reduction of excess stock, which cuts the total costs since having stock requires storage. On the

other hand, it reduces the amount of ”lost” sales (i.e., products that are in demand but out of

stock), which means that either the products are bought at a later time or not at all occurs less,

thus improving the revenue.

In this thesis I will focus on sales peaks due to climate, particularly how temperature affects

sales of products and product groups that are related to the weather during a peak period. These

sales peaks are modelled using previous sales and daily temperature. After making a sales model,

the forecasting performance is measured, and it is investigated how this affects the total costs. The

research question is therefore:

”Can sales peaks of weather related products or product groups be predicted by

weather data and/or weather forecasts, and if so, how can this be modeled?”

Data that is used in this paper consists of aggregated daily sales of products in a product group,

or chunk. A total of five chunks are considered here. Furthermore, as the climate impact we use

daily maximum temperatures in the Netherlands. Modeling and forecasting of sales and its peaks

in this thesis will be based on the smooth transition autoregressive (STAR) model, a nonlinear time

series model. The STAR model consists of two separate AR series containing sales of previous days,

and these AR series are then linked by a transition variable. The sales are predicted as a weighted

combination of the two AR series. The weights depend on the transition variable: if this variable is

below a certain threshold value then the weight on the first AR series are closer to 1 and the second

weight is equal to 1 subtracted with the other weight (and vice versa). The set of observations for
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which the transition variable is below 1
2 is referred to as a low regime, and for higher than 1

2 it is

called a high regime. The transition variable can be either a combination of (differenced) lagged

variables, or an external variable. In this paper, the external variable is the maximum temperature.

With the STAR model, we can make forecasts of the sales. Forecasting methods include a näıve

method, Monte-Carlo, bootstrapping and direct forecasting. With the best forecasting method, we

make a business model which determines the amount of excess stock and lost sales when applying

such a forecasting method to the amount of stock ordered.

Usually, a series of observations in which sudden shocks (large changes in volume) occur are

hard to model. The STAR model however can adequately capture these shocks by transitioning

between regimes. Sales peaks showcase the same behaviour, and therefore STAR is appropriate.

STAR has been researched for quite a long time. It was introduced by Luukkonen et al. (1988).

Further developments are performed in Teräsvirta and Anderson (1992), Teräsvirta (1994), and

Eitrheim and Teräsvirta (1996). Subsequently, van Dijk (1999) provides an extensive research on

the STAR model and many extensions on it. Later on, many applications of STAR are performed

(Alimi et al., 2017; Hsu & Chiang, 2011). Though, as far as my knowledge goes, no literature exists

on the application of the STAR model on how retail sales are predicted by previous observations and

weather data. Therefore, this thesis is a unique contribution to literature. Moreover, the economic

effect of using these forecasts is captured by a unique business model.

In this paper, we find that including temperature as a variable in a sales forecasting model

improves forecasting accuracy. For instance by adding temperature as a linear component to an

AR model, or by using the temperature as a transition variable in STAR. Moreover, it follows

that using a STAR model with the Monte-Carlo forecasting method is generally the best option to

predict sales accurately. In terms of MSPE, the error is about 50% of the MSPE of an AR model,

and for MAPE it is often less than 10%. Also, using STAR forecasts cuts the costs (of excess stock

and lost sales) compared to AR. How much depends on how many days it takes for stock to arrive

at the warehouse, and about which chunk the sales are.

The paper is organized as follows. section 2 outlines relevant academic papers related to de-

scribing sales by weather effects. In section 3 we inspect the sales and temperature data. section 4

provides theory on STAR models and describes the method used to determine the business model.

The results of applying the data to the methods are given in section 5. In section 6 we make a

conclusion based on the results and finally, in section 7, we discuss the limitations of this research.
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2 Literature

This section outlines relevant academic papers related to describing sales by weather effects, partic-

ularly to describing sales peaks of seasonal products on temperature. Here, seasonal products are

products for which its sales rely heavily on (high) temperatures and other weather effects.

2.1 Relevance

The influence of weather economic outcomes such as industrial output, energy demand, economic

growth among other outcomes is researched extensively (Dell et al., 2014). Particularly, in this

paper, research that models the economic effect due to the increasing threat of climate change is

summarized. However, little research about weather and retail sales is found in the retail literature

(Bahng & Kincade, 2012; Verstraete et al., 2019). To the best of my knowledge, there is no work

on modeling sales and temperature by means of a STAR model. Therefore, this thesis will be a

unique contribution to existing literature.

Even though this thesis investigates specifically the relation between temperature and sales peaks

by means of the STAR model, it might inspire other related subjects to be researched as well. For

instance, other sales peaks by exogenous shocks other than weather effects are also appropriately

modeled by STAR. Even more generally, any peak related data may be modeled by STAR.

Sales forecasting in general is important in guiding the sales and marketing of e-commerce and

warehousing (Liu et al., 2020). Moreover, sales data reflect future sales well. Forecasting future

sales is a fundamental issue that guides all strategic and planning decisions in operations of retail

businesses (Ramos et al., 2015). In order for retail businesses to be profitable, demand forecasts

must be accurate, as it is crucial in aspects such as production, purchasing, transportation and

labor force (Ramos et al., 2015). This is especially true for seasonal products which display peak

behaviour, as it requires the aforementioned aspects to be extra alert due to sudden changes.

In fashion markets, selling periods of (some of) the products are likely to be short, estimated in

months or weeks (Christopher et al., 2004). This holds for products that are heavily influenced by

weather effects as well. Careful timing of the sales is therefore important for retailers. If products

are presented or promoted too early, the product will not sell. If products are offered too late,

demand remains low and retailers might need to reduce prices to keep consumers motivated to buy.

If correct planning is not taken into consideration, unsold stock will remain at the end of the season

(Al-Zubaidi & Tyler, 2004).
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2.2 Methods

Techniques and models to forecast retail sales have been investigated extensively (Verstraete et

al., 2019). Many include models based on historic observations, such as exponential smoothing

models (Hyndman et al., 2002) and autoregressive integrated moving average (ARIMA) models

(Permatasari et al., 2018; Ramos et al., 2015). These models are accurate for regular sales (i.e.,

sales are independent of external shocks). However, these models are not appropriate for nonlinear

behaviour (Wang et al., 2013).

2.2.1 Modelling the effect of weather on sales

Even though literature on how retail sales are predicted using weather data is scarce, research has

been done since a long time. Steele (1951) developed a multiple regression equation where sales are

explained by weather variables such as precipitation, snow cover, temperature, etc. These weather

variables improved the accuracy of the predictions of retail sales. Steele (1951) states that the main

difficulty lies in forecasting the weather one or more days ahead. Weather forecasts have now been

improved evidently compared to 1951.

Literature on forecasting energy demand and predicting retail sales are closely related, due to

their directly measurable effect and to their similar aggregation level (Verstraete et al., 2019). Cui

and Peng (2015) analyze the relationship between daily temperature and electricity load (i.e., energy

demand) in a city. External temperature effects cause mutation structures in load data. To deal

with this, an improved ARIMAX model is proposed. This model proves to be an effective method

for short-term load forecasting, as it predicts more accurately than traditional time series models.

Steinker et al. (2017) performed a research on how daily weather conditions affect retail sales

or demand. Their analysis involves a baseline model specifying ARIMAX models that allow to

carve out the weather effect and estimate its potential to improve the short-term sales forecasting

accuracy. An extended model is made by augmenting the baseline model with weather variables

and weekend interaction variables. Steinker et al. (2017) discuss that other advanced techniques

can help to account for nonlinearities.

Verstraete et al. (2019) provide a data-driven framework for predicting weather impact on high-

volume low-margin retail products. In this paper, the proposed methodology that handles short-

term weather influenced retail sales consists of selecting the best method out of six methods. The

methods include machine learning techniques, Poisson regression, LASSO regression, (a combined)

LASSO Poisson regression, neural networks, support vector regression and gradient boosting. Pre-
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dicting is done by leave-one-period-out cross validation, and to select the best forecasting model,

the metrics mean absolute error, root mean squared error and mean error are used. The LASSO

Poisson regression model outperformed the other techniques both in out-of-sample forecast error

and bias.

2.2.2 STAR models

Retail sales possess a time series character and therefore a time series model might be appropriate.

As the objective is to model sales peaks, there is also a nonlinear behaviour involved. Teräsvirta

and Anderson (1992) assume that a nonlinear time series can be adequately described by a smooth

transition autoregressive (STAR) model. STAR is a model containing two different autoregressive

models and a smooth transition function inbetween to switch between different ’regimes’ or ’states’

in a continuous manner.

(Luukkonen et al., 1988) introduced the STAR model as a special case of the self-exciting thresh-

old autoregressive (SETAR) model (Chan & Tong, 1986). A problem that occurs with the SETAR

model is that tests for linearity require simulation for each application individually (Luukkonen

et al., 1988). Even though STAR is nonlinear as well, the traditional linear autoregressive model is

nested within the STAR model, which makes testing for linearity suitable.

Two families of nonlinear autoregressive models, particularly two specifications of STAR, are

logistic STAR (LSTAR) and exponential STAR (ESTAR), proposed by (Teräsvirta, 1994). These

models specify the transition function. Teräsvirta (1994) describes a procedure on the selection of

an appropriate model by first specifying the autoregression, then testing for linearity to determine

the delay parameter, and lastly performing a sequence of F-tests to choose between LSTAR and

ESTAR. Even though Teräsvirta (1994) makes strict assumptions (e.g., if linearity is rejected, then

STAR is the only alternative), the techniques still work well, as LSTAR and ESTAR cover quite a

few nonlinear time series.

Eitrheim and Teräsvirta (1996) complement the article of Teräsvirta (1994) by addressing three

tests for evaluating an estimated model. First, a test of serial independence of the errors is described.

Second, a test that evaluates the adequacy of the selected STAR model describing nonlinearity in

the data is presented. Third, a test that checks the assumption of constant parameters is provided

to detect potential misspecification.

Teräsvirta and Anderson (1992) and Teräsvirta (1994) use a STAR model without the possibility

of using exogenous variables. Indeed, the transition function has a transition variable as argument,
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and this variable is restricted to an endogenous lagged variable. The estimated models indicate

that deep contractions are caused by exogenous shocks, and therefore an extension of STAR with

exogenous variables is more appropriate for modeling sales peaks with an exogenous driver such

as temperature. On the other hand, van Dijk (1999) does allow for exogenous variables in the

STAR model, both linearly and in the transition function as the transition variables itself or as a

transformation (i.e., a function that takes both lagged endogenous and exogenous variables).

van Dijk (1999) states that the STAR model brings two characteristic advantages. First, the

regimes can be associated with certain observable variables, such as a recession or in our case a

sales peak. Second, the transition between regimes are continuous instead of abrupt changes, which

is more in congruence with realistic and actual data.

STAR only allows for two autoregressive regimes. This is done to characterize the different

dynamics between different quantities of sales. However, there might be more than one discrepancy

in the dynamics. We can capture more different dynamics by adding more regimes in an extended

version of STAR: the Multiple Regime STAR (MRSTAR) model (van Dijk, 1999). In this paper it

is shown that the MRSTAR model encapsulates many regime-switching mechanics, e.g. by showing

that it even nests a single hidden layer artificial neural network (ANN).

Another special case of MRSTAR is the Time-Varying STAR (TVSTAR) model. TVSTAR can

be used for modelling multiple nonlinearities at the same time, long-term changing observational

values, and making a difference between these two features (Lundbergh et al., 2003). This could be

useful for modelling sales, because there might be multiple dynamics that drive the sales simulta-

neously, and moreover, the average amount of sales might increase (perhaps gradually) over a long

period of time.

3 Data

In this section we will inspect the sales and temperature data. Visualizing the sales data will help us

understand the behaviour of this series, and to see if transformations of the time series are necessary.

Visualizing or making computations of the relationship between the sales and temperature together

may manifest whether temperature affects the sales significantly, thus telling us whether we should

include temperature in the model.
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3.1 Product sales time series

The e-commerce company’s assortment is divided into categories, containing multiple layers. In

descending order, the assortment is divided into cluster, shop, productgroup, productsubgroup,

productsubsubgroup, brick and chunk, where chunk is the smallest and thus most specific category.

Every product from the e-commerce company has a unique number, a globalid. For every globalid,

content such as the volume, price, color, weight etc. is available in their database.

