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S
warm intelligence is a relative-
ly new approach to problem
solving that takes inspiration from
the social behaviors of insects and of

other animals. In particular, ants have inspired
a number of methods and techniques among which the most
studied and the most successful is the general purpose opti-
mization technique known as ant colony optimization.

Ant colony optimization (ACO) takes inspiration from the
foraging behavior of some ant species. These ants deposit
pheromone on the ground in order to mark some favorable
path that should be followed by other members of the colony.
Ant colony optimization exploits a similar mechanism for solv-
ing optimization problems.

From the early nineties, when the first ant colony opti-
mization algorithm was proposed, ACO attracted the atten-
tion of increasing numbers of researchers and many successful

applications are now available.
Moreover, a substantial corpus of theo-

retical results is becoming available that provides
useful guidelines to researchers and practitioners in further

applications of ACO.
The goal of this article is to introduce ant colony opti-

mization and to survey its most notable applications. Sec-
tion I provides some background information on the
foraging behavior of ants. Section II describes ant colony
optimization and its main variants. Section III surveys the
most notable theoretical results concerning ACO, and Sec-
tion IV illustrates some of its most successful applications.
Section V highlights some currently active research topics,
and Section VI provides an overview of some other algo-
rithms that, although not directly related to ACO, are
nonetheless inspired by the behavior of ants. Section VII
concludes the article.
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I. Biological Inspiration
In the forties and fifties of the twentieth century, the French
entomologist Pierre-Paul Grassé [1] observed that some
species of termites react to what he called “significant stim-
uli”. He observed that the effects of these reactions can act as
new significant stimuli for both the insect that produced them
and for the other insects in the colony. Grassé used the term
stigmergy [2] to describe this particular type of communication
in which the “workers are stimulated by the performance they
have achieved”.

The two main characteristics of stigmergy that differentiate it
from other forms of communication are the following.
❏ Stigmergy is an indirect, non-symbolic form of communi-

cation mediated by the environment:
insects exchange information by mod-
ifying their environment; and 

❏ Stigmergic information is local: it can
only be accessed by those insects that
visit the locus in which it was released
(or its immediate neighborhood).

Examples of stigmergy can be observed
in colonies of ants. In many ant species,
ants walking to and from a food source
deposit on the ground a substance called
pheromone. Other ants perceive the pres-
ence of pheromone and tend to follow
paths where pheromone concentration is
higher. Through this mechanism, ants are
able to transport food to their nest in a
remarkably effective way.

Deneubourg et al. [3] thoroughly
investigated the pheromone laying and
following behavior of ants. In an experi-
ment known as the “double bridge
experiment’’, the nest of a colony of
Argentine ants was connected to a food
source by two bridges of equal lengths
[see Figure 1(a)]. In such a setting, ants
start to explore the surroundings of the
nest and eventually reach the food
source. Along their path between food
source and nest, Argentine ants deposit
pheromone. Initially, each ant randomly chooses one of the
two bridges. However, due to random fluctuations, after
some time one of the two bridges presents a higher concen-
tration of pheromone than the other and, therefore, attracts
more ants. This brings a further amount of pheromone on
that bridge making it more attractive with the result that
after some time the whole colony converges toward the use
of the same bridge.1

This colony-level behavior, based on autocatalysis, that is,
on the exploitation of positive feedback, can be used by ants to

find the shortest path between a food source and their nest.
Goss et al. [4] considered a variant of the double bridge experi-
ment in which one bridge is significantly longer than the other
[see Figure 1(b)]. In this case, the stochastic fluctuations in the
initial choice of a bridge are much reduced and a second mech-
anism plays an important role: the ants choosing by chance the
short bridge are the first to reach the nest. The short bridge
receives, therefore, pheromone earlier than the long one and
this fact increases the probability that further ants select it rather
than the long one. Goss et al. [4] developed a model of the
observed behavior: assuming that at a given moment in time m1

ants have used the first bridge and m2 the second one, the prob-
ability p1 for an ant to choose the first bridge is:

p1 = (m1 + k)h

(m1 + k)h + (m2 + k)h
, (1)

where parameters k and h are to be fitted to the experimental
data—obviously, p2 = 1 − p1 . Monte Carlo simulations
showed a very good fit for k ≈ 20 and h ≈ 2 [5].

II. The Optimization Technique
The model proposed by Deneubourg and co-workers for
explaining the foraging behavior of ants was the main source
of inspiration for the development of ant colony optimiza-
tion. In ACO, a number of artificial ants build solutions to
the considered optimization problem at hand and exchange

ALGORITHM AUTHORS YEAR REFERENCES

ANT SYSTEM (AS) DORIGO ET AL. 1991 [6]−[8]
ELITIST AS DORIGO ET AL. 1992 [7], [8]
ANT-Q GAMBARDELLA & DORIGO 1995 [9]
ANT COLONY SYSTEM DORIGO & GAMBARDELLA 1996 [10]−[12]
MAX -MIN AS STÜTZLE & HOOS 1996 [13]−[15]
RANK-BASED AS BULLNHEIMER ET AL. 1997 [16], [17]
ANTS MANIEZZO 1999 [18]
BWAS CORDON ET AL. 2000 [19]
HYPER-CUBE AS BLUM ET AL. 2001 [20], [21]

TABLE 1 A non-exhaustive list of successful ant colony optimization algorithms 
(in chronological order).

