
Version 1.1, 23 May 2016

This paper, based on a presentation delivered at the inaugural TYPO Labs font technology con-
ference in Berlin, concerns making a particular kind of OpenType font to work with a new shap-
ing engine for complex script layout. If you’re not involved in making fonts for complex scripts,
I hope you might still find some interest in the conceptual problems and solutions involved, and
also in the insights these provide into the architecture and history of OpenType Layout.

making fonts for the

Universal Shaping Engine

John Hudson, Tiro Typeworks Ltd • TYPO Labs, Berlin, 10 May 2016

Let me begin by defining what we mean by ‘complex script’. These are scripts that require
processing beyond a simple display of the default encoded glyph for each character in order to
correctly present text in an acceptably readable form. This processing typically involves char-
acter string analysis and manipulation, as well as glyph substitution and positioning. There are,
of course, instances in which a font for any script may assume complex behaviours — ligation,
contextual substitutions, dynamic mark positioning —, but an inherently complex script is one
for which the plain text encoded character sequence will be unreadable without additional
processing.
What is a complex script?

ديقعت
मिश्रित
ಸಂಕೀರ್ಣ

تعقيد
मममरित
ಸಂಕೕಣ್ಣ

Complex scripts tend to fall into one of two broad categories: those, like Arabic, involving join-
ing behaviour that requires knowledge about adjacent characters and substitution of appropri-
ate forms to display connected lettergroups, and those, like the many Brahmi-derived scripts
of South and Southeast Asia, in which the orthographic unit is a cluster that may consist of
multiple consonant letters plus dependent vowel sign and additional modifier marks. Scripts
in the latter category also tend to involve reordering behaviours, in which there is a distinction
between the graphical order of signs in the cluster and their phonetically encoded ordering.

In the OpenType model, complex script layout is handled collaboratively by a shaping engine —
residing at the operating system or application level — and the layout in a font. This is a some-
what simplified diagram of that collaboration, and I’m not going to discuss it in a step-by-step
way. [For more detailed, see my Unicode conference presentation from 2015.]OpenType Layout simplified collaborative model

Layout services
[Bidi algorithm]
Script itemisation
Run segmentation

Line breaking
Justification

Shaping engine

Run analysis
Cluster segmentation
[Split vowels]
[Initial reordering]
Cluster shaping

Final reordering

Font

Basic shaping GSUB features

Standard GSUB features
Conditional GSUB features
GPOS features

For more detailed discussion, see : http://tiro.com/John/Hudson_IUC39_Beyond_Shaping.pdf

�

Complex script handling was Microsoft’s primary goal in developing a smart font format in the
mid-1990s. Microsoft developed Arabic, Hebrew, and Thai shaping engines for TrueType Open,
the immediate precursor to OpenType, and in early 1999 shipped the first version of the Uni-
code Script Processor for Complex Scripts — or Uniscribe — with Internet Explorer 5.01. Sub-
sequent versions of Uniscribe have shipped with all versions of Windows, Office, and Microsoft
browsers, often leapfrogging each other in support for additional scripts and languages. Other
companies have produced their own OpenType Layout engines for complex scripts, notably
the open source Harfbuzz shaper — maintained by Behdad Esfahod —, Adobe’s World Ready
Composer, and Apple’s CoreText engine.

http://www.tiro.com/John/Hudson_IUC39_Beyond_Shaping.pdf

The assignment of scripts to processing by a particular engine generally depends on similar-
ities in shaping needs. This leads to predictable groupings such as the handling of numerous
South Asian Brahmi-derived scripts in a common Indic shaping engine, and occasionally to
strange-bedfellows, such as assignment of the Thaana script of the Maldive Islands to Unis-
cribe’s Hebrew shaping engine.

The current Windows 10 version of Uniscribe includes nine engines, each of which is responsible
for shaping one or more scripts. An engine may also support more than one version of shaping
for a given script, mapped to different OpenType script tags, for example the old Windows XP
Indic shaping and the new ‘Indic2’ model introduced in Windows Vista. This enables continued
support for older fonts while allowing improved implementations to emerge.
Uniscribe shaping engines as of Windows 10 (RS1)

Arabic engine Arabic, Syriac

Generic engine Cyrillic, Greek, Latin, etc. (non-complex scripts)

Hangul engine Hangul, Old Hangul

Hebrew engine Hebrew, Thaana

Indic engine Bengali, Devanagari, Gujurati, Gurmukhi, Kannada, etc.

Khmer engine Khmer

Myanmar engine Myanmar (Burmese)

Thai/Lao engine Lao, Thai

Universal engine Balinese, Batak, Brahmi, Buginese, Buhid, Chakma,
 Cham, Duployan, Egyptian Hieroglyphs, Grantha,
 Hanunoo, Javanese, Kaithi, Kayah Li, etc. (45 total)

In case you are unfamiliar with the kinds of things that a shaping engine does with a script, I’ll
take a moment to discuss a step-by-step example of typical script-specific shaping for a mock
character sequence (not a real word). Layout services will have identified this as Bengali, based
on the Unicode script property of the characters involved, and will have passed the run to the
appropriate Indic shaping engine. The shaping engine has determined that the font supports
the Indic2 shaping model using the <bng2> script tag, so is going to apply that shaping model.Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

ক ে া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09C7 09BE 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF

ে ক া ল ◌্ ম ◌ু ি◌ র ◌্ ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0 09CD 09A4 09CD 0995

ে ক া ল ◌্ ম ◌ু ি◌ ◌� ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0+09CD 09A4 09CD 0995

1

2

3

The shaping engine analyses the character run, and segments it into three orthographic units,
in this case clusters consisting of one or more consonants with explicit vowel signs. The small
diagonal mark (U+09CD) is a vowel killer, indicating that the preceding and following conso-
nants are part of the same cluster.

The first step is to split any two-part vowel signs into their constituent elements. This is a buff-
ered character level operation, made possible because both elements are also atomically en-
coded as characters in Unicode.