Moreover, data about every order is available, such as when the order was placed, if the order

has been returned, a case was made, cancelled or delivered on time etc. The latter four constitute

the base of how the e-commerce company measures customer satisfaction. Data from every order

since 2018 is available up until 2020. Tens of millions of orders are placed every year on the e-

commerce company. For every order, multiple products can be bought in various amounts, and

this is displayed as the quantity ordered. Every ordered quantity contributes to the total sales of a

product (or some category of that product). For this research, the total amount of sold products

of a chunk on one day (i.e., the sales) is used.

Not all chunks are investigated in this research: only weather-related chunks are considered.

More specifically, chunks that contain products for which its sales are heavily dependent of high

temperatures. Unfortunately, this kind of information is not contained in the e-commerce company’s

database. However, we can extract this information by picking chunks that show relatively high

increasing sales during hot weather. We pick the top forty chunks of a list of chunks with the highest

percentage increase in sales of week 30 relative to week 29 of 2019, provided a minimum amount of

sales in the first 30 weeks of 2019 and being contained in a list of keywords, such as: sun, water,

airco, fan, parasol or swim.

One chunk is highlighted in particular for visualization purposes: fans. It is the highest selling

chunk of the aforementioned list of chunks. A plot of the total unit fan sales time series is displayed

in fig. 1. During the entire period from 1 January 2018 up to and including 31 December 2020,

there are 1096 observations and the sales range from a minimum of 12 units to a maximum of 26244

units on a day.

Observations are most often near a constant mean, with the exception of the periods around the

high peaks, at the late spring and the entire summer. During the entire period, the mean equals

794.2, while the median is 106. This indicates a right skewed distribution. In fact, most data is near

the median, and the the high peaks are relatively far from the median, pulling the mean upwards.

The skewness equals 5.51, so there is indeed a positive (right) skew. The kurtosis is 39.46 > 3 and
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Figure 1: Time series of the e-commerce company’s total unit fan sales starting in 2018 and ending in 2020.

hence the distribution is leptokurtic, indicating a thin peak.

Let us first consider some of the characteristics of the time series. We will look into the first two

years of the sales observations in our sample, as this will be our estimation sample. The last year of

our sample is used for forecasting purposes. To find out if a trend is present, we regress the sales yt
on a constant and the trend t, the number of days past the start of the series. The coefficient of the

trend is 0.035 with p-value 0.337, which means that the coefficient is not significant and therefore

we conclude that a linear trend is not present in the series.

The series are stable (in the sense that the sales volume fluctuate around a constant mean)

throughout the fall and winter. During the late spring, the series start to show some peaks, and

during the summer more peaks follow. This pattern is shown every year, where in the late spring

and summer the mean and variance of the series is much higher than in the rest of the year, clearly

indicating the seasonal character of the sales volume.

Furthermore, we want to know if aberrant observations are present in the series. Due to the

relatively large difference between regular sales and high peaks, these peak observations are poten-

tial outliers. However, these peaks occur every summer and are therefore not rare or unexpected.

Moreover, they are assumed to be caused by the (somewhat) predictable exogenous variable tem-

perature. Therefore, the high peaks in the late spring and summer are not considered to be aberrant

observations. Instead, they can be seen as contributions to the nonlinear pattern in the series and

will be modeled by the STAR model in section 4.
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We want to test whether the series is stationary, or in other words if the time series has no

unit root. This can be determined by the Augmented Dickey-Fuller (ADF) test. It is the extended

version of the Dickey-Fuller test, where we regress the first differences of the series on a constant,

a trend and the first lag of the series (Cheung & Lai, 1995). The ADF test follows the same

procedure, with the addition of lagged variables to remove autocorrelation from the series. The

regression equation is

∆yt = α+ βt+ γyt−1 + δ1∆yt−1 + · · ·+ δt−p+1∆yt−p+1 + εt,

where p is the lag order of the autoregressive process. A trend is not present in the fan sales time

series, hence we have β = 0 in our case. The test statistic for the ADF test is the t-value of the

coefficient of the lagged value yt−1, i.e., τ = γ̂
SE(γ̂) . This statistic has their own critical values, known

as the Dickey-Fuller table. For the ADF test with a constant, without a trend, and a sample size of

730, the critical value is −2.86 on a 95% confidence level. The τ -value for the fan sales time series

equals −6.20. Since −6.20 < −2.86, we reject the null hypothesis of a unit root, and therefore the

series is stationary. Thus, the series do not need a differenced transformation. We might however

need a log transformation, and this is investigated in section 5.

We can quantify the relationship (or correlation) between observations and their lags by au-

tocorrelation function (ACF) and a partial autocorrelation function (PACF). The ACF are the

correlations between an observation and a set of its lags. The PACF are similar to the ACF, except

that the correlation between shorter lag is removed. In other words, a correlation of lag p in the

ACF might be partially explained by shorter lags such as lag p − 1, p − 2, . . . , 1, whereas in the

PACF the correlation is ’pure’. The ACF and PACF of the fan sales time series are plotted in fig. 2.

From the ACF plot, we see a high correlation for low lags. The correlation is decreasing imme-

diately from lag 1, indicating less correlation with higher lags. From lag 10 onward, the correlations

are not significant anymore. Furthermore, we see an increase of the correlation around lag 30, in-

dicating a monthly seasonal pattern. The PACF has, unlike the ACF, an alternating pattern. The

first lag has a high correlation of 0.914. The lags hereafter have smaller correlations but are still

significant up to lag 8. We conclude that only the first 8 lags are interesting to include in a time

series model, at least in a linear time series.
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Figure 2: ACF (left) and PACF (right) plots of the fan sales time series. The lightly shaded blue area displays the significance

area: bars that fall outside this region are significant correlations.

3.2 Sales and temperature

Besides using lagged sales to predict sales, we want to model the effect, if any, of temperature on

the sales. For trying to predict sales peaks using weather forecasts, the Dutch national weather

service Royal Netherlands Meteorological Institute (KNMI) is consulted. They provide an open to

public database containing all daily weather information. Maximum temperature is measured in

0.1 degrees Celsius each day and is measured since 1 January 1901.

Using current temperatures might not be enough to accurately predict sales. Rather, tem-

perature forecasts are required. Forecasts are however not always completely equal to the actual

outcomes. It is therefore interesting to know the accuracy of these weather forecasts. Haiden et al.

(2021) investigate the development of the quality of weather forecasts in Europe, see fig. A1. Here,

the number of days for which forecasts are still useful and accurate is given. The 12-month average

shows that this number is between 6 and 7 since 2006, and nearly 7 since 2018. We conclude that

predicting up to 7 days is accurate enough.

To investigate the effect of temperature on sales, we first look into a combined plot of the sales

and temperature time series, see fig. 3. This plot contains the again fan sales and the daily maximum

temperature of only 2019. The reason for excluding the other years for which we also have sales

data (i.e., 2018 and 2020), is that it is easier to visualize similarities or relations with just one year.

And, moreover, each year shows more or less the same characteristics.
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Figure 3: Time series of daily total fan sales (blue) and maximum temperature (red) of 2019. The left axis portray the sales,

while the right axis portrays the temperature in degrees Celsius.

The first thing to notice about the relationship between temperature and sales is that the peaks

of both time series coincide. There are four sales peaks, see table 1. Whenever one of these

four sales peak occurs, we also see a peak in temperature. This indicates their relationship with

each other. In fact, we see that temperature peaks are followed by sales peaks. In other words,

sales peaks anticipate temperature peaks. This consumer behaviour is explained by the fact that

consumers purchase products to fulfill their needs and desire. Consumers know that hot weather is

coming beforehand due to weather forecasts, and therefore they anticipate on this by purchasing the

products they want to utilize later in that period of high temperatures. Thus, high temperatures

have a direct effect on sales, however, it is the weather forecast that is decisive.

Date Sales Temperature

2 June 3349 30.4

25 June 17966 33.2

23 July 11495 31.9

27 August 3062 32.8

Table 1: Total fan sales and maximum temperatures (in degrees Celsius) on the fan sales peaks in 2019.

Let us look into the period starting in the late spring and ending at the beginning of the

autumn. Sales peaks occur only in this period. In the period before the midsummer, temperature
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has a smaller effect on sales than in the midsummer, even though the temperature peak is not much

smaller than later peaks. This indicates an exponential effect of temperature on sales. Another

explanation is that consumers know that high temperatures occur less often before the summer,

and therefore weather related products are used less than during the summer, and therefore these

products are less desired. A similar explanation is used for the fact that the sales peaks are lower

after the summer. At that time, consumers know that they will probably not need weather related

products anymore in that year. Another explanation for this behaviour is that these products are

already purchased often in that year, and hence consumers do not need the products anymore as

they have already bought the products before. In conclusion, despite higher temperatures, the

summer has a boosting effect on sales.

Outside the aforementioned period around the summer, the sales are stable and low. The

temperature does however show much variation. This volatility must have a marginal effect on the

sales during that period, compared to the summer. This gives rise to not only and exponential effect

of temperature on sales, but also to use some sort of threshold value on temperature. For instance,

we can subtract a threshold value of 25 on every temperature, such that for positive values, changes

in temperature have a large effect on sales, and for negative values, changes in temperature have a

small effect on sales.

Finally, we calculate the Pearson correlation coefficient, a measure of the linear correlation

between two time series. We can compute this correlation between the sales and temperature of the

same day: 0.473. Furthermore, since the temperature is known beforehand by weather forecasts,

we can also look into the correlation between the sales and a j-day lead temperature. The highest

correlation is attained for j = 1 (for j ≤ 7), with a correlation of 0.458. Moreover, we can also

calculate the sales and the largest maximum temperature of the next j days (like a rolling window).

The highest correlation is attained for j = 3 (for j ≤ 7), with a correlation of 0.496. It follows

that if we use the highest maximum temperature of the upcoming 3 days, we attain the highest

correlation with the sales.

It should be noted that previous conclusions that are drawn hold for the fan sales of 2019. These

conclusions do not have to hold for other time series. Thus, these features should not be fixed in a

model. Rather, they should be optional, for instance using parameters that are estimated.
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4 Methodology

The (most) discussed model in section 2 is the STAR model, and this model will be explained in

this section, as the STAR model is the method that will be applied in this research. The model,

techniques and tests are prominently based on Teräsvirta (1994), van Dijk (1999), and van Dijk

et al. (2002).

4.1 Defining a smooth transition autoregressive (STAR) model

The smooth transition autoregressive (STAR) model is a nonlinear extension of the standard linear

autoregressive (AR) time series model. It describes the time series process of univariate variable yt
observed at t = 1− p,−p, . . . , 0, 1, . . . , T :

yt = φ′1xt(1−G(st; γ, c)) + φ′2xtG(st; γ, c) + εt, t = 1, . . . , T, (1)

Here, xt = (1, yt−1, . . . , yt−p, z1t, . . . , zkt)′ is a vector of the endogenous lagged variable yt and an

exogenous variable zt, and φ′i = (φi,0, . . . , φi,m) are the fixed parameters, for i = 1, 2 and m = p+k.

εt describes a martingale difference sequence, i.e., its expectation with respect to its past and the

exogenous variables is zero: E(εt|xt) = 0.

Let F (xt; Ω) = φ′1xt(1 − G(st; γ, c)) + φ′2xtG(st; γ, c) denote the fitted value of eq. (1), where

Ω = {φ1, φ2, γ, c} is the parameter space. From here, we assume that the exogenous variable zt is

excluded from xt. The model is compactly written as yt = F (xt;ω) + εt

Furthermore, G is the transition function: it takes as argument the transition variable st, has

parameters γ and c, and is bounded between 0 and 1. The transition function is continuous. If

G(st; γ, c) = 0, then eq. (1) reduces to yt = φ′1xt + εt, an autoregressive model in past observations

and exogenous variables, and we refer to this as the base time series. If G(st; γ, c) = 1, then eq. (1)

reduces to yt = φ′2xt + εt, a similar autoregressive model with different parameter values, and we

refer to this as the alternative time series. The STAR model ensures that there is a smooth transition

between the base and alternative time series. These time series can also be seen as regimes, as the

complete model consists of the two different time series and the continuous transition inbetween.

For practical data, transitions usually develop fluently instead of with discrete steps, and hence

STAR captures practical data adequately.