FIGURE 1  Experimental setup for the double bridge experiment. 
(a) Branches have equal lengths [3]. (b) Branches have different lengths [4].
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1Deneubourg and co-workers repeated the experiment a number of times and
observed that each of the two bridges is used in about 50% of the cases.
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information on the quality of these solutions via a communica-
tion scheme that is reminiscent of the one adopted by real ants.

Different ant colony optimization algorithms have been
proposed. The original ant colony optimization algorithm is
known as Ant System [6]–[8] and was proposed in the early

nineties. Since then, a number of other ACO algorithms were
introduced. (See Table 1 for a non-exhaustive list of successful
variants.) All ant colony optimization algorithms share the
same idea, which is best illustrated through an example of how
ACO algorithms can be applied. Section II-A describes in sim-
ple terms how a generic ACO algorithm is applied to the well-
known traveling salesman problem, and Section II-B gives a
more formal description of ACO.

A. ACO for the Traveling Salesman Problem
In the traveling salesman problem, a set of cities is given
and the distance between each of them is known. The goal
is to find the shortest tour that allows each city to be visited
once and only once. In more formal terms, the goal is to
find a Hamiltonian tour of minimal length on a fully con-
nected graph.

In ant colony optimization, the problem is tackled by simu-
lating a number of artificial ants moving on a graph that

encodes the problem itself: each vertex represents a city and
each edge represents a connection between two cities. A vari-
able called pheromone is associated with each edge and can be
read and modified by ants.

Ant colony optimization is an iterative algorithm. At each
iteration, a number of artificial ants are considered. Each of
them builds a solution by walking from vertex to vertex on the
graph with the constraint of not visiting any vertex that she has
already visited in her walk. At each step of the solution con-
struction, an ant selects the following vertex to be visited
according to a stochastic mechanism that is biased by the
pheromone: when in vertex i, the following vertex is selected
stochastically among the previously unvisited ones (see Figure
2). In particular, if j has not been previously visited, it can be
selected with a probability that is proportional to the
pheromone associated with edge ( i, j).

At the end of an iteration, on the basis of the quality of the
solutions constructed by the ants, the pheromone values are
modified in order to bias ants in future iterations to construct
solutions similar to the best ones previously constructed. 

B. The Ant Colony Optimization Metaheuristic
Ant colony optimization has been formalized into a meta-
heuristic for combinatorial optimization problems by Dorigo
and co-workers [22], [23]. A metaheuristic is a set of algorithmic
concepts that can be used to define heuristic methods applica-
ble to a wide set of different problems. In other words, a meta-
heuristic is a general-purpose algorithmic framework that can
be applied to different optimization problems with relatively
few modifications. Examples of metaheuristics include simulat-
ed annealing [24], [25], tabu search [26]−[28], iterated local
search [29], evolutionary computation [30]−[33], and ant
colony optimization [8], [22], [23], [34].

In order to apply ACO to a given a combinatorial opti-
mization problem, an adequate model is needed:

A combinatorial optimization problem
A model P = (S,�, f ) of a combinatorial optimization problem
consists of:
❏ a search space S defined over a finite set of discrete decision variables

X i, i = 1, . . . , n;
❏ a set � of constraints among the variables; and 
❏ an objective function f : S → R

+
0 to be minimized.2

The generic variable X i takes values in D i = {v1
i , . . . , v|D i |

i }. A
feasible solution s ∈ S is a complete assignment of values to variables
that satisfies all constraints in �. A solution s∗ ∈ S is called a global
optimum if and only if: f (s∗) ≤ f (s) ∀s ∈ S.

The model of a combinatorial optimization problem is used to
define the pheromone model of ACO. A pheromone value is
associated with each possible solution component; that is, with
each possible assignment of a value to a variable. Formally, the
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In ACO, a number of artificial ants build
solutions to an optimization problem and
exchange information on their quality via a
communication scheme that is reminiscent
of the one adopted by real ants.

FIGURE 2  An ant in city i chooses the next city to visit via a stochastic
mechanism: if j has not been previously visited, it can be selected with
a probability that is proportional to the pheromone associated with
edge (i, j).

i

g
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k

2Any maximization problem can be trivially reduced to a minimization problem:
maximizing a given function g is clearly equivalent to minimizing f = −g.
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pheromone value τ i j is associated with
the solution component c i j , which
consists of the assignment X i = v j

i .
The set of all possible solution compo-
nents is denoted by C.

In ACO, an artificial ant builds a
solution by traversing the fully con-
nected construction graph GC (V,E),
where V is a set of vertices and E is a
set of edges. This graph can be
obtained from the set of solution
components C in two ways: compo-
nents may be represented either by
vertices or by edges. Artificial ants
move from vertex to vertex along the
edges of the graph, incrementally
building a partial solution. Additional-
ly, ants deposit a certain amount of
pheromone on the components; that
is, either on the vertices or on the
edges that they traverse. The amount
�τ of pheromone deposited may
depend on the quality of the solution found. Subsequent
ants use the pheromone information as a guide toward
promising regions of the search space.