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

ক ে া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09C7 09BE 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF

ে ক া ল ◌্ ম ◌ু ি◌ র ◌্ ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0 09CD 09A4 09CD 0995

ে ক া ল ◌্ ম ◌ু ি◌ ◌� ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0+09CD 09A4 09CD 0995

1

2

3

The second step in this shaping model is initial reordering. In our example, this involves moving
of left-side vowel signs in the first and third clusters. Again, this is a buffered character level
operation: there’s no interaction with the font layout tables up to this stage.

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

ক ে া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09C7 09BE 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF

ে ক া ল ◌্ ম ◌ু ি◌ র ◌্ ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0 09CD 09A4 09CD 0995

ে ক া ল ◌্ ম ◌ু ি◌ ◌� ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0+09CD 09A4 09CD 0995

1

2

3
That interaction begins in the third step: application of basic shaping glyph substitution fea-
tures. These may include precomposition of letter plus nukta forms, and formation of akhand
ligatures (a kind of pseudo-letter). In our example, the shaping engine applies the Reph Forms
<rphf> feature to the sequence of cluster-initial Ra plus the vowel killer character in the third
cluster, substituting the repha mark glyph found in the substitution lookup.

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

ক ে া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09C7 09BE 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF

ে ক া ল ◌্ ম ◌ু ি◌ র ◌্ ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0 09CD 09A4 09CD 0995

ে ক া ল ◌্ ম ◌ু ি◌ ◌� ত ◌্ ক
 09C7 0995 09BE 09B2 09CD 09AE 09C1 09BF 09B0+09CD 09A4 09CD 0995

1

2

3

If we had other characters that take special forms in particular situations, these would also
be substituted during this phase. Some fonts might substitute half forms of other letter plus
vowel killer sequences, although I generally don’t do this in Bengali. The next step in our exam-
ple, is substitution of consonant ligatures in the Conjuct Forms <cjct> feature. Note that in our
example, only the conjunct in the second cluster takes a ligature form; this is because the font
does not contain a ligature form for the conjunct in the third cluster, which instead will display
with an explicit vowel killer sign. This seldom happens in Bengali text, but is the sort of thing
that happens when English or other foreign loanwords are transliterated in an Indian script,
producing character sequences that don’t occur in the local language.

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

ে ক া � ◌ু ি◌ ◌� ত ◌্ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09BF 09B0+09CD 09A4 09CD 0995

ে ক া � ◌ু ত ◌� ◌্ ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09A4 09B0+09CD 09CD 09BF 0995

� ক া � ◌ু ত ◌� ◌্ ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09A4 09B0+09CD 09CD 09BF 0995

4

5

6

At this stage, basic shaping features are complete, and the next step is final reordering, this
time performed at the glyph level, taking output from features such Reph Forms <rphf> and
tracking their position in the glyph string. In our example, the left-side ikar (short-i) vowel sign
is also re-reordered, following a rule that neither repha nor ikar will relocate past an explicit
vowel killer sign, which is an oddity of modern orthographic convention. [If the older conven-
tion, which does not employ this rule, is desired, this can be accommodated in how the font
lookups are specified and ordered.]

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

ে ক া � ◌ু ি◌ ◌� ত ◌্ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09BF 09B0+09CD 09A4 09CD 0995

ে ক া � ◌ু ত ◌� ◌্ ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09A4 09B0+09CD 09CD 09BF 0995

� ক া � ◌ু ত ◌� ◌্ ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09A4 09B0+09CD 09CD 09BF 0995

4

5

6
After the reordering, a number of standard substitution features associated with the script are
processed simultaneously, i.e. with the order of operations determined by the order of the font
lookups in the GSUB table. Depending how the font is made, these may involve additional liga-
tures, variant forms of marks, mark combinations, etc.. In our example, there is only one such
feature to be applied, to substitute the word-initial form of the first vowel sign.

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

ে ক া � ◌ু ি◌ ◌� ত ◌্ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09BF 09B0+09CD 09A4 09CD 0995

ে ক া � ◌ু ত ◌� ◌্ ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09A4 09B0+09CD 09CD 09BF 0995

� ক া � ◌ু ত ◌� ◌্ ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE 09C1 09A4 09B0+09CD 09CD 09BF 0995

4

5

6

[This is done, in the Indic2 shaping model, with the Initial Forms <init> feature, which is an
anomaly not used anywhere else in Indic shaping; indeed, this is the only place in OpenType Lay-
out that requires a shaping engine to be aware of word-level position. In the Universal Shaping
Engine, such initial form and similar substitutions would be handled using appropriate contex-
tual lookups.]

Conditional substitutions would also be applied at this stage. These include discretionary ty-
pographic features activated by users, but I prefer the term conditional, both because it is less
likely to mislead software developers into considering these features optional, and because
the conditions to activate the features may be defined by standards for particular kinds of text
(for example, ruby notation of kanji characters in Japanese).

Once all substitution features are applied, the shaping engine applies the glyph positioning
features. This may involve kerning—none in our example—and, commonly in complex scripts,
mark positioning.

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

� ক া � ত � ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE[09C1] 09A4[09B0+09CD][09CD] 09BF 0995

�কা�ুত্� িক
kolmurtki

7 ্
The run is now fully shaped, and layout returns to the paragraph level, to line-breaking, hyphen-
ation, and justification. These operations, in theory at least, may involve additional font interac-
tions, but the present reality is that they do not.

Step-by-step example (Bengali <bng2> shaping)

ক ে◌া ল ◌্ ম ◌ু র ◌্ ত ◌্ ক ি◌
 0995 09CB 09B2 09CD 09AE 09C1 09B0 09CD 09A4 09CD 0995 09BF
 ka o la [x] ma u ra [x] ta [x] ka i

� ক া � ত � ি◌ ক
 09C7 0995 09BE 09B2+09CD+09AE[09C1] 09A4[09B0+09CD][09CD] 09BF 0995

�কা�ুত্� িক
kolmurtki

7 ্

So, that’s an example of a script-specific shaping engine at work with a compatible font. It
works because a lot of knowledge about Bengali character behaviour is baked into the shaping
engine, and the font is built to a corresponding specification. This means, of course, that in
order for a script to be supported in this way, a shaping engine must be developed for it, and a
specification published, and then fonts made and tested with that engine. This can take a long
time, which turns out to be only one issue with such an approach.