For the transition variable st, there are different choices. The transition variable can be equal

to an endogenous lagged variable st = yt−d for some integer d > 0, indicating that the time series

has a different character for distinct values of the endogenous variable. The transition variable
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can also be equal to the exogenous variable st = zt, indicating that transition between regimes are

initiated by exogenous variables. In this research, this would be suitable to capture the influence of

temperature as an exogenous variable on the sales. We can also choose some general transformation

of the variables, i.e., st = h(xt), where h is a function. The following four variables are proposed as

transition variable:

• s1,t = zt+j , i.e., the j-th lead on the exogenous variable, or the temperature forecast in j days;

• s2,t = z2
t+j , which is s1,t squared, in order to let the model blow up the sales at an even higher

rate to capture peaks more accurately;

• s3,t = max(zt, zt+1, . . . , zt+j) is the highest maximum temperature of the coming j days using

the weather forecast;

• s4,t = max(zt, zt+1, . . . , zt+j)2, which is s3,t squared, blowing up the sales more rapidly similar

to s2,t;

• s5,t = max(zt+1, . . . , zt+j), similar to s3,t, but now excluding the current temperature zt;

• s6,t = max(zt+1, . . . , zt+j)2, which is s5,t squared, blowing up the sales more rapidly similar

to s2,t;

As stated in section 2, there are two (amongst others) specifications of STAR. In this paper, we

only consider LSTAR, and defines G as

G(st; γ, c) = 1
1 + exp{−γ(st − c)}

, γ > 0.

Parameter c can be interpreted as the threshold value between the two regimes. The transition

variable st is the only variable that alters the transition function G during time. Therefore, switching

between regimes is fully dependent of this variable. The point between the two regimes is located

at st = c. For large γ, transitioning occurs here. The parameter γ is interpreted as the rate in

which the time series switches between regimes. Indeed, it is the slope of the transition function at

st = c: ∂G
∂st

(st = c) = γ.

4.2 Building the model

The STAR model can be built with a specific-to-general approach. A brief description of setting up

an adequate model is as follows. First, the order p is determined by specifying a linear AR(p) model
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of the time series. Then, linearity is tested against STAR nonlinearity by performing an LM-type

test. If linearity is rejected, then transition variables are selected by testing different predetermined

variables against each other and after that, the transition function is selected by testing a series of

null hypotheses extracted from the auxiliary regressions from the logistic and exponential transition

functions. Then, estimation of parameters is done by nonlinear least squares (NLS). Finally, the

valuation of the model is done by a series of diagnostics tests: the adequacy of STAR should be

tested by null hypotheses such as no residual autocorrelation and no remaining nonlinearity. The

model is modified if necessary.

4.2.1 Specifying the order of the linear AR part

Building a STAR model starts with choosing an appropriate lag order for the linear AR model. An

AR(p) model is given by

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + εt, t = 1, . . . , T. (2)

Given p, one can estimate the parameters φ0, . . . , φp by using OLS. From the estimated AR(p)

models, the sum of squared estimated residuals σ̂2 = ∑T
t=1 ε̂

2
t and the number of parameters p+ 1

are used to select the appropriate order. Criteria to select a model are the Akaike Information

Criterion (AIC):

AIC = T log σ̂2 + 2(p+ 1),

or the Schwarz Information Criterion (BIC):

BIC = T log σ̂2 + (p+ 1) log T.

The value for p that minimizes these criteria should be selected as order for the linear AR model.

Moreover, the residuals should approximately be white noise to prevent residual autocorrelation later

on in building the STAR model. Therefore, we test for residual autocorrelation by means of the

Ljung-Box test. The null hypothesis H0 is that there is no autocorrelation in the residuals of the

AR(p) model at lags 1 to m > p. Any large value of m should be sufficient, as they often lead to the

same conclusions. Let rk(ε̂) = ∑T
t=k+1 εtεt−k/

∑T
t=1 ε

2
t be the k−th autocorrelation of the residuals,

then the Ljung-Box statistic equals

LB(m) = T (T + 2)
m∑
k=1

r2
k(ε̂)
T − k

.
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Under H0, we have that LB(m) ∼ χ2
m−p, and we reject the null hypothesis for large values of

LB. In case of rejection, the model should not be picked, due to remaining residual autocorrelation.

Instead, the smallest order p for which there is no rejection, pLB, should be selected. Especially

whenever AIC and BIC are not minimized by the same order p, the LB-statistic can be used to

make a decision.

The decision of the order p̂ should be the p that minimizes AIC and BIC, provided that p ≥

pLB. In case of rejection in the LB test for order p, we should pick p = pLB. In other words,

p̂ = max{min{pAIC, pBIC}, pLB}.

4.2.2 Testing for STAR nonlinearity

The next step in building the structure of the STAR model is testing STAR against linearity. For

this, we rearrange terms in eq. (1):

yt = φ′1xt + (φ′2 − φ′1)xtG(st; γ, c) + εt, t = 1, . . . , T. (3)

Looking at eq. (3), it follows that when we restrict the parameters to φ1 = φ2, eq. (3) reduces to the

linear AR model given in eq. (2). However, Luukkonen et al. (1988) argue that due to the presence

of unidentified nuisance parameters (i.e., parameters that are not restricted by the null hypothesis

such as c and γ), conventional statistical theory does not hold anymore. Instead, they propose to

approximate the transition function G by a (third-order) Taylor series (around γ = 0):

G (st; γ, c) = G (st; 0, c) + γ
∂G

∂γ

∣∣∣∣
γ=0

+ 1
2γ

2∂
2G

∂γ2

∣∣∣∣∣
γ=0

+ 1
6γ

3∂
3G

∂γ3

∣∣∣∣∣
γ=0

+R3 (st; γ, c)

= 1
2 + 1

4γ (st − c)−
1
48γ

3 (st − c)3 +R3 (st; γ, c) ,

where R3(st; γ, c) is the remainder term. For computations of the partial derivatives, see ap-

pendix B.1. If we neglect the remainder term and substitute this in eq. (3), we get

yt = φ′1xt + (φ′2 − φ′1)xt
(1

2 + 1
4γ (st − c)−

1
48γ

3 (st − c)3
)

+ et

= β′0xt + β′1xtst + β′2xts
2
t + β′3xts

3
t + et, (4)

with et = εt + (φ′2 − φ′1)xtR3(st; γ, c). Hence, linearity is obtained if we restrict the parameters to

β1 = β2 = β3 = 0.

In order to test STAR against linearity, we can perform an F-test on the obtained auxiliary

regression in eq. (4) and the nested linear model under the null hypothesis H0 : β1 = β2 = β3 = 0.
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Let SSR0 denote the sum of squared residuals of the regression under H0, and let SSR1 be the sum

of squared residuals of the full regression. The test statistic is

LM = (SSR0 − SSR1) /3(m+ 1)
SSR1/(T − 4(m+ 1)) .

Under H0, we have that LM ∼ F (3(m+ 1), T − 4(m+ 1)), and we reject the null hypothesis of

linearity for large values of LM. For all candidates st, LM should be computed. The candidate

transition variable with the largest value of the LM statistic should be chosen as transition variable.

4.2.3 Parameter estimation

After specifying the order of the linear part of the model and choosing the transition variable, the

parameters ω = (φ′1, φ′2, γ, c)′ are estimated. Using this parameter, eq. (1) is compactly written as

yt = F (xt;ω) + εt, where F is nonlinear in xt. Therefore, to estimate ω we can apply nonlinear

least squares (NLS). That is, the sum of squared residuals is minimized:

ω̂ = arg min
ω

T∑
t=1

(yt − F (xt;ω))2

The dimension of ω, and hence the number of parameters to be estimated by NLS, is 2p +

4. Leybourne et al. (1998) suggest that we can reduce this dimensionality by splitting the NLS

estimation problem into two parts. Note that the STAR model is linear in φ1 and φ2. Therefore,

conditional on γ and c, we can estimate φ1 and φ2 by OLS. In other words, the NLS sum of squared

residuals are concentrated with respect to φ1 and φ2, and the NLS estimation problem reduces to

minimization with respect to only two parameters: γ and c.

For known γ and c, STAR transforms into a linear regression model with parameter vector

φ = (φ′1, φ′2)′ and explanatory variable vector xt(γ, c) = (x′t (1−G (st; γ, c)) , x′tG (st; γ, c))′. The

parameter vector (conditional on γ and c) is estimated by concentrated OLS:

φ̂(γ, c) =
(

T∑
t=1

xt(γ, c)xt(γ, c)′
)−1( T∑

t=1
xt(γ, c)yt

)
.

The problem is now reduced to a two-dimensional minimization problem, with minimization function

Q(γ, c):

Q(γ, c) =
T∑
t=1

(
yt − φ(γ, c)′xt(γ, c)

)2
.

We start the estimation problem by finding suitable starting values for γ and c. One straight-

forward way is to perform a two-dimensional grid search over γ and c, applying OLS on the STAR
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model conditional on γ and c, and calculating the sum of squared residuals. The combination (γ, c)

that minimizes this are selected as starting values.

If we choose (grid) values for c outside the range of st, then the transition function will be

smaller (or larger) than 1
2 for all st. Then the time series will only be in one regime, and STAR does

not make sense anymore. Therefore, grid values for c should be in the range of st, hence we choose

Nc equidistant numbers between the α% and (100 − α)% quantiles of st, e.g., Nc = 100 numbers

between the α = 10% and 90% quantiles of st.

The parameter γ is interpreted as the rate in which the time series switches between regimes.

To find a good starting value for γ, we want to cover as much values of the transition function as

possible between 0 and 1. Because γ is multiplied with st − c, we can divide γ by the standard

deviation σst of st to make it scale-free. Hence, we choose a set of numbers 1 to 50 and divide this

by σst
Once suitable starting values are found, we can start estimating all parameters. The problem

can be solved by conventional nonlinear optimization methods. Here, we choose to optimize using

the BFGS method, which is a Quasi-Newton method to solve unconstrained nonlinear optimization

problems, see Wright and Nocedal (1999). The procedure of the BFGS algorithm is described

in appendix B.2. Besides starting values and the minimization function, we need the gradient of

the minimization function ∇Q(γ, c). Here, we treat the autoregressive parameters as known, i.e.,

φ(γ, c) = φ. We then have that

∇Q(γ, c) =
T∑
t=1

2
(
yt − φ′xt(γ, c)

)
∇(−φ′xt(γ, c)) = −2

T∑
t=1

et(φ′1 − φ′2)xt∇G(γ, c),

where et = yt − φ′xt(γ, c) is the error term and

∇G(γ, c) =
(

(st − c)
e−γ(st−c)(

e−γ(st−c) + 1
)2 ,−γ e−γ(st−c)(

e−γ(st−c) + 1
)2
)′
. (5)

4.2.4 Diagnostic checks and model modification

After setting the structure of the model and estimating the parameters, we have a fitted model and

we can evaluate the adequacy of this model by performing misspecification tests. Such tests include

testing hypotheses of no serial dependence and no remaining nonlinearity (van Dijk, 1999).

Serial independence

First, we test for the hypothesis of no residual autocorrelation, or serial independence. Residual

autocorrelation is present when residuals and a lagged version of themselves are dependent. This
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is a violation of the standard assumptions. The usual LM type test for serial correlation, the

Breusch-Godfrey test, needs modification to be applicable on the STAR model. We test the null

hypothesis of no residual autocorrelation up to lag order q, by performing an LM test for q-th order

serial dependence in εt. Let ω̂ be the parameter estimate of the fitted STAR model under the null

hypothesis, with residual estimates ε̂t. We regress ε̂t on its q lagged residuals ε̂t−1, . . . , ε̂t−q and the

gradient of the model fit ∇F (xt; ω̂), which equals

∇F (xt; ω̂) =
(
xt(1−G(st; γ, c)), xtG(st; γ, c), (φ′2 − φ′1)xt∇G(γ, c)′

)′
, (6)

where ∇G(γ, c) is given in eq. (5). From this regression, we obtain the coefficient of determination

R2. The test statistic is LM(q) = nR2, with n = T − q. This test statistic is asymptotically χ2

distributed with q degrees of freedom. We reject the null hypothesis of serial independence for large

values of LM, i.e., for LM(q) > χ2
q . In case of rejection we can add an extra lagged variable and

repeat the process of building the model.