In the traveling salesman problem, a solution can be repre-
sented through a set of n variables, where n is the number of
cities. Each of these variables is associated with a city. The
variable X i indicates the city to be visited after city i. Here,
solution components are pairs of cities to be visited one after
the other, in the given order: the solution component
c i j = ( i, j) indicates that the solution under analysis prescribes
that city j should be visited immediately after city i. In this
case, the construction graph is a graph in which the vertices are
the cities of the original traveling salesman problem, and the
edges are solution components. As a consequence, ants deposit
pheromone on the edges of the construction graph.

It should be noticed that the construction graph could be
obtained by representing solution components as vertices on
which pheromone is deposited. Although this second way of
obtaining a construction graph seems less natural for the travel-
ing salesman problem, it is nonetheless correct. The two ways
of defining the construction graph for a four-city traveling
salesman problem are represented in Figure 3.

The ACO metaheuristic is shown in Algorithm 1. After ini-
tialization, the metaheuristic iterates over three phases: at each
iteration, a number of solutions are constructed by the ants;
these solutions are then improved through a local search (this
step is optional), and finally the pheromone is updated. The fol-
lowing is a more detailed description of the three phases:

ConstructAntSolutions: A set of m artificial ants constructs
solutions from elements of a finite set of available solution
components C = {cij }, i = 1, . . . ,n, j = 1, . . . , |Di | . A
solution construction starts from an empty partial solution
s p = ∅. At each construction step, the partial solution s p is

extended by adding a feasible solution component from the set
N(s p) ⊆ C, which is defined as the set of components that can
be added to the current partial solution s p without violating
any of the constraints in �. The process of constructing solu-
tions can be regarded as a walk on the construction graph
GC = (V,E).

The choice of a solution component from N(s p) is guided
by a stochastic mechanism, which is biased by the pheromone
associated with each of the elements of N(s p). The rule for the
stochastic choice of solution components vary across different
ACO algorithms but, in all of them, it is inspired by the model
of the behavior of real ants given in Equation 1.

ApplyLocalSearch: Once solutions have been constructed, and
before updating the pheromone, it is common to improve the
solutions obtained by the ants through a local search. This
phase, which is highly problem-specific, is optional although it
is usually included in state-of-the-art ACO algorithms.

UpdatePheromones: The aim of the pheromone update is to
increase the pheromone values associated with good or
promising solutions, and to decrease those that are associated
with bad ones. Usually, this is achieved (i) by decreasing all the
pheromone values through pheromone evaporation, and (ii) by
increasing the pheromone levels associated with a chosen set of
good solutions.
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FIGURE 3  Example of possible construction graphs for a four-city TSP where components are
associated with (a) the edges or with (b) the vertices of the graph.
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Algorithm 1 The Ant Colony Optimization Metaheuristic
Set parameters, initialize pheromone trails
while termination condition not met do

ConstructAntSolutions
ApplyLocalSearch (optional)
UpdatePheromones

endwhile
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C. Main ACO Algorithms
Several ACO algorithms have been proposed in the literature.
Here we present the original Ant System, and the two most
successful variants: MAX -MIN Ant System and Ant
Colony System. In order to illustrate the differences between
these three algorithms, we use the traveling salesman problem
as a concrete example.

1. Ant System (AS)
Ant System is the first ACO algorithm proposed in the litera-
ture [6]–[8]. Its main characteristic is that, at each iteration, the
pheromone values are updated by all the m ants that have built
a solution in the iteration itself. The pheromone τ i j, associated
with the edge joining cities i and j, is updated as follows:

τ i j ← (1 − ρ) · τ i j +
m∑

k=1

�τ k
i j , (2)

where ρ is the evaporation rate, m is the number of ants, and
�τ k

i j is the quantity of pheromone laid on edge ( i, j) by ant k:

�τ k
i j =

{
Q/L k if ant k used edge ( i, j) in its tour,
0 otherwise,

(3)

where Q is a constant, and L k is the length of the tour con-
structed by ant k.

In the construction of a solution, ants select the following
city to be visited through a stochastic mechanism. When ant k
is in city i and has so far constructed the partial solution s p , the
probability of going to city j is given by:

pk
i j =

{
τ α

i j ·η
β

i j∑
c i l ∈N(s p )

τ α
i l ·η

β

i l

if c i j ∈ N(s p),

0 otherwise,
(4)

where N(s p) is the set of feasible components; that is, edges
( i, l) where l is a city not yet visited by the ant k. The parame-
ters α and β control the relative importance of the pheromone
versus the heuristic information η i j, which is given by:

η i j = 1
d i j

, (5)

where d i j is the distance between cities i and j.