The cost of intensive development—requiring significant investment of labour, time and mon-
ey to support a script—, relative to perceived benefit, increases inversely to the diminishment
of a script’s importance as reckoned in terms of number of users, business case priorities, or
geo-political concerns. So scripts with large numbers of users in an identified target market,
or that have official status at national or state level, invite intensive development, even if the
results end up being only partial in terms of supporting high quality typography. Bengali is spo-
ken by 300 million people, has a relatively high level of literacy—the daily Kolkata newspaper
Ananda Bazar Patrika has a circulation of one million copies, and is estimated to be read by five
million people every day—, and is an official language of Bangladesh and the Indian the state
of West Bengal. It is a language that software companies know they need to support. But there
are dozens of South and Southeast Asian scripts, both modern and historical, that do not have
official status, are used by minority communities, and may be subject to political pressure to
discourage their use. There is very little impetus for software companies to invest in intensive
development of shaping engines, specifications, and fonts for such scripts.

Even a script for a major national language with official status, such as Burmese, can fall into a
kind of developmental morass, languishing unsupported for more than a decade after inclusion
in the Unicode Standard. A number of factors affected this, not least widespread economic

sanctions on the military dictatorship in Burma, which prevented North American and Euro-
pean companies doing business in the country prior to the recent democratic reforms. In the
meantime, local software developers in Burma produced a non-compatible encoding scheme,
hijacking codepoints from the Unicode encoding, which is now causing major headaches for
companies belatedly trying to support Burmese in a standard, Unicode conformant way. This
has been a ‘wake-up call’ for many companies: a realisation that the longer you leave a script
unsupported, the greater the likelihood that someone will produce a non-standard implemen-
tation, accommodation of which may cost significantly more in the long-term.

Script specific shaping engines tend also to be restrictive in terms of the way in which fonts
can be built. They may enforce certain conventions about feature ordering and substitution
outputs, limiting the freedom of font developers to come up with innovative and possibly more
efficient solutions. Such shaping engines tend to reflect a particular software developer’s un-
derstanding of a script at a particular time, sometimes before anyone has actually tried to build
a font to work with engine. If the understanding changes over time, the only way to amend the
shaping is to introduce a new script tag and build a new shaping engine—hence the distinction
between Indic1 and Indic2 shaping—, with additional intensive development costs.

As well as being unnecessarily restrictive, script-specific shaping engines may be inconsistent,
making it difficult for font developers to anticipate how to code OpenType Layout features for
a script. If you know how to make a Devanagari font, that knowledge won’t necessarily help
you to make a Malayalam font, let alone a Khmer or Burmese font. The models employed in
the shaping engines are too various, representing the understanding of different developers
at different times, each focused on intensively supporting an individual script, rather than on
developing a common model.

There are also inconsistencies in interpretation of the script shaping specifications, leading to
inconsistencies between implementations. In preparation of the preceding shaping illustra-
tions, for example, I discovered an inconsistency between how Microsoft and Adobe reorder
Bengali repha around an explicit vowel killer.

Concentration on the basic shaping needs of complex scripts, without reference to the larg-
er context of typographic communication, has frequently let to partial implementations, to
software makers considering the job done when minimally legible presentation of a script is
accomplished. It doesn’t help that script shaping specifications have tended to discuss only
those features necessary to such basic presentation, and have at most glossed over conditional
typographic features. When a script is passed to a particular shaping engine for layout, it will
likely stay there, and unless that engine makes available all the rich OpenType Layout features
that a font maker or user might want to utilise—stylistic sets, variant numeral styles, super- or
subscript forms—these will not be available. Many complex script shaping engines can, in this
respect, be considered only partial implementations of the scripts they shape.

And then there are the things that are just plain wrong. Microsoft’s script shaping specifications
focus, for obvious reasons, on run analysis and orthographic unit shaping. This is important, be-
cause basic shaping features for Indic scripts have to be applied at the unit shaping level, on
individual clusters. Correct shaping of repha and other forms, and of conjunct ligatures, relies
on clear definition of cluster boundaries. But after that basic shaping is done, all other features
should be applied across the whole glyph run, allowing for cluster interaction in contextual sub-

stitutions. Alas, all the script-specific Indic shaping engine makers have interpreted the specifi-
cations to mean that all features are applied only at the cluster level, preventing cross-cluster
contextual lookups from working and mistakenly applying word-terminal contexts at every
cluster boundary.

In summary—and without wanting to diminish the role that script-specific shaping engines
have played in enabling people to communicate in complex writing systems—the situation is
far from ideal: expensive to develop and maintain, prone to inconsistency and incompleteness,
and with bugs that may be impossible to fix without breaking existing fonts and documents.

I gradually became aware of these limitations—as other people have—over more than a dec-
ade of making complex script fonts. I doubt if anyone had a better understanding of them
than Andrew Glass, who ‘owned’ the Uniscribe shaping engines as one of his responsibilities
at Microsoft. Andrew is one of those people you might not expect to find working in the tech
sector, but then you’re immediately grateful that he is and see how perfectly qualified his un-
dergraduate studies in Sanskrit and doctorate in Asian Languages and Literature make him for
the job. As well as being responsible for Uniscribe from 2009 until recently, he has made fonts
for a number of complex scripts, and authored the Unicode encoding proposals for the Brāhmī
and Kharoṣṭhī scripts.

When Andrew assumed responsibility for Uniscribe—ten years after the first version shipped—
he was asked to create a roadmap for Uniscribe to support all complex scripts in Unicode.
Aware of the limitations of the existing model of individual script engines, Andrew had a hunch
that a universal model might be possible. It wasn’t until 2013, however, that experience building
shaping engines for Burmese, N’ko, Javanese, and Buginese, allowed him and his developers
to identify the common ground between them and start spec’ing the Universal Shaping Engine.

Andrew was able to make a business case to his managers for the new engine by pointing to
the costs of the Burmese encoding fiasco, which had obliged Microsoft and many other com-
panies to accommodate the widely used local hack alongside Unicode. If the time it took to
support newly encoded scripts in Unicode could be significantly reduced, there would be far
less chance of something like this happening again.