No remaining nonlinearity

Second, we test for the hypothesis of no remaining nonlinearity, to see if we have captured a sufficient

amount of the nonlinearity with the STAR model. A natural way to do this is to extend the STAR

model as given in eq. (3) with an additional regime G2:

yt = φ′1xt + (φ′2 − φ′1)xtG1(st; γ1, c1) + (φ′3 − φ′1)xtG2(st; γ2, c2) + εt. (7)

We can test for no remaining nonlinearity by testing the alternative of eq. (7) against the null of

eq. (3). This comes down to the absence of the term (φ′3−φ′1)xtG2(st; γ2, c2), and can be tested by

means of H0 : φ3 = φ1 or H0 : γ2 = 0. This however gives rise to an identification problem similar

to testing for STAR nonlinearity against linearity in section 4.2.2. Similar to that, we can estimate

G2 with a Taylor series approximation (around γ2 = 0). The new auxiliary model is then given by

yt = β′0xt + β′1xtG1(st; γ1, c1) + β′2xtst + β′3xts
2
t + β′4xts

3
t + et.

The new null hypothesis is H0 : β2 = β3 = β4 = 0 and the identification problem is solved. Again,

an LM test is performed: we regress the residuals ε̂t obtained under the null hypothesis against

the partial derivatives of the regression function with respect to the parameters in the base STAR

model of eq. (1) (i.e., φ1, φ2, γ1, c1), and the remaining terms xtsjt for j = 2, 3, 4. Put differently, we

regress ε̂t on (∇F (xt; ω̂)′, xtst, xts2
t , xts

3
t )′, where hats indicate estimation under the null hypothesis,

and ∇F is given in eq. (6). From this regression we obtain the coefficient of determination R2, and
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the test statistic equals LM = nR2. Asymptotically, LM is χ2-distributed with 3(m + 1) degrees

of freedom, and we reject for large values of LM. In case of rejection, we can estimate an extended

MRSTAR model instead, see section 4.4.

4.3 Forecasting with STAR models

After specifying the model, estimating the parameters, evaluating the model with diagnostic tests

and adjust if necessary, we have built a model that can be used for forecasting. We can implement

data (i.e., sales of a chunk) from a certain year for some period into the model to specify the

parameters. With this model, we can make sales forecasts of that same chunk in a new year, just

as far ahead as the weather forecast is available.

4.3.1 Point forecasts

Recall that eq. (1) is given by yt = F (xt; Ω) + εt. Forecasts of this model can be either point

forecasts or prediction intervals. First, define the h step ahead forecast as ŷt+h|t, a forecast of yt+h
made at time t, with prediction error et+h|t = yt+h − ŷt+h|t. Forecasting is done with a quadratic

loss function, i.e., ŷt+h|t minimizes the squared prediction error

E
(
e2
t+h|t

)
= E

(
(yt+h − ŷt+h|t)2|Xt

)
.

Here Xt represents the set of all lagged (sales) variables and exogenous variables up until time t. The

squared prediction error is minimized whenever we assign the forecast the conditional expectation

of yt+h at time t (van Dijk, 1999), i.e.,

ŷt+h|t = E(yt+h|Xt). (8)

For the 1 step ahead forecast where h = 1, eq. (8) is easily computed, as yt+1 can be expressed in

a deterministic output (and an error term with zero mean): ŷt+1|t = E(yt+1|Xt) = E(F (xt+1; Ω) +

εt+1|Xt) = F (xt+1; Ω). Recall that xt+1 consists of lags and not current variables, and it is therefore

known.

The 2 step ahead forecast ŷt+2|t is more complicated to compute. We have

ŷt+2|t = E(yt+2|Xt) = E(F (xt+2; Ω)|Xt).

Firstly, the input in the expectation contains yt+1 which is unknown, hence this term cannot be

extracted from the expectation. Moreover, as F is nonlinear, the expectation and F cannot be

swapped.
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We can of course use the previous 1 step ahead forecast in the 2 step ahead forecast. For this,

let x̂(N)
t+2 = (1, ŷt+1|t, yt, . . . , yt−(p−2))′, where we ignored the error term εt+1. A 2 step ahead forecast

with x̂
(N)
t+2 becomes

ŷ
(N)
t+2|t = E(F (x̂(N)

t+2; Ω)|Xt) = F (x̂(N)
t+2; Ω).

This is called a näıve forecast, as it comes down to neglecting the error term. These types of

forecasts are however biased (van Dijk, 1999).

Another approach is to use a Monte Carlo method. The 2 step ahead Monte Carlo forecast is

given by

ŷ
(M)
t+2|t = 1

P

P∑
k=1

F (x̂(M)
t+2,k; Ω),

for some large integer P , where x̂
(M)
t+2,k = (1, ŷt+1|t + ε

(M)
t+1,k, yt, . . . , yt−(p−2))′. Here, we draw P

values of ε(M)
t+1,k independently from the distribution of the error term. We draw error terms from a

normal distribution with zero mean and variance equal to the sample variance of the training data

model residuals. As P →∞, the forecast becomes unbiased due to the weak law of large numbers

(Lundbergh & Teräsvirta, 2002).

An alternative approach, somewhat similar to the Monte Carlo method, is the bootstrapping

method. The only difference is the way we choose the error terms. The 2 step ahead bootstrap

forecast is given by

ŷ
(B)
t+2|t = 1

P

P∑
i=1

F (x̂(B)
t+2,i; Ω),

where x̂(B)
t+2,i = (1, ŷt+1|t + ε

(B)
t+1,i, yt, . . . , yt−(p−2))′ for some i ∈ {1, . . . , P}. We can pick P = T ,

the size of training data set. Here, the ε
(B)
t+1,i are drawn with replacement T times from {ε̂t :

t = 1, . . . , T}, the set of residuals from the estimated model. The advantage of the bootstrapping

method compared to the Monte Carlo method is that we do not have to make assumptions on the

distribution of the error terms.

Multiple step ahead forecasts, say h > 2, are computed analogously to the above described

methods of computing the 2 step ahead forecasts. Every forecasting step is evaluated using the

previous forecasts. We have, with bootstrapping for instance, that

ŷ
(B)
t+h|t = 1

T

T∑
i=1

F (x̂(B)
t+h,i; Ω),

where

x̂
(B)
t+h,i = (1, ŷt+(h−1)|t + ε

(B)
t+(h−1),i, ŷ

(B)
t+(h−2)|t, . . . , ŷ

(B)
t+1|t, yt, . . . , yt−(p−h))′.
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In order to calculate the forecast on yt+h, we use the model fit function F . This function

contains the transition variable of the current observation (i.e., st+h). The problem is that we do

not know st+h at time t, and hence we can replace it by its predicted value ŝt+h. This predicted value

is generally not known. However, in our case where we use maximum temperature as transition

variable, we have already discussed in section 3 that weather forecasts are currently very precise up

to a week. We therefore assume that ŝt+h|t = st+h for h = 1, . . . , 7 and all t.

Error terms

A problem that may arise in forecasting with Monte Carlo or bootstrapping methods is that the

drawn error terms do not match the observations to be forecast. This is due to a potential violation

of the assumption that the error terms are normally distributed with constant variance. Particularly,

the variance of error terms can be significantly different between the regimes, or more generally,

the variance may increase whenever the sales increase. This potential heteroskedasticity can be

detected by plotting the error terms against the time series observations: if the deviation of the

error terms increases while the observations increase, then this indicates heteroskedasticity. Another

(more exact) way of detecting heteroskedasticity is performing the Breusch-Pagan test.

If heteroskedasticity is present, then this can be accounted for by drawing regime specific error

terms. That is, if we want to forecast h ≥ 2 steps ahead, we draw error terms out of the set of

error terms corresponding to the same regime as the forecast h steps ahead. The problem is that

the regime of the h steps ahead is not known, since st+h is not known at day t (and therefore, G

is unknown). As discussed before, based on precise weather forecasts, we assume that ŝt+h|t = st+h

for h = 1, . . . , 7.

4.3.2 Direct forecasting

Instead of making point forecasts, we can also make direct forecasts of the time series. For this, we

alter the model in such a way that we fit the series directly on a future observation. That is, we

substitute the dependent variable of eq. (1) with future observation yt+h:

yt+h = φ′1xt(1−G(st; γ, c)) + φ′2xtG(st; γ, c) + εt, t = 1, . . . , T − h.

This model is called the h step ahead STAR model. Model estimation is similar to the estimation

process described in section 4.2, except that we use h less observations. One drawback is that

for every forecasting step h, a different model needs to be estimated. Nevertheless, we can use

23



a different transition variable for each model. In that case, not all forecasts have to depend on

the same temperature forecast as with point forecasts, which makes the forecasts more flexible.

A natural decision is to choose the h-th day forecast of the maximum temperature is used, i.e.,

st = zt+h. Due to temperature forecasts being accurate until the 7th day (see section 3.2), we limit

the forecasting step to h ≤ 7. The h step ahead direct forecast is therefore given by

ŷ
(D)
t+h = φ̂′1xt(1−G(st; γ̂, ĉ)) + φ̂′2xtG(st; γ̂, ĉ).

4.3.3 Evaluation of forecasts

As there are four different ways (mentioned) to execute the forecasting, we need an evaluation

technique to compare these forecasts. One approach is to use the mean squared prediction error

(MSPE) for h step ahead forecasts. We can compute the evaluation of the forecasts of the entire

time series by:

MSPEh = 1
T − h

T−h∑
t=1

(ŷt+h|t − yt+h)2,

where h is the forecasting step. Another metric is the median absolute prediction error (MAPE),

which is appropriate whenever an absolute (instead of a quadratic) loss function is used:

MAPEh = median{|ŷt+h|t − yt+h|; t = 1, . . . , T − h}.

Of course, we choose the forecasting technique (näıve, Monte Carlo or bootstrapping) with the

smallest MSPE and/or MAPE.

To test whether two forecasting methods differ significantly in MSPE, we use the Diebold-

Mariano (DM) test (Diebold & Mariano, 2002). Let ŷi,t+h|t be the h step ahead forecasts of model

i, with corresponding error terms ei,t+h|t = yt+h − ŷi,t+h|t. The loss differential between models i

and j for the h-th forecasting step is defined as dt+h = e2
i,t+h|t− e

2
j,t+h|t for the MSPE measure, and

dt+h = |ei,t+h|t| − |ej,t+h|t| for the MAPE measure. Testing for no significant difference between the

forecasting techniques comes down to the loss differential having zero mean. The null hypothesis is

therefore H0 : E(dt+h) = 0, with forecasting step h ≤ 7. For large samples, dt+h is approximately

normally distributed with mean d̄h and variance 2πfd(0)
P (Diebold & Mariano, 2002). Here, P is the

number of forecasts and fd(0) is the spectral density at frequency zero. Therefore, the test statistic

is given by

DMh = d̄h√
2πf̂d(0)/P

.
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A consistent estimate of 2πfd(0) is obtained by taking a sum of the available sample autocovariances

(i.e., up to h− 1):

2πf̂d(0) =
h−1∑

τ=−(h−1)
γ̂d(τ).

The DM statistic is asymptotically standard normally distributed. We reject the null hypothesis for

large values of the test statistic. In case of rejection, the forecasting techniques differ significantly.

4.4 Extension to the STAR model

The STAR model is appropriate for nonlinear time series whenever one transition variable is the

driver for switching between two regimes. However, when there are multiple transition variables

that affect switching regimes, or when the time series show more than just two different regimes,

STAR is rather limited. In that case, it can be extended to the Multiple Regime STAR (MRSTAR)

model. The MRSTAR model extends the number of regimes of STAR and (optionally) the number of

transition variables. If the null hypothesis of no remaining nonlinearity, as explained in section 4.2.4,

is rejected, one can extend STAR by including additional regime terms like in eq. (7):

yt = φ′1xt + (φ′2 − φ′1)xtG(st; γ1, c1) + · · ·+ (φ′q − φ′q−1)xtG(st; γq−1, cq−1) + εt, t = 1, . . . , T.

This is a MRSTAR model with m regimes and one transition variable. Let Gj(st) := G(st; γj , cj)

and assume c1 < c2 without loss of generality. For a q-regime model, each time st surpasses cj , the

j-th regime Gj changes smoothly from 0 to 1. More regimes might reduce bias in the estimates,

because it allows for more constant autoregressive values (the φj1’s).