2. MAX − MIN Ant System (MMAS)
This algorithm [15] is an improvement over the original Ant
System. Its characterizing elements are that only the best ant
updates the pheromone trails and that the value of the

pheromone is bound. The pheromone update is implemented
as follows:

τ i j ←
[
(1 − ρ) · τ i j + �τ best

i j

]τmax

τmin

, (6)

where τmax and τmin are respectively the upper and lower
bounds imposed on the pheromone; the operator [x]a

b is
defined as:

[x]a
b =

{ a if x > a,
b if x < b,
x otherwise;

(7)

and �τ best
i j is:

�τ best
i j =

{
1/L best if ( i, j) belongs to the best tour,
0 otherwise,

(8)

where L best is the length of the tour of the best ant. This may
be (subject to the algorithm designer decision) either the best
tour found in the current iteration—iteration-best, L ib—or the
best solution found since the start of the algorithm—best-so-far,
L bs—or a combination of both.

Concerning the lower and upper bounds on the
pheromone values, τmin and τmax, they are typically obtained
empirically and tuned on the specific problem considered [35].
Nonetheless, some guidelines have been provided for defining
τmin and τmax on the basis of analytical considerations [15].

3. Ant Colony System (ACS)
The most interesting contribution of ACS [10]–[12] is the
introduction of a local pheromone update in addition to the
pheromone update performed at the end of the construction
process (called offline pheromone update).

The local pheromone update is performed by all the ants
after each construction step. Each ant applies it only to the last
edge traversed:

τ i j = (1 − ϕ) · τ i j + ϕ · τ0 , (9)

where ϕ ∈ (0, 1] is the pheromone decay coefficient, and τ0 is
the initial value of the pheromone.

The main goal of the local update is to diversify the
search performed by subsequent ants during an iteration:
by decreasing the pheromone concentration on the tra-
versed edges, ants encourage subsequent ants to choose
other edges and, hence, to produce different solutions.
This makes it less likely that several ants produce identical
solutions during one iteration.

The offline pheromone update, similarly to MMAS, is
applied at the end of each iteration by only one ant, which can
be either the iteration-best or the best-so-far. However, the
update formula is slightly different:

τ i j ←
{

(1 − ρ) · τ i j + ρ · �τ i j if (i, j) belongs to best tour,
τ i j otherwise.

(10)

32 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2006

The first ant colony optimization
algorithm is known as Ant System and
was proposed in the early nineties. Since
then, several other ACO algorithms have
been proposed.
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As in MMAS, �τ i j = 1/L best , where L best can be either
L ibor L bs.

Another important difference between ACS and AS is in the
decision rule used by the ants during the construction process.
In ACS, the so-called pseudorandom proportional rule is used: the
probability for an ant to move from city i to city j depends on a
random variable q uniformly distributed over [0, 1], and a para-
meter q0; if q ≤ q0 , then j = arg max c i l ∈ N (s p){τ i lη

β

i l}, other-
wise Equation 4 is used.3

III. Theoretical Results
The initial work on ACO has been driven by experimental
work, with the aim of showing that the ideas underlying this
technique can lead to successful algorithms. After this initial
phase, researchers tried to deepen their understanding of the
technique by building theoretical foundations.

Typically, the first question considered when dealing with
metaheuristics concerns convergence: will a given ACO
algorithm ever find an optimal solution? The first conver-
gence proofs were presented by Gutjahr for an ACO algo-
rithm called graph-based ant system (GBAS). Gutjahr proved
convergence with probability 1 − ε to the opti-
mal solution [36], and more in general to any
optimal solution [37]. GBAS is a rather peculiar
ACO algorithm and the above mentioned results
do not directly extend to other ACO algorithms.
In particular, they do not extend to ACO algo-
rithms that are commonly adopted in applica-
tions. Nonetheless, for two of the top
performing ACO algorithms, ACS and
MMAS, convergence has been proved [34],
[38]. Unfortunately, all these convergence results
do not allow one to predict how quickly optimal
solutions can be found. Only recently, Gutjahr
presented an analytical framework that allows
theoretical predictions about the speed of con-
vergence of specific ACO algorithms to be
derived [39].

Other research in ACO theory has focused
on establishing formal links of ACO to other
techniques for learning and optimization. One
research direction focused on the connection
between ACO and the fields of optimal control
and reinforcement learning [40], while another
aimed at examining the connections between
ACO and probabilistic learning algorithms such
as stochastic gradient ascent (SGA) [41], and the
crossentropy (CE) method [42]. In particular,
Zlochin et al. [42] have proposed a unifying
framework for so-called model-based search (MBS)
algorithms. Among other advantages, this frame-

work allows a better understanding of ACO and will possi-
bly lead to a cross-fertilization among MBS algorithms.

While convergence proofs give insight into some mathe-
matically relevant properties of algorithms, they usually do
not provide guidance to practitioners for the implementa-
tion of efficient algorithms. More relevant for practical
applications are research efforts that aim at a better under-
standing of the behavior of ACO algorithms. Blum and
Dorigo [43], [44] have shown that ACO algorithms in gen-
eral suffer from first order deception in the same way as genet-
ic algorithms suffer from deception. They further
introduced the concept of second order deception, which
occurs, for example, in situations where some solution
components on average receive updates from more solu-
tions than others with which they compete [45]. The first
to study the behavior of ACO algorithms by analyzing the
dynamics of the pheromone model were Merkle and Mid-
dendorf [46]. They showed that, in idealized permutation
problems, constraints on the feasibility of solutions intro-
duce what they called selection bias in the solution construc-
tion process.