Andrew reasoned that if shaping were driven by standardised complex script character data
in Unicode—rather than relying on intensive research and analysis by individual shaping en-
gine makers—, and if that data were passed to a shaping engine with a single, universal clus-
ter model, then each new release of Unicode—now conveniently on an annual cycle—would
require only an update of the property data for newly encoded characters. The path from a
script encoding proposal to support in software and fonts would be greatly reduced, and a
short-term investment in developing the Universal Shaping Engine would replace long-term
and increasingly hard-to-justify expenditure on supporting minority scripts and languages on a
case-by-case basis.

I’m not sure if Andrew made this additional point to his managers, but relying on character
property data in the Unicode standard may also enable companies to side-step geo-political is-
sues associated with some scripts. If support comes simply from updating Unicode data, rather
than making a business decision to implement—or not—shaping for a particular script, compa-
nies can avoid accusations of either favouritism or neglect.

Let’s now look at how the Universal Shaping Engine works. I’ll speak about each step in more
detail, but here is the overview.
How the Universal Shaping Engine works

Character classification

Two-part vowel splitting

Cluster segmentation and validation

OpenType feature application I
 Basic cluster shaping GSUB features

Reordering

OpenType feature application II
 Joining features (<init>, <medi>, etc.)
 Standard GSUB features
 Conditional GSUB features
 GPOS features

The engine does many of the things that previous, script-specific engines did, but does so in
a simplified structure that relies on the font developer making good choices rather than on
forcing a particular approach. There is no initial character reordering, but instead there is a
new step: character classification based on Unicode properties. Two-part vowel splitting is han-
dled as before, and segmentation of orthographic units or clusters now includes validation
against the universal cluster model. Basic cluster shaping features still need to be applied in a
distinct phase, and on discrete clusters. After these features are applied reordering happens;
this includes both character-level reordering—of left-side vowels, for example—and glyph lev-
el reordering of tracked outcomes from two key shaping features: <pref> and <rphf>. After
reordering, all OpenType Layout features are applied across the whole glyph run rather than
on discrete clusters, and these include both standard features—those presumed to be on by
default and either required for correct display of a script or normal to typical typography—and
conditional or discretionary typographic features invoked by the user and requested by the
client application.

At the heart of the Universal Shaping Engine is the universal cluster model. This is a model of
what happens in writing systems at the orthographic unit level: not a model of any particular
writing system—indeed, there is no one script that fills all of these boxes—but a superset of
behaviours. At the heart of the cluster is a base, around which other graphical elements are ar-
ranged, above and below, and to left and right. These elements are ordered relative to the base
and to each other. I have used the term element here, rather than character or glyph, because
the model is to some extent agnostic about whether the content of the boxes are atomically
encoded characters or output from glyph substitution lookups. It is a graphical model, captur-
ing the arrangement of written signs across a multitude of scripts, independent of language or
particular orthography, and potentially independent of encoding scheme or font technology.

Base Letter
< B | GB >

Vowel Modifier Top
< VMAbv >

Consonant
Modifier Top < CMAbv >

Consonant Final Top
< FAbv >

Vowel Left
< VPre >

Repha
< R >

Consonant
Medial Left
< MPre via

pref >

Consonant Medial Top
< MAbv >

Vowel
Modifier

Left
< VMPre >

 Vowel Top
< VAbv >

Consonant Final Modifier
< FM >

Consonant
Modifier Bottom < CMBlw >

Consonant Medial Bottom
< MBlw >

Consonant
Medial
Right

< MPst >

Vowel Bottom
< VBlw >

Vowel Right
< VPst >

Vowel Modifier Bottom
< VMBlw >

Vowel
Modifier

Right
< VMPst >

Consonant Final Bottom
< FBlw >

Consonant
Final
Right

< FPst >

Repeating element

Repeating group

Single element
Class

Reordered element

Base

Repha
< rphf >

Subjoined Base
< B >

Halant
< H >

Cons. Mod.
Top < CMAbv >

Consonant
Modifier Bottom < CMBlw >

Subjoined Letter
< SUB >

Vowel Right
< VPst >

Vowel
Modifier

Top
< VMAbv >

Vowel
Modifier
Bottom

< VMBlw >

Base Letter
< B | GB >

Vowel Modifier Top
< VMAbv >

Consonant
Modifier Top < CMAbv >

Consonant Final Top
< FAbv >

Vowel Left
< VPre >

Repha
< R >

Consonant
Medial Left
< MPre via

pref >

Consonant Medial Top
< MAbv >

Vowel
Modifier

Left
< VMPre >

 Vowel Top
< VAbv >

Consonant Final Modifier
< FM >

Consonant
Modifier Bottom < CMBlw >

Consonant Medial Bottom
< MBlw >

Consonant
Medial
Right

< MPst >

Vowel Bottom
< VBlw >

Vowel Right
< VPst >

Vowel Modifier Bottom
< VMBlw >

Vowel
Modifier

Right
< VMPst >

Consonant Final Bottom
< FBlw >

Consonant
Final
Right

< FPst >

Repeating element

Repeating group

Single element
Class

Reordered element

Base

Repha
< rphf >

Subjoined Base
< B >

Halant
< H >

Cons. Mod.
Top < CMAbv >

Consonant
Modifier Bottom < CMBlw >

Subjoined Letter
< SUB >

Vowel Right
< VPst >

Vowel
Modifier

Top
< VMAbv >

Vowel
Modifier
Bottom

< VMBlw >

Key

The universal
cluster model

To get from the specific encoding scheme that Unicode employs for a given script to the univer-
sal cluster model requires parsing of Unicode character categories, and translating these into
Universal Shaping Engine classes. The Unicode categories are derived from three data sources:
the General Category, Indic Syllabic Category, and Indic Positional Category. The initial work
on defining the Indic categories, undertaken by Ken Whistler in that late 2000s, provided the
basis for Andrew’s idea of leveraging Unicode data to shape complex scripts. As you can see
in the examples shown in the chart below, there isn’t a one-to-one mapping between Unicode
categories and Universal Shaping Engine classes, and there are some overrides to Unicode cat-
egories built into the engine. The Unicode Indic properties are also still provisional, so we’re
not quite at the point where shaping can be purely Unicode data driven—‘out of the box’—but
we’re pretty close.
Character Classification