We can also include more than one transition variable. A 4-regime MRSTAR model with two

transition variables is given by van Dijk (1999). It can be constructed by replacing the φ′jxt in the

base model (as in eq. (1)) with another star model:

yt =
(
φ′1xt(1−G1(s1t; γ1, c1)) + φ′2xtG1(s1t; γ1, c1)

)
[1−G2(s2t; γ2, c2)]+(

φ′3xt(1−G1(s1t; γ1, c1)) + φ′4xtG1(s1t; γ1, c1)
)
G2(s2t; γ2, c2) + εt. (9)

With 4 regimes in eq. (9), each regime is a combination of the two transition functions G1 = 0, 1

and G2 = 0, 1. Both transition functions incorporate a different transition variable and different

parameters, s1t with parameters γ1, c1 for the first transition function G1 and s2t with parameters

γ2, c2 for the second transition function G2.

The process of building a MRSTAR model begins with testing the null hypothesis of no remaining

nonlinearity after a STAR model as been estimated. If the null hypothesis is rejected, then there is
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evidence of remaining nonlinearity and we add another regime to the model. Building the new model

begins with estimation immediately, as the first two steps (specifying the order of the linear AR part

and testing for STAR nonlinearity) are redundant. Estimation is similar to the case with 2 regimes.

Now there are more parameters. For the 2-regime STAR model, there were 2m+ 4 parameters. For

a q-regime STAR model the number of parameters is q(m+ 3)− 2. After estimation, we repeat the

test of no remaining nonlinearity, now adding another extra regime. The same process is repeated

until there is no evidence of more remaining nonlinearity. When the final model is made, forecasts

are made, also in a similar way. We finally compare these forecasts with the STAR forecasts. MSPE

and MAPE will showcase if the forecasting accuracy has improved.

4.5 Excess stock and lost sales time series

With the forecasts, we can make predictions of the amount of sales in the next days. With these

predictions, the e-commerce company can order stock such that we can meet the demand of a

product with the amount of stock. Of course we do not want to maintain too much stock. Therefore,

there is an optimal amount of products to be ordered each day. When predicted sales are more

accurate, then we can maintain a stock that matches better with the demand. On the one hand, this

leads to a reduction of excess stock, which cuts the total costs since having stock requires storage.

On the other hand, it reduces the amount of ”lost” sales (i.e., products that are in demand but out

of stock), which means that either the products are bought at a later time or not at all occurs less,

thus improving the revenue.

We consider a simplified representation of the process of ordering stock and selling the stock.

The daily timeline on day t is as follows. First, stock that was ordered by the e-commerce company

i days prior to day t arrives with an amount of bt|t−i. Second, the products are being sold during

the day with a total amount of yt. After that, the stock vt is measured. And finally, new stock is

ordered for, say, i days ahead and is represented as bt+i|t.

Assume that ordering stock takes just one day, then we have i = 1. We want to figure out the

optimal order amount bt+1|t. If no stock is left on day t (i.e., vt = 0), we ideally want to order a

quantity equal to the amount of sales on the next day, bt+1|t = yt+1. In that case, we perfectly fit

the demand. However, on day t we do not know yt+1 yet. Therefore, we use the forecast value of

the sales of tomorrow, so we have bt+i|t = ŷt+1|t. If there is still stock left, however, then we should

subtract this with the quantity of stock left, provided that this number is non-negative. Thus, we

have that bt+1|t = max(0, ŷt+1|t − vt).
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Consider the case i = 2, where it takes two days for an order to arrive. The optimal quantity

to be ordered is equal to the expected sales on day t + 2 subtracted by the expected stock on day

t+ 1. That is, bt+2|t = max(0, ŷt+2|t − v̂t+1|t). We can decompose v̂t+1|t into the stock on day t and

all events in between (i.e., the sales and order on day t+ 1): v̂t+1|t = max(0, vt + bt+1|t−1 − ŷt+1|t).

Let us now consider the general case where it takes i days for an order to arrive. Analogously, it

holds that

bt+i|t = max(0, ŷt+i|t − v̂t+i−1|t) and v̂t+j|t = max(0, v̂t+j−1|t + bt+j|t+j−i − ŷt+j|t).

The latter formula can recursively be applied for j = i− 1, . . . , 1. For j = 1 we have that v̂t+j−1|t =

v̂t|t = vt and this is known on day t, and hence the optimal quantity ordered can be calculated in

this recursive manner.

With the formula for the optimal quantity ordered, we can calculate the stock vt on every day.

Since this is measured after all sales are done on a day, the excess stock function (ES) is simply

equal to vt. The lost sales function (LS) is equal to the surplus of the sales compared to the

previous stock and quantity ordered i days earlier combined: LSt = |min(0, vt−1 + bt|t−i − yt)|. We

can calculate ES and LS for every forecasting technique. These are representative for the effect

of a forecasting technique on inventory management. If we compare ES and LS among different

techniques, it becomes clear which technique cuts the costs the most. Thus, this is also a way to

compare forecasting performance, besides MSPE and MAPE. We can also pick the best (STAR)

forecasting technique in the sense of MSPE and/or MAPE, and compare this with AR forecasts by

ES and LS to see how STAR improves upon AR in terms of costs.

5 Results

In this section, we apply the methods discussed in section 4 to the data that was already explored

in section 3. That is, we build a STAR model to weather-related product daily sales using daily

maximum temperature data. First, in section 5.1 we start by investigating the sales observations

to see if a log transformation is necessary, and whether adding temperature as a linear component

to an AR model improves the default AR model. Secondly, in section 5.2 we apply the cycle to

the highest selling chunk category: fans. We give economic value (e.g., cost reduction or increasing

revenue) to this model in section 5.3. Finally, we repeat the process for other series of products and

summarize these in section 5.4.
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5.1 Investigating the time series

For the entire process of building and evaluating the model, we will make a division of the data into

a train and a test set. The train set consists of the first two years of data (2018 and 2019), whereas

the test data consists of only one year (2020), such that there is a 2/3 split. The train and test

set contain respectively 730 and 366 observations, summing up to a total of 1096. Estimating the

model is done with the train set, and for evaluation the test set is used.

Before the modelling cycle is started, we determine whether a log transformation of the series

is beneficial. It generally depends on the data and model. Generally, when heteroskedasticity is

present for a regular series, a log transform might reduce this. In that case, when the log transformed

series is used, statistical theory is more accurate as it is often built on the assumption of normality

of errors. Lütkepohl and Xu (2012) conclude that it is useful to apply a log transform to a time

series whenever the transformation makes the variance of the series more homogeneous. For the

sales time series, we have already seen that there is exponential growth during the summer (sales

peaks). However, the series return to a constant mean and the variance stabilizes. Moreover, when

we estimate a STAR model (with up to 8 lags, as concluded in section 3) and look into the test

set residuals histogram (see fig. A2), we see that there is a bias relative to 0 and there are outliers

present. The distribution is however symmetric. Thus, we do not have enough evidence for or

against a log transformation, and therefore we apply both series to STAR and compare their sum

of squared residuals (SSR) of the test set. The SSR of the log estimated STAR model is 2.827

times that of the regular estimated model, and therefore we conclude that a log transform does not

improve the model.

We have found an optimal lag order for an AR model in section 4.2.1, and with this we can

estimate an AR model. The linear AR model is considered the default model against which we

compare other models in forecasting performance. We start by adding the exogenous variable

maximum temperature as a linear component to the AR model, to see if including temperatures

enhances the forecasts. This model is called the ARX model (where the X represents the exogenous

variable). In predicting sales on day t, we estimate this based on its m lagged values and the

maximum temperature on that same day. Determining the optimal lag order for ARX is analogous

to AR, and we find the same optimal order of 8. Estimating both models, we obtain estimates of all

coefficients. The intercept of AR equals 679.45 (unit sales), and −13.76 for ARX. The temperature

coefficient estimate in ARX is 44.31. The difference in intercepts is therefore countered by the

temperature coefficient: if we consider a temperature of 15.64 (degrees Celsius) as default, then the
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intercepts coincide. After estimation, we can make forecasts with steps h = 1, . . . , 7. We calculate

MSPE and MAPE for both models. Results are in table 2, where we display MSPE and MAPE

of the ARX model as proportion of the AR model. The MSPE’s of ARX are smaller than in

AR, and moreover, they decrease with respect to the AR model with increasing forecasting step.

Furthermore, DM statistics are given for every forecasting step. For no forecasting step do the

forecasts differ significantly according to the DM statistic (in the sense of MSPE). For MAPE, we

see that for h = 1, 2 the forecasts differ significantly, but not anymore for h ≥ 3. We conclude that

including the maximum temperature as a linear component to AR (i.e., the ARX model) improves

the AR model, even though the forecasts are not (always) significantly different.

h ARX/AR model DM statistic

MSPE MAPE MSPE MAPE

1 0.997 0.833 0.079 3.831

2 0.988 0.842 0.160 2.314

3 0.978 0.840 0.232 1.638

4 0.971 0.857 0.286 1.378

5 0.962 0.860 0.338 1.241

6 0.954 0.871 0.393 1.076

7 0.945 0.868 0.460 1.103

Table 2: MSPE and MAPE of AR models including exogenous variable temperature as proportions of linear (AR) models for

forecasting steps h = 1, . . . , 7, with Diebold-Mariano (DM) statistics for every step.

5.2 Making a STAR model for fan sales

The first part of the modelling cycle is determining the optimal lag order of the linear AR part of

the model as described in section 4.2.1. In the data exploration, we saw that autocorrelations of

the series were significant up to lag 8. Determining the optimal lag order in a more exact manner

is done by calculating the AIC, BIC and LB statistic for every model up to lag order 10. These are

summarized in table 3, where the optimal lag order per measure is put in bold. From this table, it

follows that AIC is minimized for a linear model with lag order 9. For BIC we find an optimal lag

order of 8, and with the LB tests, the smallest order which results in a p-value above 0.05 is also 8.

Therefore, the optimal lag order is m̂ = max(min(pAIC, pBIC), pLB) = max(min(9, 8), 8) = 8. This

matches the conclusion of the data exploration.
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AR order AIC BIC LB p-value

1 11911.19 11924.97 212.09 0.00

2 11780.11 11798.48 226.01 0.00

3 11739.46 11762.43 155.96 0.00

4 11693.68 11721.24 66.51 0.00

5 11686.46 11718.61 51.77 0.00

6 11666.08 11702.82 31.90 0.00

7 11658.88 11700.22 21.28 0.01

8 11649.50 11695.43 8.77 0.27

9 11649.47 11700.00 6.92 0.33

10 11651.26 11706.38 6.26 0.28

Table 3: AIC, BIC, and LB with corresponding p-values for 10 different AR models of the training data. Numbers in bold are

the optimal lag order for the criterion measure of the corresponding column.

We can test a linear model against STAR nonlinearity, to find out if adding nonlinearity to the

model improves the linear model significantly. We do this by performing an LM test as described

in section 4.2.2 for different transition variables. The candidate transition variables are sx,t for

x = 1, . . . , 6. Each of the six candidates is associated to a certain lead observation j, see section 4.1.

As the temperature forecasts are accurate up to seven days ahead, we test for j = 1, . . . , 7. Thus,

there are a total of 42 candidate transition variables. We have performed the LM test for each of

these variables, and the resulting F-values are summarized in table 4. The 5% critical value for an

F-distribution with 3(p+ 1) = 27 and Ttrain − 4(p+ 1) = 694 degrees of freedom equals 1.50. All of

the F-values of the candidate transition variable exceed this value, and hence all candidates indicate

that nonlinearity improve the linear model significantly. The candidate with the largest F-value is

s2,t = z2
t+j for j = 3 (indicated bold in table 4) with F = 25.15 (and p-value 1.92 · 10−84), and we

choose this as our transition variable.

With a lag order of the AR part and STAR nonlinearity, the structure of the model is provided.