FIGURE 4  The front page of the official Web site of the ant colony metaheuristic:
www.aco-metaheuristic.org

3The notation arg maxx f (x) stands for the value of x for which
f (·) is maximized. If the maximum is attained for more than one
value of x, it is a matter of indifference which one is considered.
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IV. Applications of Ant Colony Optimization
In recent years, the interest of the scientific community in
ACO has risen sharply. In fact, several successful applications of
ACO to a wide range of different discrete optimization prob-
lems are now available. The large majority of these applications
are to NP-hard problems; that is, to problems for which the
best known algorithms that guarantee to identify an optimal
solution have exponential time worst case complexity. The use
of such algorithms is often infeasible in practice, and ACO
algorithms can be useful for quickly finding high-quality solu-
tions. Other popular applications are to dynamic shortest path
problems arising in telecommunication networks problems.
The number of successful applications to academic problems
has motivated people to adopt ACO for the solution of indus-
trial problems, proving that this computational intelligence
technique is also useful in real-world applications.

A. Applications to NP-Hard Problems
The usual approach to show the usefulness of a new meta-
heuristic technique is to apply it to a number of different prob-
lems and to compare its performance with that of already
available techniques. In the case of ACO, this type of research
initially consisted of testing the algorithms on the TSP. Subse-
quently, other NP-hard problems were also considered. So
far, ACO has been tested on probably more than one hundred
different NP-hard problems. Many of the tackled problems
can be considered as falling into one of the following cate-
gories: routing problems as they arise, for example, in the distrib-
ution of goods; assignment problems, where a set of items

(objects, activities, etc.) has to be assigned to a given number
of resources (locations, agents, etc.) subject to some constraints;
scheduling problems, which–in the widest sense–are concerned
with the allocation of scarce resources to tasks over time; and
subset problems, where a solution to a problem is considered to
be a selection of a subset of available items. In addition, ACO
has been successfully applied to other problems emerging in
fields such as machine learning and bioinformatics.

Common to many of these applications is that the best-
performing ACO algorithms make intensive use of the
optional local search phase of the ACO metaheuristic (see
Algorithm 1). This is typically very effective since, on the one
hand, the solutions constructed by the ants can often be
improved by an adequate local search algorithm; on the other
hand, generating proper initial solutions for local search algo-
rithms is a difficult task and many experimental results show
that the probabilistic, adaptive solution generation process of
ant colony optimization is particularly suited to this task.

In Table 2, we report some of the most noteworthy appli-
cations of ACO algorithms; for a detailed description of these
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The good results of ACO algorithms
on academic problems has made them
appealing for applications in industrial
settings.

PROBLEM TYPE PROBLEM NAME AUTHORS YEAR REFERENCES

ROUTING TRAVELING SALESMAN DORIGO ET AL. 1991, 1996 [6], [8]
DORIGO & GAMBARDELLA 1997 [11]
STÜTZLE & HOOS 1997, 2000 [15], [47]

VEHICLE ROUTING GAMBARDELLA ET AL. 1999 [48]
REIMANN ET AL. 2004 [49]

SEQUENTIAL ORDERING GAMBARDELLA & DORIGO 2000 [50]
ASSIGNMENT QUADRATIC ASSIGNMENT STÜTZLE & HOOS 2000 [15]

MANIEZZO 1999 [18]
COURSE TIMETABLING SOCHA ET AL. 2002, 2003 [35], [51]
GRAPH COLORING COSTA & HERTZ 1997 [52]

SCHEDULING PROJECT SCHEDULING MERKLE ET AL. 2002 [53]
TOTAL WEIGHTED TARDINESS DEN BESTEN ET AL. 2000 [54]

MERKLE & MIDDENDORF 2000 [55]
OPEN SHOP BLUM 2005 [56]

SUBSET SET COVERING LESSING ET AL. 2004 [57]
l-CARDINALITY TREES BLUM & BLESA 2005 [58]
MULTIPLE KNAPSACK LEGUIZAMÓN & MICHALEWICZ 1999 [59]
MAXIMUM CLIQUE FENET & SOLNON 2003 [60]

OTHER CONSTRAINT SATISFACTION SOLNON 2000, 2002 [61], [62]
CLASSIFICATION RULES PARPINELLI ET AL. 2002 [63]

MARTENS ET AL. 2006 [64]
BAYESIAN NETWORKS CAMPOS, ET AL. 2002 [65], [66]
PROTEIN FOLDING SHMYGELSKA & HOOS 2005 [67]
PROTEIN-LIGAND DOCKING KORB ET AL. 2006 [68]

TABLE 2 A non-exhaustive list of applications of ACO algorithms grouped by problem type.
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and several other applications, we refer the reader to [34]. The
overall result that emerges from these applications is that, for
many problems, ACO algorithms produce results that are very
close to those of the best-performing algorithms, while on
some problems they are the state-of-the-art. These latter prob-
lems include the sequential ordering problem, open-shop
scheduling problems, some variants of vehicle routing prob-
lems, classification problems, and protein-ligand docking.