 General Category UGC
Unicode � Indic Syllabic Category UISC
 Indic Positional Category UIPC

Sigla USE class Derivation

B BASE UISC = Number;
UISC = Avagraha & UGC = Lo;
UISC = Bindu & UGC = Lo;
UISC = Consonant;
UISC = Consonant_Final & UGC = Lo;
UISC = Consonant_Head_Letter;
UISC = Consonant_Medial & UGC = Lo;
UISC = Consonant_Placeholder;
UISC = Consonant_Subjoined & UGC = Lo;
UISC = Tone_Letter;
UISC = Vowel & UGC = Lo;
UISC = Vowel_Dependent & UGC = Lo;

IV BASE_VOWEL UISC = Vowel_Independent

IND BASE_IND UISC = Consonant_Dead;
UISC = Modifying_Letter;
UGC = Po (Punctuation signs)

N BASE_NUM UGC = Brahmi_Joining_Number

GB BASE_OTHER U+00A0, U+00D7, U+2015, U+2022, U+25CC, U+25FB–25FE

CGJ CGJ U+034F

F CONS_FINAL UISC = Consonant_Final & UGC != Lo;
UISC = Consonant_Succeeding_Repha

FM CONS_FINAL_MOD UISC = Consonant_Final_Modifier;
UISC = Syllable_Modifier

M CONS_MED UISC = Consonant_Medial & UGC != Lo

. . .

Sigla USE subclass Derivation

FAbv CONS_FINAL_ABOVE UIPC = Top

FBlw CONS_FINAL_BELOW UIPC = Bottom

FPst CONS_FINAL_POST UIPC = Right

MAbv CONS_MED_ABOVE UIPC = Top

MBlw CONS_MED_BELOW UIPC = Bottom

MPst CONS_MED_POST UIPC = Right

MPre CONS_MED_PRE UIPC = Left

CMAbv CONS_MOD_ABOVE UIPC = Top

CMBlw CONS_MOD_BELOW UIPC = Bottom

VAbv

VOWEL_ABOVE UIPC = Top

VOWEL_ABOVE_BELOW UIPC = Top_And_Bottom

VOWEL_ABOVE_BELOW_POST UIPC = Top_And_Bottom_And_Right

VOWEL_ABOVE_POST UIPC = Top_And_Right

VBlw VOWEL_BELOW UIPC = Bottom;
UIPC = Overstruck

VOWEL_BELOW_POST UIPC = Bottom_And_Right

VPst VOWEL_POST UIPC = Right

VPre VOWEL_PRE UIPC = Left

VOWEL_PRE_ABOVE UIPC = Top_And_Left

VOWEL_PRE_ABOVE_POST UIPC = Top_And_Left_And_Right

. . .

This is a good place to start talking about what a font maker needs to think about in order to
develop fonts for the Universal Shaping Engine. Obviously, as with any complex script font de-
velopment, you need to have an understanding of how the script works graphically, and how
it is encoded in Unicode. This means doing research, and reading the appropriate sections of
the Unicode Standard and any background technical documents such as the original encoding
proposals. In addition to this, I would recommend reviewing the Unicode categories for the
characters in the script, especially the Indic categories if they exist, and understanding how
these will be translated to Universal Shaping Engine classes and hence where they will end up
in the universal cluster model.

After character classification, the shaping engine performs split vowel operations. This can hap-
pen in two ways: through Unicode canonical decomposition, or via GSUB feature lookups in
the font. The first method is obviously simpler, and will be performed whenever a vowel sign
character has a canonical decomposition to two separate characters as in the Sinhala example
shown here.
Two-part vowel splitting

Unicode decomposition based

ෙ◌� ෙ �
 0DDE 0DD9 0DDF

0DDE;SINHALA VOWEL SIGN KOMBUVA HAA GAYANUKITTA;Mc;0;L;0DD9 0DDF;;;;N;;;;;

GSUB type 2 based

USE subclass : VOWEL_PRE_POST Derivation : UIPC = Left_And_Right

េ◌ឿ េ  ឿ  ប់ េល ឿង អាពា
17BF

<pstf> : khSignYa -> khYaPRE khYaPOST

Most two-part vowel signs in Unicode, to-date, have decompositions, either because the com-
ponent elements are identical in form and behaviour to stand-alone characters, or because the
encoding model provides for such decomposition with atomic encoding of split-vowel parts.
There are, however, examples of two-part vowel sign characters without canonical decompo-
sition, notably in the Khmer encoding, and this approach could be followed for future script
additions to Unicode.

If, in future, you’re faced with such characters when developing a font for the Universal Shap-
ing Engine, you will need to split the vowel at the glyph level using a one-to-many GSUB lookup
(type 2). Thanks to the character classification stage, the Universal Shaping Engine will already
be tracking the two-part vowel characters as it processes the basic shaping features. This is
particularly important in the case of split vowels in which one of the elements will take a pre-
base position in reordering. This is illustrated here using a hypothetical Khmer implementa-
tion for the Universal Shaping Engine (in Uniscribe and elsewhere, Khmer already has its own
script-specific engine, which works somewhat differently from this).

In this example, character classification has already identified the Khmer vowel sign ya as a
two-part vowel in a class that includes PRE. The engine looks for the default glyph for that
character in the basic shaping features, and when it sees a lookup that maps to two new glyph
IDs—hypothetically in the Post-Base Forms <pstf> feature, although a dedicated feature may
be defined for this purpose—, it tracks the first of these glyphs and at the reordering stage will
move it to the appropriate position in the cluster model.