Following the modelling cycle, the parameters are to be estimated. Here, we limit ourselves to a

2-regime STAR model. For each regime, there are m = 8 lagged orders and 9 parameters (including

the constant). The transition function contains two extra parameters γ and c. The estimated model
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j s1,t s2,t s3,t s4,t s5,t s6,t

1 15.68 21.96 12.68 18.35 15.68 21.96

2 14.76 18.83 14.73 17.52 19.80 24.30

3 23.95 25.15 15.23 17.61 17.07 19.70

4 19.18 20.76 17.70 20.53 18.60 21.28

5 12.96 15.09 16.23 20.30 17.56 22.01

6 13.21 15.14 14.70 17.92 16.93 20.05

7 16.70 19.78 13.51 15.73 15.66 18.57

Table 4: F-values for testing STAR nonlinearity, with 6 different transition variables sx,t and j the number of included lead

values per transition variable.

is given in eq. (10).

yt = [43.55 + 1.38yt−1 − 0.72yt−2 + 0.51yt−3 − 0.38yt−4 + 0.05yt−5 + 0.20yt−6 − 0.06yt−7

−0.06yt−8] ·
(
1−G(z2

t+3)
)

+ [932.19 + 0.60yt−1 − 1.93yt−2 − 0.06yt−3 + 2.98yt−4

−1.93yt−5 + 1.34yt−6 + 0.23yt−7 − 0.72yt−8] ·G(z2
t+3) + et (10)

The estimated logistic transition function is given in eq. (11). The transition function variables

are γ̂ = 100 and ĉ = 30.972 = 959.39. Switching between regimes occurs at a maximum temperature

of 30.97 (squared), with a rate of 100.00. This transition function is plotted in fig. A3. Due to a

high transition rate combined with squared temperatures, transitioning happens rapidly, and the

transition function approximates a step function. That is, the transition function is roughly 0 for

all temperatures below the threshold value of 30.97 and 1 for all temperatures above this threshold

value. In the train set, 715 observations are in the low regime and 15 in the high regime. In the

train set, 356 observations are in the low regime and 10 in the high regime. The percentage of high

regime observations is 2.10% for the train data and 2.73% for the test data.

G(zt+3; γ, c) = 1
1 + exp{−100.00(zt+3 − 30.972)} (11)

We have estimated the model using train data. Now, we evaluate the model by performing

diagnostic tests and forecasting methods using the test data. First, the test data sales are applied

to the estimated model, to see how well the model estimates new observations, and this is plotted

in fig. 4. Predicted values are generally close to actual values. In the high sales peak around 10

August, there is more deviation in the predictions compared to actual values. The peak of 10 August
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had 26244 sales, while this is overestimated as 40628. On 8 August, the sales were 8910, while the

prediction was underestimated as 1455.

Figure 4: Spring and summer 2020 fan sales (blue) and corresponding model estimated sales (red).

From applying the test set to the model, we obtain 358 residuals, from which 10 correspond to

high regime observations. A histogram of these residuals is given in fig. A2. The median of the set

of residuals is −27.9, indicating a negative bias, i.e., the actual values are more often overestimated.

To test normality of the residuals, we use the Jarque-Bera (JB) test. The test statistic equals

57334 > 5.99 for the full set of residuals, and hence we reject the null hypothesis of normality. The

set of high regime residuals is too small to make accurate decisions about normality. The median

of the absolute residuals is 49.7, while for high regime observations it is 1603.4, indicating more

deviation for high regime observations, and hence heteroskedasticity. To test for this, we regress the

squared residuals on high and low regime variables G(st) and 1−G(st) respectively. The coefficient

of the low regime variable is 461123 with p-value 0.33, and for the high regime variable we have a

coefficient of 41151717 with p-value < 0.001. This indicates that the variance during high regimes is

about 41151717
461123 ≈ 89 times the variance during low regimes, and hence heteroskedasticity is present.

In forecasting by the Monte-Carlo or bootstrapping methods, we can account for this by drawing

regime specific error terms.

The residuals might be correlated with lagged residuals. As this is a violation of the assumptions,

we want to test whether this is true. We do this by means of the serial independence LM test as

described in section 4.2.4. We perform this test using all lagged residuals up to lag q, and we do this
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for q = 1, . . . , 8, see table 5 for the results including critical value per number of included lags. For

every test, the null hypothesis is rejected, and therefore we conclude that residual autocorrelations

are present up to lag 8. A solution to this is increasing the maximum lag order in the linear AR

part of the model. However, we have seen that the residuals are biased. Particularly, in low regime

the predictions often overestimate the actual values, and therefore consecutive residuals are often

negative for a long period. Reducing this bias might help removing the serial dependence. We can

account for this by expanding the number of regimes. We will do this later on.

q LM(q) Critical value

1 307.97 3.84

2 307.23 5.99

3 308.55 7.81

4 307.82 9.49

5 306.99 11.07

6 307.43 12.59

7 308.06 14.07

8 307.21 15.51

Table 5: q serial independence tests of the residuals of the model fitted test data.

With the estimated model, we can make forecasts. The näıve, Monte-Carlo and bootstrapping

methods are compared in MSPE and MAPE. For each method, we make 1 to 7 step ahead forecasts.

On top of that, for the Monte-Carlo and bootstrapping methods we also make a distinction between

no regime specific variance (nsv) and regime specific variance (rsv) for the error terms. The results

are summarized in table 6. Here, MSPE and MAPE of the entire data set for all five forecasting

techniques are given as proportions of the MSPE and MAPE (resp.) of an estimated AR forecasting

model. This is done to provide an insight of how the forecasting techniques compare to a standard

AR model.

Evaluating the forecasts by MSPE of the entire set, we see in table 6 that they do not differ too

much between different forecasting techniques. For almost all forecasting steps and techniques, the

MSPE values are about 50 to 75% of that of the AR model MSPE. The lowest MSPE is attained for

the Monte-Carlo and bootstrapping methods only. For five steps, bootstrapping works best and for

two steps, Monte-Carlo works best. Moreover, we see that no regime specific variances work best

five times (of which four are bootstrapping), compared to regime specific being the best method
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only twice. We conclude that bootstrapping with no regime specific error terms work best (when

comparing techniques by MSPE). When we look at the absolute MSPE values (that is, without

dividing by the AR model MSPE), we see that the MSPE increases whenever the forecast horizon h

increases, with the exception of h = 3. The exception is due to the choice of the transition variable,

where we picked the 3-day lead temperature.

Next to MSPE, the other measure is MAPE. In table 6, we see the MAPE values of all methods

for the entire dataset as proportion of the AR model MAPE values. The best forecasting technique

is Monte-Carlo with no regime specific variance for the error terms, and this holds for all forecast-

ing steps. Contrary to MSPE, the MAPE values of the forecasting techniques are much smaller

compared to the AR model MAPE values. Here, the MAPE values are about 5-10% of that of the

AR model MAPE values. This is considerably smaller than 50-70% with MSPE. This difference is

explained as follows. For an AR model, there is not enough power to capture both peak observa-

tions and more regular low observations. In estimating a model, a trade-off has to be made between

these types of observations. Therefore, it predicts regular low observations with a large positive

bias, and these cause a large MAPE. The outliers are responsible for a high MSPE. In the case of

a STAR model, the transition function makes sure that peak observations and regular observations

are distinguished more properly. In that way, regular observations are predicted much better and

show less bias, keeping the MAPE low. However, since peak observations still show much volatility,

these are still hard to predict and can still be considered outliers in prediction errors, and hence

MSPE is still high.

h Näıve Monte-Carlo (nsv) Monte-Carlo (rsv) Bootstrap (nsv) Bootstrap (rsv)

MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE

1 0.536 0.098 0.538 0.075 0.536 0.093 0.535 0.089 0.535 0.092

2 0.728 0.074 0.729 0.063 0.731 0.070 0.728 0.069 0.738 0.071

3 0.490 0.067 0.493 0.058 0.489 0.060 0.489 0.062 0.531 0.063

4 0.652 0.062 0.655 0.056 0.654 0.058 0.650 0.058 0.690 0.063

5 0.566 0.061 0.569 0.055 0.571 0.059 0.565 0.060 0.605 0.059

6 0.536 0.058 0.538 0.055 0.536 0.059 0.535 0.059 0.569 0.059

7 0.496 0.060 0.496 0.058 0.499 0.061 0.497 0.060 0.494 0.059

Table 6: MSPE and MAPE for the Näıve, Monte-Carlo and Bootstrapping forecasting methods as proportions of the

MSPE/MAPE from the estimated AR models. The latter two forecasting techniques are divided into no regime specific variance

(nsv) and regime specific variance (rsv). The forecasting steps h range from 1 to 7.
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We have seen that the Monte-Carlo method with no regime specific variance for the error terms

was most often chosen to be the best forecasting method. Thus, we choose this method as the

optimal forecasting technique. In fig. 5 the test data series is plotted together with 3 step ahead

forecasts of the Monte-Carlo method. We have only included spring and summer of 2020 for better

visualization purposes. For low sales, the forecasts are close to the actual values. Daily sales that

are somewhat higher (mid sales), such as the period at the end of May and June, we see a delay

in the forecasts relative to the actual values. The forecasts are more driven by past sales rather

than predicting the right amount of sales taking into account high upcoming temperatures. Because

we have a high transition rate and a high threshold value, transitioning between regimes does not

run smoothly and does not occur often. Therefore, for temperatures below the threshold value,

the model is just a linear AR model, predicting sales based on previous values. In that case, 3

step ahead forecasts are mainly based on previous sales that were between 4 and 11 days prior to

the forecasting date. For high sales, such as the period of the first half of August, the forecasts

show even more volatility. However, since this period contains more high-regime observations, the

forecasts do not show such a delay and are sometimes accurate.

Figure 5: Spring and summer 2020 fan sales (blue) and corresponding 3 step ahead forecasts (red). Forecasting was done by the

Monte-Carlo method.

For the näıve, Monte-Carlo and bootstrap forecasting methods, only one model is estimated, and

with that model all forecasts are made. The other mentioned forecasting method, direct forecasting,

estimates a new model for every forecasting step. The fit of a model is then the forecast. As this
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method requires multiple model estimations, this method is more computer intensive. However, we

might receive more accuracy in our forecasts. Moreover, since we estimate a new model for every

step, we can also implement a new transition variable each step. For forecasting step h, we use

transition variable s2,t = z2
t+h. The MSPE and MAPE for every forecasting step are given in table 7

(again as proportions of a linear AR model). Comparing the MSPE of direct forecasting with the

MSPE of Monte-Carlo forecasting, we see that in the first two steps Monte-Carlo outperforms direct

forecasting, and from forecasting step 3 and later direct forecasting works best. For MAPE, this

holds already from step 2. Furthermore, both the MSPE and MAPE in direct forecasting strictly

decrease in ratio against AR forecasting with increasing forecasting step (with the exception of

h = 7). We conclude that direct forecasting gives the best results out of all four forecasting

techniques.

To determine whether a STAR model significantly improves forecasting results, we compare the

forecasting errors of the best STAR forecasting method with forecasting errors of an AR model

by means of the Diebold-Mariano (DM) test. The DM statistic is calculated for both MSPE and

MAPE, and are summarized in table 7. The critical value of this test is 1.96 on 5% significance, and

we reject for larger values of the test statistic. for the first two forecasting steps, the test statistic

(for MSPE) is lower than the critical value, and therefore the forecasting methods do not differ

significantly. For forecasting horizon h ≥ 3, direct forecasting improves MSPE significantly. The

DM statistics for MAPE show significant improvement of direct forecasting upon linear forecasting

for all forecasting steps.

h Direct/AR model DM statistic

MSPE MAPE MSPE MAPE

1 0.784 0.182 1.01 6.72

2 0.850 0.068 1.03 10.40

3 0.367 0.035 4.89 13.38

4 0.270 0.032 8.80 14.40

5 0.180 0.023 8.90 14.67

6 0.142 0.021 10.17 14.52

7 0.168 0.047 11.74 13.86

Table 7: MSPE and MAPE of the best nonlinear forecasting method (Direct) as proportions of linear (AR) models for forecasting

steps h = 1, . . . , 7, with Diebold-Mariano (DM) statistics for every step.
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Due to the serial dependence of the residuals and lack of flexibility of the model for middle to

high temperatures, we propose to not limit the model to only two regimes. Therefore, we estimate a

MRSTAR model. We estimate MRSTAR models and make forecasts for h = 1, . . . , 7 using the best

forecasting technique for the 2-regime STAR model, which is direct forecasting. The same transition

variables are used for each forecasting step, and only 3-regime (MR)STAR models are estimated.

The results are in table 8. For all models, except for the 1 step ahead direct model, we accept

the alternative of adding an extra regime from testing no remaining nonlinearity (as described in

section 4.2.4. MSPE of MRSTAR increases relative to STAR forecasts for increasing forecasting

step, and are always higher. The MAPE proportions are considerably smaller than MSPE, but are

still larger for MRSTAR than MAPE (with the exception of h = 7. We conclude that adding an

extra regime to direct STAR models does not improve the forecasting accuracy.

h
p-value of testing

an extra regime
ĉ1 ĉ2

MSPE ratio 3-regime

vs. 2-regime STAR

MAPE ratio 3-regime

vs. 2-regime STAR

2 1.37 · 10−38 811.32 844.76 1.115 1.119

3 4.01 · 10−19 862.03 941.16 2.148 1.430

4 6.42 · 10−12 885.21 951.31 7.895 1.289

5 1.53 · 10−10 914.98 949.29 2.560 1.658

6 1.77 · 10−13 914.29 946.61 3.024 1.720

7 2.10 · 10−33 798.43 982.15 12.875 0.951

Table 8: p-values of testing adding an extra regime to a 2-regime direct STAR model, with estimated threshold values ĉ1 and ĉ2,

and MSPE/MAPE proportions of MRSTAR against STAR forecasts. Note that for h = 1, adding an extra regime was rejected.