B. Applications to Telecommunication Networks
ACO algorithms have shown to be a very effective approach
for routing problems in telecommunication networks where
the properties of the system, such as the cost of using links or
the availability of nodes, vary over time. ACO algorithms were
first applied to routing problems in circuit switched networks
(such as telephone networks) [69] and then in packet-switched
networks (such as local area networks or the Internet) [70].
Following the proof of concept provided by Schoonderwoerd
et al., ant-inspired routing algorithms for telecommunication
networks improved to the point of being state-of-the-art in
wired networks. A well-known example is AntNet [70].
AntNet has been extensively tested, in simulation, on different
networks and under different traffic patterns, proving to be
highly adaptive and robust. A comparison with state-of-the-art
routing algorithms has shown that, in most of the considered
situations, AntNet outperforms its competitors.

Ant-based algorithms have given rise to several other rout-
ing algorithms, enhancing performance in a variety of wired
network scenarios; see [71], [72] for a survey. More recently,
an ACO algorithm designed for the challenging class of mobile
ad hoc networks was shown to be competitive with state-of-
the-art routing algorithms [73], [74], while at the same time
offering better scalability.

C. Applications to Industrial Problems
The success on academic problems has raised the attention of
a number of companies that have started to use ACO algo-
rithms for real-world applications. Among the first to exploit
algorithms based on the ACO metaheuristic is EuroBios
(www.eurobios.com). They have applied ACO to a number
of different scheduling problems such as a continuous two-
stage flow shop problem with finite reservoirs. The problems
modeled included various real-world constraints such as setup
times, capacity restrictions, resource compatibilities and
maintenance calendars. Another company that has played,
and still plays, a very important role in promoting the real-
world application of ACO is AntOptima (www.antoptima
.com). AntOptima’s researchers have developed a set of tools
for the solution of vehicle routing problems whose optimiza-
tion algorithms are based on ACO. Particularly successful
products based on these tools are (i) DYVOIL, for the man-
agement and optimization of heating oil distribution with a
nonhomogeneous fleet of trucks, used for the first time by
Pina Petroli in Switzerland, and (ii) AntRoute, for the rout-
ing of hundreds of vehicles of companies such as Migros, the

main Swiss supermarket chain, or Barilla, the main Italian
pasta maker. Still another vehicle routing application was
developed by BiosGroup for the French company Air Liq-
uide. Other interesting real-world applications are those by
Gravel, Price and Gagné [75], who have applied ACO to an
industrial scheduling problem in an aluminum casting center,
and by Bautista and Pereira [76], who successfully applied
ACO to solve an assembly line balancing problem with mul-
tiple objectives and constraints between tasks.

V. Current Hot Topics in ACO
A significant part of research on ACO is still concerned with
applications as they have been presented in the previous sec-
tion. However, increasing attention is and will be given to
even more challenging problems that, for example, involve
multiple objectives, dynamic modifications of the data, and the sto-
chastic nature of the objective function and of the constraints.
Other developments focus on the extension of the applicability
of ACO algorithms from discrete to continuous optimization
problems and to the study of parallel implementations of ACO
algorithms.

A. Dynamic Optimization Problems
Dynamic problems are characterized by the fact that the search
space changes during time. Hence, while searching, the condi-
tions of the search, the definition of the problem instance and,
thus, the quality of the solutions already found may change. In
such a situation, it is crucial that the algorithm be able to adjust
the search direction, following the changes of the problem
being solved.

A paradigmatic example is routing in telecommunication
networks, an application problem already discussed in the pre-
vious section. For this problem, ACO algorithms belong to the
state-of-the-art techniques [70], [74]. ACO algorithms have
also been applied to dynamic versions of the TSP, where
either the distance between some pairs of cities changes
[77]–[79], or cities are dynamically added or removed from the
set of cities to be visited. More recently, an ACS algorithm has
also been applied to dynamic vehicle routing problems [80],
showing good behavior on randomly generated as well as real-
world instances.

B. Stochastic Optimization Problems
In stochastic optimization problems, some variables have a sto-
chastic nature. Apart from the network routing problems, for
which the main focus was put on their dynamic character, the
stochastic traveling salesman problem (PTSP) was the first sto-
chastic problem tackled by ACO algorithms. In the PTSP,
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For the best-performing ACO algorithms,
convergence to optimal solutions has
been proved.
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each city has a given probability of requiring a visit and the
goal is to find an a priori tour of minimal expected length over
all the cities, with the strategy of visiting a random subset of
cities in the same order as they appear in the a priori tour. The
first ACO algorithm for this problem was proposed by Bianchi
et al. [81]. Further ACO algorithms for the PTSP have been
proposed by Branke and Guntsch [82], Gutjahr [83], [84], and
Birattari et al. [85].

C. Multi-Objective Optimization
Multiple objectives can often be handled by ordering or
weighting them according to their relative importance. In the
two-colony ACS algorithm for the vehicle routing problem
with time window constraints [48] and in the MMAS for the

bi-objective two-machine permutation flow shop problem
[86], the multi-objective optimization problem is handled by
ordering the objectives; differently, Doerner et al. [87] apply
ACO to a bi-objective transportation problem and combine
the objectives in a weighted sum. On the other hand, if prefer-
ences or weights cannot be given a priori, the goal is to find a
set of non-dominated solutions that are optimal in the Pareto
sense. The first ACO algorithm for finding non-dominated
solutions was proposed by Iredi et al. [88] for the bi-objective
scheduling problem. Other applications include portfolio opti-
mization [89] and the quadratic assignment problem [90].