Two-part vowel splitting

Unicode decomposition based

ෙ◌� ෙ �
 0DDE 0DD9 0DDF

0DDE;SINHALA VOWEL SIGN KOMBUVA HAA GAYANUKITTA;Mc;0;L;0DD9 0DDF;;;;N;;;;;

GSUB type 2 based

USE subclass : VOWEL_PRE_POST Derivation : UIPC = Left_And_Right

េ◌ឿ េ  ឿ  ប់ េល ឿង អាពា
17BF

<pstf> : khSignYa -> khYaPRE khYaPOST

Font developers don’t need to know much about cluster validation, other than to understand
what will constitute separate clusters for the script. At this stage the engine checks that the
encoded character string is well-formed and conforms to the universal cluster model. Since the
model is generalised and permissive, accommodating the graphical features of many different
scripts, the validation ignores particular orthographic or linguistic rules, leaving these to spell-
checkers.

Because no assumptions are made based on linguistically permissible sequences, it is possible
to test maximal cluster shaping for a given script. In the foreground is a maximal Burmese
cluster, containing a base character plus all the different characters, fully shaped, that may sur-
round it in a cluster. Of course, all these characters never occur together in actual Burmese text,
but for cluster validation purposes this is a well-formed character sequence.

Cluster Validation

ေ�က��� � ����� ���� ����

After validating the cluster, the Universal Shaping Engine applies specific OpenType Layout
features needed to resolve basic shaping forms and prepare the string for reordering. These
features are processed in three groups, and lookups for these features should be arranged in a
corresponding order.
Basic shaping GSUB features

Default glyph pre-processing features
 <locl> Localized Forms
 <ccmp> Glyph Composition/Decomposition
 <nukt> Nukta Forms
 <akhn> Akhands

Reordering features
 <rphf> Reph Forms Output reorders after the base
 <pref> Pre-Base Forms Output reorders before the base

Orthographic unit shaping features
 <rkrf> Rakar Forms
 <abvf> Above-Base Forms
 <blwf> Below-Base Forms
 <half> Half Forms
 <pstf> Post-Base Forms
 <vatu> Vattu Variants
 <cjct> Conjunct Forms

The first group of features performs pre-processing substitutions of default glyphs, including
localised forms, and composition or decomposition for downstream processing, for example
combining Indic letters plus nukta dots into precomposed glyphs, or forming ‘akhand’ ligatures
for pseudo-letters. The ordering of processing within the group is determined by the lookup
order in the font.

I’ll talk about the reordering feature group in more detail, with examples, in the next section.
These play an important role in the Universal Shaping Engine, which tracks the output of these
two features for reordering purposes. These features are processed individually, in this order:
Reph Forms first, and then Pre-Base Forms.

The orthographic unit shaping features are not applied in a fixed order, so lookup ordering can
be important, and will depend how you plan to use the features for shaping a particular script.
Not all scripts or fonts will require all of the features in any of the basic shaping feature groups.

The most important things for font makers to bear in mind when implementing features for this
stage are:

a) that no reordering has taken place at this stage, so the order of glyphs in the string and,
hence, in lookup inputs, is the order derived from the Unicode character sequence, as
mapped through the cmap table to default glyphs;

b) that the pre-processing and orthographic unit shaping feature groups are applied ac-
cording to their respective lookup ordering in the font, controlled by the font maker, while
the reordering features are discretely processed; and

c) that output from the Reph Forms feature will be reordered after the base character in
the cluster, while output from the Pre-Base Forms feature will be reordered before the
base character.

Let’s look a bit more closely at the two reordering features. The Reph Forms feature was orig-
inally registered to handle, specifically the conjunct-initial ra in Indic scripts, which typically re-
orders after the base and other consonants, either as a mark or as a stand-alone sign. Since it
is encoded, in phonetic order, at the beginning of the cluster, it needs to be reordered when it
takes a repha form. The Reph Forms feature is applied by the shaping engine on the first three
characters in the cluster, which captures both those scripts in which repha is formed from ra
plus the vowel killer and those such as Sinhala, shown here, where the Zero-Width Joiner con-
trol character is also required.

In the Sinhala example, the Reph Forms feature lookup substitutes the repha mark for the in-
put glyph string, and the Universal Shaping Engine tracks the latter, so that at the reordering
stage it can reorder that glyph after the base, to the appropriate place in the cluster model.
In this font, the combination of the base letter plus repha is resolved, after reordering, with a
ligature in the Above-Base Substitutions feature during the second OpenType Layout stage; of
course, a mark-to-base GPOS anchor attachment method could be used instead.
Reordering features

<rphf> Reph Forms

ර ◌් [ZWJ] ක  ◌�ක  ක◌�  ක�
 0DBB 0DCA 200D 0D9A <rphf> reordering <abvs>

<pref> Pre-Base Forms

ꦏ ◌꧀ ꦔ    ◌ꦿ  ꦏ��  �ꦏ�  ꦏꦿ
 A99D A9C0 A994 A9BF <pref> reordering
 <pref> context (medial ra) <blwf>

In this example, the Reph Forms feature is being used to substitute an actual repha form, but
in the Universal Shaping Engine it can be used generically to identify to the engine any element
that has the reordering properties of a repha. The engine does not require the input for this fea-
ture to be ra plus vowel killer; it does, however, require that this feature produce only a single,
trackable glyph per cluster.

In the same way that the Reph Forms feature can be used to move any element with repha
reordering properties from before the base to after the base, the Pre-Base Forms feature can
be used to move an element from after the base to before it: specifically, to the position in the
cluster model occupied by a prescript medial consonant. This illustration shows the shaping of
such a medial consonant in the Javanese script.

Reordering features

<rphf> Reph Forms

ර ◌් [ZWJ] ක  ◌�ක  ක◌�  ක�
 0DBB 0DCA 200D 0D9A <rphf> reordering <abvs>

<pref> Pre-Base Forms

ꦏ ◌꧀ ꦔ    ◌ꦿ  ꦏ��  �ꦏ�  ꦏꦿ
 A99D A9C0 A994 A9BF <pref> reordering
 <pref> context (medial ra) <blwf>

This is a particularly interesting example, because the Pre-Base Forms lookup is contextual. As
shown in the grey cluster on the right, the medial ra character normally joins to a preceding
base and takes this sweeping form under the base and rising before it. In order to attach to
the base in this way, it needs to come after the base in the glyph string. But when the base is
followed by an intervening vowel killer plus second consonant that takes a below-base form,
as in the example, the medial ra is represented by a stub form on the left of the cluster. So the
<pref> feature substitutes this left-side form, based on the context of the preceding letter and
vowel killer sequence. That sequence is going to be resolved to a subscript letter, in the Be-
low-Base Forms <blwf> feature in the orthographic unit shaping feature stage, but because the
Pre-Base Forms feature is applied discretely, before that stage, the context string has to be the
complete sequence with the vowel killer and the default consonant forms, not the subscript
glyph. It is always important, when coding the lookups, to keep track in your mind of what the
current state of the glyph string will be at the moment the lookup is applied by the engine. As
with the Reph Forms feature, the Pre-Base Forms feature must only produce a single, trackable
glyph per cluster.