5.3 Economic value of the new sales model

A STAR model is built to predict the sales of a product. We know which past sales are used to

determine the next sales, which transition variable works best to estimate the model (and thus how

many days ahead temperature forecasts works best), and at which temperature the model starts

transitioning into a new regime. Several forecasting techniques are applied to the model, and we

determined which technique works best (direct forecasting), and how much better (in terms of the

forecasting error) it works compared to a standard AR model. In addition to this, we want to

express the improvement of the forecasting technique in economic/business terms. We want to

know what we can do with the more accurate predictions, what the benefits are of having more
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accurate sales predictions and how do they improve compared to a normal forecasting model.

For both the AR and the STAR (direct) forecasting methods, we apply the process of determining

the excess stock and lost sales as described in section 4.5. We do this for the scenarios where it

takes h = 1, . . . , 7 days for an order of products to arrive. The results are summarized in table 9.

h Excess stock Lost sales Break-even

AR STAR AR STAR ratio pLS/pES

1 707 319 108 335 1.71

2 2095 713 92 410 4.34

3 4248 1725 96 505 6.17

4 7035 2196 117 488 13.04

5 10457 2252 139 528 21.06

6 14250 2394 152 514 32.71

7 18291 2629 152 561 38.36

Table 9: Mean excess stock and lost sales for AR and STAR model for forecasting steps h = 1, . . . , 7. Includes the break-even

proportion of the cost price of having lost sales against excess stock at which AR and STAR have equal total costs.

For all forecasting steps, the excess stock is higher in the AR model than the STAR model,

whereas the lost sales of the STAR model always exceed those of the AR model. The excess stock

are about 2−7× larger in AR models than in STAR models. The lost sales are about 3−5× larger

in STAR models than AR models. The number of lost sales are however much smaller than the

excess stock. If we assume that the e-commerce company values having minimal excess stock and

lost sales equally, then we conclude that STAR outperforms a regular AR model.

If we do not assume that the e-commerce company values excess stock and lost sales equally,

then we can calculate the ratio between the costs of excess stock and lost sales at which AR and

STAR have the same total performance (equal total costs). Let a be the proportion of the cost price

of having lost sales against excess stock, i.e., pLS = a · pES. We want to know (for all h) for which a

we have that the costs of excess stock and lost sales is equal when using an AR or STAR model. For

instance, for h = 1 the costs of AR are 855pES + 174pLS = (855 + 174a)pES, and the costs of STAR

are (319 + 335a)pES. These are equal for a = 855−319
335−174 ≈ 1.71. Thus, if lost sales are considered to

cost less than 1.71× excess stock, then using STAR forecasts results in less costs. The results are

displayed in table 9, and we see that the proportion rises with increasing forecasting step.

Within the AR models, the excess stock are much higher than the lost sales, and their proportion
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increases with forecasting step. We have discussed before (in section 5.2), that AR forecasting

models contain major positive bias for regular low sales. Because of this, forecasts are often much

higher than their actual values. Hence, high stocks are maintained to match the forecasts and thus

excess stock is high for AR models. As there is a lot of excess stock, the consequence is that the

amount of lost sales are often zero. These phenomena can be seen in fig. 6, where we consider the

case h = 3. Moreover, we see that when a peak is predicted too late and sales are already declining,

we are left with a lot of excess stock, and it decreases only slowly as there are not enough daily

sales during the period after the peak. This occurs at the peak of the end of June and at the peak

of mid August.

Figure 6: Spring and summer 2020 fan sales (blue) and corresponding 3 step ahead AR forecasts (red). Excess stock is represented

by green dots, lost sales by gray dots.

Within the STAR models, the excess stock are smaller than the lost sales, with the exception

of the first step. STAR forecasts contain less bias than AR forecasts, and therefore excess stock

is generally low. There is, however, somewhat more negative bias present in the STAR forecasts

compared to the actual sales, and therefore there are more lost sales here than with AR. This can be

seen in fig. 6, where we again visualize excess stock and lost sales for the case h = 3, now for STAR

forecasts. Like with AR, we see again that whenever sales peaks are predicted with a delay and the

sales are already declining, we are left with excess stock in the period after the peak. Notably, the

peak at the end of September is predicted very high due to high temperatures. However, since the

summer is nearly over, demand of fans remains low and we are left with excess stock for the period
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thereafter.

Figure 7: Spring and summer 2020 fan sales (blue) and corresponding 3 step ahead STAR forecasts (red). Excess stock is

represented by green dots, lost sales by gray dots.

5.4 Sales models for other weather-related products

A STAR model for fan sales is constructed and forecasts are made with this model in section 5.2.

Their economic/business values are expressed in terms of excess stock and lost sales in section 5.3

and this is compared to a standard AR model. Now we want to apply this process to other product

chunks, to find out if the forecasting techniques have similar performances, and if the business

models are affected differently.

We will investigate a total of five product chunks and summarize all results in tables. Each

table contains results of the prior exploration of the time series, results of estimating the model,

results of the STAR forecasts and a fragment of the business model. Particularly for the forecasts

and the business model, not all results are given. For instance, we limit ourselves to 3- and 6-day

ahead forecasts and orders. Although this is not complete, it is representative as the other steps

are similar.

The second (after the already investigated fans) product chunk is referred to as chunk2. Re-

sults of investigating this series and building the STAR model are given in table 10. The high-

est correlation between sales and (a shifted version of) the maximum temperature is attained for

s3,t = max{zt, zt+1, . . . , zt+7}. No first differences or a log transformation is applied, and adding
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temperature as a linear component to an AR model improves this model in terms of MSPE. The

optimal lag order is 8 and s2,t = z2
t+3 is chosen as the candidate transition variable, just like for the

fan sales. γ̂ = 3.08 and ĉ = 515.73, both lower than for the fan sales. Due to a lower threshold value,

there are more high regime observations (56 in total). Monte-Carlo with no regime specific error

variance is chosen as the best forecasting method, and these differ significantly from AR forecasts.

These forecasts are about 2 times better in terms of MSPE and about 9 times better in terms of

MAPE. MRSTAR again does not improve forecasting results. Average excess stock and lost sales

are about 3 − 4× smaller by using STAR forecasts compared to AR. The business model results

are displayed in fig. 8. The sales observations of chunk2 show more volatility during Spring and

Summer than the fan sales. We can see this behaviour in the forecasts too, making it easier for

the STAR model to forecast medium high observations (say, between 1000 and 3000 units sales),

although the high peaks are still hard to capture by forecasts. Therefore, the daily sum of excess

stock and lost sales are more often distanced from 0 than in the fan sales business model.

Series summary
Min Median Mean Max

27 250 571.5 10174

Correlation temperature and sales Highest correlation ρ = 0.515 for s3,t = max{zt, zt+1, . . . , zt+7},

First differences No, τADF = −4.09 < −2.86

Log transformation No, STAR nonlinearity rejected

ARX vs. AR Improves in MSPE for h = 4, . . . , 7. Improves in MAPE for all h

Optimal AR lag order m̂ = 8

STAR nonlinearity vs. linearity Highest F-value attained for s2,t = z2
t+3

Est. parameters of transition function γ̂ = 3.08 and ĉ = 22.712 = 515.73

Size of high regime observations set 56 out of 366

Best forecasting method Monte Carlo with no regime specific variance

MSPE and MAPE proportions of

best STAR vs. AR

MSPE, h = 3 MAPE, h = 3 MSPE, h = 6 MAPE, h = 6

0.570 0.128 0.503 0.121

Second best forecasting method Näıve method

DM tests best STAR vs. AR For all h, reject H0: significantly different forecasts

MRSTAR vs. best STAR STAR outperforms MRSTAR except for h = 5 in terms of MAPE

Average excess stock + lost sales
3-day orders, AR 3-day orders, STAR 6-day orders, AR 6-day orders, STAR

1995 592 4549 1445

Break-even price best STAR vs. AR pES = 12.36pLS for h = 3 and pES = 17.25pLS for h = 6

Table 10: Summarizing table of the chunk2 time series: exploration, STAR model and business model.
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Figure 8: Spring and summer 2020 sales (blue) and corresponding 3 step ahead STAR forecasts (red) of chunk 2. Excess stock

is represented by green dots, lost sales by gray dots.

The last three chunks are not presented here. The summarizing tables of chunk3, chunk4 and

chunk5 can be found in table A1, table A2 and table A3 respectively. We summarize the results of

all five mentioned chunks below.

Testing for first difference always leads to rejection. A log transformation is never adopted,

either due to rejection of STAR nonlinearity or because MSPE does not improve compared to a

regular (without a log transformation) STAR model. Adding temperature as a linear component to

an AR model (i.e., an ARX model) nearly almost improves the AR model. The optimal lag orders

are between 6 and 10. Different candidate transition variables are chosen by testing against STAR

nonlinearity, but always a squared version and three times it included the third lead temperature

at max. Monte-Carlo (either with or without regime specific errors) is always chosen as either the

best or second best forecasting technique. Both bootstrap with regime specific errors and direct

forecasting are chosen once as the best and once as the second best forecasting method. MSPE

is improved by STAR forecasts (compared to AR) by about 1 − 2×. MAPE however is improved

a lot more by about 10 − 20×. MRSTAR rarely ever improves STAR. The exception is chunk5,

where MRSTAR improves STAR for mostly the higher forecasting steps (between 5 and 7). Average

excess stock is always higher when using AR forecasts, while average lost sales are lower. However,

total excess stock always exceeds the total lost sales. Therefore, if excess stock and lost sales are

penalized equally, the costs of using an AR model are always higher than of using a STAR model.
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6 Conclusion

In this research, we have applied econometric methods on time series of the unit sales of weather

related product chunks to answer the research question: ”Can sales peaks of weather related prod-

ucts or product groups be predicted by weather data and/or weather forecasts, and if so, how can

this be modeled?”.

Using accurate forecasting techniques to predict sales is relevant to the e-commerce company and

e-commerce companies. For the e-commerce company, sales peaks forecasts are not yet implemented,

and it is yet unclear if the demand of products is anticipated on by their stock. With accurate

forecasts, it is easier to meet product demand of customers: the amount of excess stock and lost

sales decreases, and therefore it cuts the total costs.

To find out whether adding maximum temperature to a time series model improves forecasting

results, five product chunks are investigated. For each product chunk, different models are applied

and forecasts varying from 1 to 7 steps are made. The default model is the AR model, and we

compute forecasting results of other models relative to this AR model. First, adding the maximum

temperature linearly to AR into an ARX model always improved MAPE and almost always improved

MSPE. Furthermore, we have estimated STAR models with maximum temperature as transition

variable, and made forecasts with these models. Not all forecasting techniques were always better

than AR, but there was always at least one that outperformed AR in terms of MSPE and MAPE.

Thus, adding temperature to a time series model improves forecasting results.

For the STAR models, transformed versions (in the sense of differencing) of the maximum

temperature are used. By means of LM tests, the exact temperature lead is chosen. For three

chunks, it was the maximum temperature (up to) 3 days ahead, and 2 and 5 for the other two

chunks. Therefore, we conclude that sales are best estimated using three day ahead forecasts of the

maximum temperature.

Four forecasting techniques are examined on STAR: näıve, Monte-Carlo, bootstrapping and

direct forecasting. For Monte-Carlo and bootstrapping, we have also made a distinction by using

regime specific error terms or not. Based on MSPE and MAPE, Monte-Carlo without regime specific

error terms was the best method. Direct and bootstrap with regime specific error terms were second,

although bootstrapping is preferred, since can be computer intensive as for every forecasting step a

new model needs to be estimated. Generally, the MSPE of STAR was about 50% and the MAPE

often less then 10% of an AR model. This was due to the fact that sales peaks are hard to estimate
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for both models. The residuals are therefore high in both models. This has a relatively large

contribution to MSPE, but not to MAPE, as the latter metric is more robust to outliers. Finally,

MRSTAR forecasts almost never improved STAR forecasts, with the exception of one chunk for the

higher forecasting steps (4 to 7).