D. Parallel Implementations
ACO algorithms lend themselves to be parallelized in the data
or population domains. In particular, any parallel models used
in other population-based algorithms can be easily adapted to
ACO. Two main strategies have been followed. In fine-grained
parallelization, very few individuals are assigned to single
processors and information exchange among the processors is
frequent. In coarse-grained approaches, on the contrary, larger
subpopulations are assigned to single processors and information
exchange is rather rare. Research on parallel ACO algorithms
has quickly shown that fine-grained parallelization results in a
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Resources on Ant Colony Optimization
• Web pages:

– www.aco-metaheuristic.org: The official Web site of the ant colony metaheuristic (see Figure 4).
– www.metaheuristics.org: Web site of the “Metaheuristics Network” project. This European Union funded project was dedi-

cated to the theoretical analysis and experimental comparison of metaheuristics.
• Books:

– M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.
– E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press,

1999.
• Scientific Journals: Scientific articles on ACO are published in many journals, including “IEEE Transactions on Systems, Man,

and Cybernetics”, “IEEE Transactions on Evolutionary Computation”, “Artificial Life”, “INFORMS Journal on Computing”, “Journal
of Heuristics”, “Computers and Operations Research”, “Computational Optimization and Applications”, and “European Journal of
Operational Research”. The new journal “Swarm Intelligence,” whose first issue is forecast for June 2007, will certainly become
the main scientific periodical for disemination of ACO and related research.

• Conferences:
- The biannual series of workshops “ANTS – The International Workshop on Ant Colony Optimization and Swarm Intelligence”
(iridia.ulb.ac.be/∼ants), held for the first time in 1998, is the oldest conference in the ACO and swarm intelligence fields. 

- The series of conferences “IEEE Swarm Intelligence” (www.computelligence.org/sis) focuses on swarm intelligence tech-
niques and also ant colony optimization.

- Articles on ACO are regularly presented at other conferences such as “IEEE Congress on Evolutionary Computation (CEC)”,
“Genetic and Evolutionary Computation Conference (GECCO)”, “Parallel Problem Solving from Nature (PPSN)”, “INFORMS”
meetings, “European Chapter on Combinatorial Optimization (ECCO)” meetings, the “Metaheuristics International Confer-
ence (MIC)” and many others.

• Software: Software, distributed under the GNU license, is available at: www.aco-metaheuristic.org/aco-code/
• Popular press: ACO is often covered by the popular press. Pointers to popularization articles can be found at: 
www.aco-metaheuristic. org/aco-in-the-press.html

• Mailing list: A moderated mailing list dedicated to the exchange of information related to ACO is accessible at: 
www.aco-metaheuristic. org/mailing-list.html

It is foreseeable that future research on
ACO will focus more strongly on rich
optimization problems that include
stochasticity, dynamic data modifications,
and multiple objectives.
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very significant communication overhead. Therefore, the focus
has mostly turned to coarse-grained parallelization schemes,
where p colonies run parallel on p processors [91]–[95].

E. Continuous Optimization
Recently, ACO algorithms have been applied to continuous
optimization. When an algorithm designed for combinatorial
optimization is used to tackle a continuous problem, the sim-
plest approach would be to divide the domain of each variable
into a set of intervals. However, when the domain of the vari-
ables is large and the required accuracy is high, this approach is
not viable. For this reason, ACO algorithms have been devel-
oped, which are specifically designed for continuous and
mixed continuous-discrete variables [96], [97]. Research in this
direction is currently ongoing.

VI. Other Ant-Inspired Algorithms
The source of inspiration of ACO is the path marking behav-
ior that some ant species exhibit when foraging. Nonetheless,
this behavior is not the only behavior of ants that has inspired
computer scientists. We present here, in a very concise way,
some other examples of algorithms that are inspired by ants.
The common trait of all these techniques is that they make use
of stigmergic variables; that is, variables associated with the envi-
ronment that hold the information that artificial ants share and
exploit. (A more comprehensive discussion of ant algorithms
and stigmergy can be found in [98].)

A. Other Algorithms Inspired by Foraging 
and Path Marking
Apart from ACO, a few other approaches take inspiration
from the path marking behavior of ants. Two algorithms
have been proposed for graph exploration: Edge Ant Walk
[99] and Vertex Ant Walk [100]. In these algorithms, ants
mark with pheromone the edges they visit to coordinate
graph exploration. Contrary to ACO, in these algorithms the
pheromone directs the ants toward unexplored areas of the
search space. In fact, the goal is to cover the graph; that is to
visit all the nodes, without knowing the graph topology.
Another example of algorithm inspired by ants’ path marking
is a search algorithm for continuous optimization problems
that was inspired by the foraging behavior of the Pachycondyla
apicalis ants [101].