After all basic shaping GSUB features are applied, the string is reordered by the engine. As just
discussed, feature-based reordering is effectively driven by the font lookups in the two reorder-
ing features, with some restrictions on their output.

Property-based reordering is derived, ultimately, from Unicode Indic categories, but at this
stage is based on Universal Shaping Engine classes. Note that these may derive from the Uni-
code categories during the character classification stage, or may be inferred from output from
two-part vowel splitting. Because reordering takes place after that vowel splitting, it affects
only the pre-base vowel parts.
Reordering

Feature-based reordering
rphf Reph Form Moves after base Repha or similar
pref Pre-Base Form Moves before base Pre-base medial consonant or similar

Property-based reordering
R REPHA Moves after base Atomically encoded repha
VPre VOWEL_PRE Moves before base Pre-base vowel, including pre-base
 element from 2-part vowel splitting
VMPre VOWEL_MOD_PRE Moves before base Pre-base vowel modifier, moves
 before pre-base vowel

ত ◌� ◌্ ি◌ ক ত্� িক
 09A4 09B0+09CD 09CD 09BF 0995
 VK

Following the modern orthographic convention used in India, repha and pre-base vowel signs
will not reorder past an explicit vowel killer sign. In other words, if a vowel killer character re-
mains in the middle of a cluster after the basic shaping features have been applied, this acts as
a kind of roadblock to the reordering move. This is illustrated if we imagine the Bengali cluster
example I used earlier being shaped by the Universal Shaping Engine. If you want to avoid this
result, then you need to ensure that your basic shaping form features and glyph substitutions
are formed in such a way that no vowel killer remains in the string when reordering is applied.

Reordering

Feature-based reordering
rphf Reph Form Moves after base Repha or similar
pref Pre-Base Form Moves before base Pre-base medial consonant or similar

Property-based reordering
R REPHA Moves after base Atomically encoded repha
VPre VOWEL_PRE Moves before base Pre-base vowel, including pre-base
 element from 2-part vowel splitting
VMPre VOWEL_MOD_PRE Moves before base Pre-base vowel modifier, moves
 before pre-base vowel

ত ◌� ◌্ ি◌ ক ত্� িক
 09A4 09B0+09CD 09CD 09BF 0995
 VK

After reordering, the second phase of OpenType Layout features is applied, beginning with
the joining features: Initial Forms, Medial Forms, etc.. To this point in the presentation, I have
been mostly talking about complex script handling in terms of alphasyllabic scripts of South
and Southeast Asia, but the Universal Shaping Engine is designed to also be able to handle Ara-
bic-like scripts with letterform joining behaviour based on Unicode joining categories. Indeed, it
should be able to handle a script that combines Indic- and Arabic-like behaviours, if such a thing
existed and were encoded in Unicode with appropriate character properties and categories.
Remaining OpenType Layout features

Joining features
<init> <medi> <fina> <isol>

Standard GSUB features
<abvs> <blws> <calt> <clig> <haln> <liga> <pres> <psts>
<rclt> <rlig> <vert> <vrt2>

Conditional GSUB features
All the rest!

GPOS features
<curs> <dist> <kern> <mark> <abvm> <blwm> <mkmk>

OpenType feature application II
 Joining features (<init>, <medi>, etc.)
 Standard GSUB features
 Conditional GSUB features
 GPOS features

I have listed the standard and conditional GSUB features separately, but these will actually be
processed simultaneously by the engine. That is to say, the processing sequence and interac-
tion of all remaining glyph substitution is based on the order of the lookups in the font. Further,
all these features are applied across the whole glyph run, rather than at the cluster level, allow-
ing cross-cluster contextual lookups and rich interaction between the shaped clusters. So long
as you have a good handle on what glyphs will be in the string after basic shaping, and in what
order they will be after reordering, you—as the font maker—have great freedom and creative
flexibility in this stage.

GPOS features are also applied simultaneously, allowing similar freedom, although the or-
der shown here is recommended. Think of it in terms of moving outward from joined spacing
glyphs attached with cursive connection lookups, to adjusted spacing of glyphs using kerning
or similar lookups, to zero-width marks attached to spacing glyphs, and finally marks attached
to other marks.

[I have decided not to take time in this paper to discuss mark filtering, which is a common
technique used in complex script lookups. I presume that most OpenType font makers have a
reasonable idea of how this works, and what the implications are for GPOS.]

I want to talk briefly about lookup ordering, because I worry that the limitations imposed in old-
er shaping engines, in partial OpenType Layout implementations, and even in font tools have
tended to obscure the original model. There is a tendency to think about OpenType Layout in
terms of a hierarchical tree of script, language system, features, and lookups, and hence to
think about processing order as being primarily associated with features.
The wrong impression

Script
 LangSys
 Feature
 Lookup
 Lookup
 Feature
 Lookup
 Lookup
 Lookup
 Feature
 Lookup
 Feature
 Lookup

Complex script shaping engines have tended to reinforce this incorrect impression by discrete-
ly processing some features in a fixed order.