Finally, we have determined the economic impact of using different forecasts by making a busi-

ness model. This business model consisted of excess stock and lost sales, both desired to be min-

imized. For AR models there was more excess stock present but less lost sales. This is because

AR models tend to overestimate observations more than STAR. Nevertheless, the amount of excess

stock always exceeded the amount of lost sales. Therefore, assuming that the price of having excess

stock and lost sales is equal, STAR cuts the total costs compared to AR.

We conclude that sales (particularly, sales peaks) of weather related product groups (chunks)

can be predicted by using previous sales and weather forecasts. It is best to model this using a

STAR model, particularly using Monte-Carlo forecasts without drawing regime specific error terms.

It is however still hard for a STAR model to predict a sales peak, but if sales peaks occur more

gradually, then STAR is still able to capture these peaks. STAR reduces the amount of excess stock

vastly, but increases the amount of lost sales slightly.

We recommend the e-commerce company to utilize STAR models for weather related products.

The stock should be adjusted to the STAR forecasts. Moreover, the forecasts should be communi-

cated to partners of the e-commerce company, adjusted to the total output of each partner, such

that they can adjust their stock too. In this manner, we improve the inventory management and

we reduce the total amount of costs.

7 Limitations and further research

In this section, we discuss limitations of this paper and provide potential topics for future research.

In predicting sales, we have used weather forecasts. Unfortunately, these forecasts were un-

available, and hence we have assumed that the temperature forecasts were equal to the actual

temperatures. However, we have substantiated this by noting that research of the ECMWF states

that current temperature forecasts are accurate (in the sense of a maximum deviation of one degree

Celsius) up to 7 days ahead. Nevertheless, it might be better to use actual forecasts, such that the

temperature forecasts are not necessarily equal to their true value.

We have seen that observations of low unit sales are often overestimated, and observations of high
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unit sales are often underestimated. For an AR model, there is not enough power to capture both

peak observations and more regular low observations. For STAR, this also holds to a certain extent.

Generally, in estimating a model, a trade-off has to be made between these types of observations.

We might be able to counter this by applying other values of γ, because transitioning between

regimes is then much smoother (or less). Even though this value is determined by the estimation

procedure, it does not mean that this value is optimal for different forecasting steps. We can for

instance try different γ’s and compute forecasting results, and comparing these might lead to a

different choice of γ.

STAR makes it possible for the time series to blow up easily when temperature is high. This

works well during the late spring and summer. However, outside this period there might still be high

temperatures, but little demand. This occurs for instance in the fan sales at the end of September.

Due to hot upcoming weather, a sales peak is forecast. However, because it is that late in the

season, the demand is not rising. The consequence is a high amount of excess stock. We might

prevent this by including seasonal dummy variables in the model. They can be 1 for the second half

of the spring and the entire summer (and 0 elsewhere) for instance. Another idea is to use ESTAR

as transition function in combination with a time transition variable. This function is low (near

zero) around a threshold value, and gradually (and symmetrically) goes to one. Thus, this indicates

a high regime near a certain date in the year, and the low regime consists of dates far away from

that date.

In this paper we have treated overestimation and underestimation of forecasts with equal penalty

(particularly, in STAR). Consequently, the excess stock and lost sales are treated equally as well.

However, it might be that the e-commerce company values having low lost sales more (not entirely)

than having low excess stock. Future research might therefore include estimating STAR models

where underestimation of forecasts are penalized heavier than overestimation.

Other future research might be to include more chunks. In this paper, only five chunks are

considered. This is not enough to make general (in the sense of all weather related products)

conclusions about which forecasting technique outperforms the others for instance. Furthermore,

we have seen serial correlation in the error terms for every chunk. We can account for this by using

GARCH error terms. Indeed, GARCH is appropriate for when error terms are serially correlated, or

if heteroskedasticity is present. Finally, it might be interesting to look into promotion of products,

as this might cause sales peaks too. This can be modeled as a promotion dummy variable, capturing

the discrepancy of the promotional period.
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A Tables and figures

Figure A1: Development of the quality of weather forecasts in Europe between 1981 and 2021. The period in days for which the

location of high- and low-pressure areas were accurately predicted over that month is given in blue, with the 12 month moving

average in red. Source: European Centre for Medium-Range Weather Forecasts (ECMWF), see Haiden et al. (2021).

Figure A2: Histogram of the test set STAR model residuals. Due to visualization purposes, residuals having an absolute value

higher than 2000 units are omitted (12 in total).

49



Figure A3: Logistic transition function G, with transition variable st = zt+3, and parameters γ = 100.00 and c = 30.972.

Series summary
Min Median Mean Max

5 43 369.7 9758

Correlation temperature and sales Highest correlation ρ = 0.451 for s3,t = max{zt, zt+1, . . . , zt+3}

First differences No, τADF = −6.15 < −2.86

Log transformation No, MSPE of log transformed STAR is 1.015 times MSPE of regular STAR

ARX vs. AR Improves in MSPE for h = 2, . . . , 7. Improves in MAPE for all h

Optimal AR lag order m̂ = 6

STAR nonlinearity vs. linearity Highest F-value attained for s4,t = max{zt, zt+1, . . . , zt+3}2

Est. parameters of transition function γ̂ = 1.43 and ĉ = 26.612 = 708.08

Size of high regime observations set 44 out of 366

Best forecasting method Monte Carlo with no regime-specific error variance

MSPE and MAPE proportions of

best STAR vs. AR

MSPE, h = 3 MAPE, h = 3 MSPE, h = 6 MAPE, h = 6

0.979 0.058 0.639 0.041

Second best forecasting method Bootstrap with regime-specific error terms

DM tests best STAR vs. AR In terms of MSPE, forecasts do not differ. In terms of MAPE, forecasts differ.

MRSTAR vs. best STAR STAR outperforms MRSTAR except for h = 3 in terms of MAPE

Average excess stock + lost sales
3-day orders, AR 3-day orders, STAR 6-day orders, AR 6-day orders, STAR

1342 677 4111 1967

Break-even price best STAR vs. AR pES = 4.00pLS for h = 3 and pES = 8.32pLS for h = 6

Table A1: Summarizing table of the chunk3 time series: exploration, STAR model and business model.
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Series summary
Min Median Mean Max

1 43 204.1 3310

Correlation temperature and sales Highest correlation ρ = 0.609 for s3,t = max{zt, zt+1, . . . , zt+3}

First differences No, τADF = −4.96 < −2.86

Log transformation No, MSPE of log transformed STAR is 1.346 times MSPE of regular STAR

ARX vs. AR Improves in MSPE and MAPE for all h

Optimal AR lag order m̂ = 9

STAR nonlinearity vs. linearity Highest F-value attained for s2,t = z2
t+5

Est. parameters of transition function γ̂ = 31.46 and ĉ = 24.082 = 579.75

Size of high regime observations set 40 out of 366

Best forecasting method Bootstrap with regime-specific error terms

MSPE and MAPE proportions of

best STAR vs. AR

MSPE, h = 3 MAPE, h = 3 MSPE, h = 6 MAPE, h = 6

0.964 0.089 0.933 0.056

Second best forecasting method Monte Carlo with no regime-specific error variance

DM tests best STAR vs. AR In terms of MSPE, forecasts do not differ. In terms of MAPE, forecasts differ.

MRSTAR vs. best STAR STAR outperforms MRSTAR for all h

Average excess stock + lost sales
3-day orders, AR 3-day orders, STAR 6-day orders, AR 6-day orders, STAR

527 232 1490 803

Break-even price best STAR vs. AR pES = 4.18pLS for h = 3 and pES = 6.02pLS for h = 6

Table A2: Summarizing table of the chunk4 time series: exploration, STAR model and business model.
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Series summary
Min Median Mean Max

0 21 121.4 1455

Correlation temperature and sales Highest correlation ρ = 0.656 for s3,t = max{zt, zt+1, . . . , zt+3}

First differences No, τADF = −5.03 < −2.86

Log transformation No, STAR nonlinearity is rejected

ARX vs. AR Improves in MSPE and MAPE for all h

Optimal AR lag order m̂ = 10

STAR nonlinearity vs. linearity Highest F-value attained for s2,t = z2
t+2

Est. parameters of transition function γ̂ = 2.70 and ĉ = 25.212 = 635.70

Size of high regime observations set 30 out of 366

Best forecasting method Monte-Carlo with regime-specific error terms

MSPE and MAPE proportions of

best STAR vs. AR

MSPE, h = 3 MAPE, h = 3 MSPE, h = 6 MAPE, h = 6

0.592 0.068 0.418 0.054

Second best forecasting method Direct forecasting

DM tests best STAR vs. AR For all h, forecasts differ significantly

MRSTAR vs. best STAR MRSTAR outperforms STAR for h = 5, 6, 7 (MSPE) and h = 4, 6 (MAPE)

Average excess stock + lost sales
3-day orders, AR 3-day orders, STAR 6-day orders, AR 6-day orders, STAR

461 121 1409 217

Break-even price best STAR vs. AR pES = 5.94pLS for h = 3 and pES = 12.98pLS for h = 6

Table A3: Summarizing table of the chunk5 time series: exploration, STAR model and business model.
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B Theory

B.1 Partial derivatives of the logistic function

The logistic transition function G is given by G(st; γ, c) = 1
1+e−γ(st−c) . Define a := st − c, then the

transition function is represented as G(γ) = 1
1+e−aγ . Its first three partial derivatives with respect

to γ are:

∂G

∂γ
= ae−aγ

(e−aγ + 1)2 ;

∂2G

∂γ2 = (e−aγ + 1)2 · −a2e−aγ − ae−aγ · 2 (e−aγ + 1) · −ae−aγ

(e−aγ + 1)4

=− a2 e
−aγ − e−2aγ

(e−aγ + 1)3 ;

∂3G

∂γ3 =− a2 (e−aγ + 1)3 ·
(
−ae−aγ + 2ae−2aγ)− (e−aγ − e−2aγ) · 3(e−aγ + 1)2 · −ae−aγ

(e−aγ + 1)6

=− a3−e−2aγ + 2e−3aγ − e−aγ + 2e−2aγ + 3e−2aγ − 3e−3aγ

(e−aγ + 1)4

= a3 e
−aγ − 4e−2aγ + e−3aγ

(e−aγ + 1)4 .

If we substitute a = st − c back, it follows that

∂G

∂γ

∣∣∣∣
γ=0

= 1
4(st − c),

∂2G

∂γ2

∣∣∣∣∣
γ=0

= 0, and ∂3G

∂γ3

∣∣∣∣∣
γ=0

= −1
8(st − c)3.

B.2 The BFGS algorithm

The BFGS algorithm is a Quasi-Newton method to solve unconstrained nonlinear optimization.

It is named after its discoverers Broyden, Fletcher, Goldfarb and Shannon. Suppose we want to

minimize f(x), with x ∈ Rn and f a differentiable scalar function. The idea is to start from an initial

point x0 and iteratively obtain better estimates by performing a line search based on the previous

estimate, the gradient and an approximate Hessian. The BFGS algorithm is given in Algorithm 1,

see (Wright & Nocedal, 1999). For initial inverse Hessian H0, we can simply choose the identity

matrix. The constants in the Wolfe conditions are often chosen to be c1 = 10−4 and c2 = 0.9.
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Algorithm 1: BFGS

1 Input: Initial value x0;

2 Function f with gradient ∇f ;

3 An inverse approximate Hessian H0;

4 Convergence tolerance ε > 0.

5 k ← 0

6 while ‖∇fk‖ > ε do

7 Compute the search direction pk = −Hk∇fk.

8 Set xk+1 = xk + αkpk, where αk is obtained by line search to satisfy the Wolfe

conditions:
f (xk + αkpk) ≤ f (xk) + c1αk∇f ′kpk,

∇f (xk + αkpk)′ pk ≥ c2∇f ′kpk,

with 0 < c1 < c2 < 1;

9 Define sk = xk+1 − xk and yk = ∇fk+1 −∇fk;

10 Compute the next inverse approximate Hessian Hk+1 by:

Hk+1 =
(
I − pksky′k

)
Hk

(
I − pkyks′k

)
+ pksks

′
k;

11 k ← k + 1;

12 end
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