B. Algorithms Inspired by Brood Sorting
Brood sorting is an activity that can be observed in many ant
species (e.g., in Pheidole pallidula ants [102]). These ants com-
pactly cluster their eggs and smaller larvae at the center of the
nest brood area and the larger larvae at the periphery of the
brood cluster. Deneubourg et al. [102] have proposed a model
of this phenomenon in which an ant picks up and drops an
item according to the number of similar surrounding items.
Lumer and Faieta [103] and Kuntz et al. [104] have applied
this model to a specific clustering problem, obtaining results
that were qualitatively equivalent to those obtained by classi-

cal techniques but at a lower computational cost. Recently,
Handl et al. [105] described an improved version of Lumer
and Faieta’s algorithm, and compared its performance to other
standard clustering techniques, such as k-means. One of the
salient features of this ant-based algorithm is its ability to pro-
pose a “natural” number of clusters. For an overview of other
developments, we refer to [105].

C. Algorithms Inspired by Division of Labor
In ant colonies, individual workers tend to specialize on specific
tasks in their lifetime [106]. However, ants can adapt their
behavior to the circumstances: a soldier ant can become a for-
ager, a nurse ant a guard, and so on. This combination of spe-
cialization and flexibility is a desirable feature for multi-agent
optimization and control, especially in task or resource alloca-
tion problems that require continuous adaptation to changing
conditions. Many approaches inspired by division of labor in
real ant colonies are based on a threshold model developed by
Robinson [106], in which workers with low response thresh-
olds respond to lower levels of stimuli than do workers with
high response thresholds. Such a response-threshold model has
been applied to the problem of choosing a paint booth for
trucks coming out of an assembly line in a truck factory [98],
[107]–[110].

D. Algorithms Inspired by Cooperative Transport
The behavior of ant colonies has also inspired research in
robotics, in particular for the design of distributed control
algorithms for groups of robots [111]. An example of a task
that has been used as a benchmark for ant algorithms applied to
distributed robotics problems is cooperative box pushing [112].
Another example of application of ant algorithms is the one to
the related problem of pulling an object. This has been
achieved [113] within the Swarm-bots project (www.swarm-
bots.org), a project dedicated to the study of ant algorithms for
autonomous robotics applications.

VII. Outlook and Conclusions
As we have discussed, nowadays hundreds of researchers
worldwide are applying ACO to classic NP-hard optimiza-
tion problems, while only a few works concern variations that
include dynamic and stochastic aspects as well as multiple
objectives. The study of how best to apply ACO to such varia-
tions will certainly be one of the major research directions in
the near future. A better understanding of the theoretical prop-
erties of ACO algorithm is certainly another research direction
that will be pursued in the future.
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Various algorithmic techniques have been
inspired by behaviors of ants. Ant colony
optimization is the most successful and
best-known among them.
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Fifteen years ago, when the first ACO algorithm was intro-
duced, taking inspiration from ants for designing optimization
algorithms seemed a crazy idea. The many successful applica-
tions presented in this article have changed our perspective:
what seemed a far out idea is now considered one of the most
promising approaches to the approximate solution of difficult
optimization problems.
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mization for learning Bayesian networks,” International Journal of Approximate Reasoning, vol. 31,
no. 3, pp. 291–311, 2002.

[66] L.M. de Campos, J.A. Gamez, and J.M. Puerta, “Learning Bayesian networks by ant
colony optimisation: Searching in the space of orderings,” Mathware and Soft Computing, vol. 9,
no. 2–3, pp. 251–268, 2002.

[67] A. Shmygelska and H.H. Hoos, “An ant colony optimisation algorithm for the 2D and
3D hydrophobic polar protein folding problem,” BMC Bioinformatics, vol. 6, no. 30, 2005.
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Springer Verlag, vol. 2827, pp. 10–25, 2003.

[84] ——, “S-ACO: An ant based approach to combinatorial optimization under uncertaini-
ty,” in Proc. ANTS 2004, ser. LNCS, Dorigo et al., Eds., Berlin, Germany: Springer Verlag,
vol. 3172, pp. 1–12, 2004.

[85] M. Birattari, P. Balaprakash, and M. Dorigo, “ACO/F-Race: Ant colony optimization
and racing techniques for combinatorial optimization under uncertainty,” in MIC 2005: The

6th Metaheuristics International Conference, K. F. Doerner et al., Eds., Vienna, Austria: University
of Vienna, Department of Business Administration, pp. 107–112, 2005.
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[91] T. Stützle, “Parallelization strategies for ant colony optimization,” in Proc. PPSN-V, ser.
LNCS, A. E. Eiben et al., Eds., Springer Verlag, vol. 1498, pp. 722–731, 1998.

[92] E.-G. Talbi, O. Roux, C. Fonlupt, and D. Robillard, “Parallel ant colonies for combina-
torial optimization problems,” in Parallel and Distributed Processing, 11 IPPS/SPDP’99 Work-
shops, ser. LNCS, J. Rolim et al., Eds., vol. 1586, pp. 239–247, 1999.

[93] M. Middendorf, F. Reischle, and H. Schmeck, “Multi colony ant algorithms,” Journal of
Heuristics, vol. 8, no. 3, pp. 305–320, 2002.
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