The actual structure looks more like this: a hierarchical tree of script, language system, and
features independent of a block of lookups. It is a model that should provide a lot of flexibility
to font makers, allowing, among other things, interleaving of lookups associated with different
features. [One of the reasons why I still favour Microsoft’s VOLT tool is that it makes this struc-
ture explicit in its UI.]
A better picture

Script Lookup
 LangSys Lookup
 Feature Lookup
 Feature Lookup This order matters
 Feature Lookup
 Feature Lookup
 Lookup

The original intent was that layout engines would act as an interface between applications and
fonts, activating features for text as appropriate to the script, language system and feature
state—required, standard, conditional—but would allow the order of lookups in the font to
determine how those features were processed and how they would interact. Two things hap-
pened in the early development of complex script support to undermine this model. The first
was that layout engine developers realised that in order to perform complex script shaping
reliably, they needed some processing to happen in a particular order, and to break the pro-
cessing into multiple stages around reordering. The second was that some font makers got that
ordering wrong in the lookups. Rather than sticking to the model and requiring font developers
to fix the fonts, Microsoft opted to enforce feature-based processing order in shaping engines,
bypassing the lookup ordering for some features. This resulted in a complex script font de-
velopment environment that is both more restricted than originally intended, and also more
confusing: it isn’t always clear which features a shaping engine will process in a fixed order and
which will be processed according to lookup order.

One of the goals of the Universal Shaping Engine is to limit as much as possible the application
of fixed feature processing, and to return to the font maker a large amount of the original
freedom of the OpenType model. Of course, freedom means responsibility: a lot more of the
control of what happens in complex script display now resides in the font, so it is important
to understand the stages that the Universal Shaping Engine employs, and to order lookups
accordingly.

It is difficult to talk about or diagram lookup ordering independent of a particular font, since
different fonts may have very different lookup sets. So we’re obliged to talk instead about or-
dering of ‘lookups associated with features’, using the features as a kind of key to the lookups.
Obviously, this doesn’t expose possible interleaving of lookups associated with different fea-
tures within the processing blocks.

Here is a cheat sheet for lookup ordering for the Universal Shaping Engine processing stages.
As you can see, there are only two features that have fixed ordering, and the processing of the
great majority of features is determined by lookup ordering.

USE lookup ordering cheat sheet

locl,ccmp,nukt,akhn Free order ; this recommended

rphf,pref Fixed order

rkrf,abvf,blwf,half,pstf,vatu,cjct Free order ; this recommended

isol,init,medi,fina Free order ; this recommended

abvs,afrc,blws,calt,case,clig,cpsp, Free order
cswh,cv01–cv99,c2pc,c2sc,dlig,dnom, CJK- and math-specific features not listed

falt,frac,haln,hist,hlig,jalt,liga,
lnum,ltra,ltrm,mgrk,nalt,numr,onum,
ordn,ornm,pcap,pnum,pres,psts,rand,
rclt,rlig,rtla,rtlm,salt,sinf,smcp,
ss01–ss20,stch,subs,sups,swsh,titl,
tnum,unic,vert,vrt2,zero

curs,dist,kern,vkrn,mark,abvm,blwm, Free order ; this recommended
mkmk CJK-specific features not listed

The Universal Shaping Engine was invented at Microsoft, but Andrew and his colleagues—in-
cluding Peter Constable, who has taken over responsibility for script shaping—have actively
encouraged other companies to implement the engine in their own software, and to ensure
compatibility. The specification is published—although in need of some updates and clarifi-
cations—, and the engine was the subject of several days of discussion at the first meeting of
the ad hoc OpenType Working Group, hosted by Google in 2014. In addition to shipping in the
Windows 10 version of Uniscribe, the Universal Shaping Engine has been implemented in the
open source HarfBuzz text shaper, and I am aware of one other implementation that I am not
allowed to talk about yet, but which I expect to be announced soon.

It’s called the Universal Shaping Engine, so it’s reasonable to ask how universal it actually is.
The answer is not really and not quite. It isn’t really universal in terms of the scripts that it cur-
rently shapes: at present, only a subset of complex scripts is passed to the Universal Shaping
Engine. The list shown here are those for which Uniscribe currently uses the engine (Harfbuzz
uses it for a different set; yes, this inconsistency is of concern). These are all either previously
unsupported, newly encoded, or—in the case of Sinhala and Tibetan—scripts that previously
had their own script-specific implementations but which Microsoft have migrated to the new
engine (also of concern, as my understanding is that Microsoft tested only their own Sinhala
and Tibetan fonts before making this change). Many of these scripts are minority writing sys-
tems, some of them not in modern use.

Most of the previously supported major complex scripts are still being passed to their older
engines. There are, however, advantages to efficiency in passing Indic scripts to the Universal
Shaping Engine—as well as all the benefits to font makers discussed in this presentation—, so
it seems increasingly likely that new Indic script tags such as <dev3> will be defined in order
to be passed to the new engine. [It’s too dangerous simply to start passing the existing Indic2
script tag to the Universal Shaping Engine, because too many fonts have been made in ways

Where is the Universal Shaping Engine?
(And is it actually universal?)

USE shaped scripts in Windows 10
Balinese
Batak
Brahmi
Buginese
Buhid
Chakma
Cham
Duployan
Egyptian Hieroglyphs
Grantha
Hanunoo
Javanese
Kaithi
Kayah Li
Kharoshthi

Khojki
Khudawadi
Lepcha
Limbu
Mahajani
Mandaic
Manichaean
Meitei Mayek
Modi
Mongolian
N’Ko
Pahawh Hmong
Phags-pa
Psalter Pahlavi
Rejang

Saurashtra
Sharada
Siddham
Sinhala
Sundanese
Syloti Nagri
Tagalog
Tagbanwa
Tai Le
Tai Tham
Tai Viet
Takri
Tibetan
Tifinagh
Tirhuta

that might break if one starts, for example, suddenly applying standard features across cluster
boundaries.]

It’s called the Universal Shaping Engine, then, not because it shapes all scripts, but because
it uses a universal model. Of course, as soon as you declare that you have a universal model,
someone comes along with an exception to that model. In this case, the exception is the Tai
Tham or Lanna script of northern Thailand, which uses subjoined consonants in ways that may
compress multiple syllables into a single cluster, causing recursion in cluster analysis. It remains
to be seen whether Tai Tham can be accommodated with exception code in the Universal Shap-
ing Engine, or will need to be passed to a script-specific engine.

So the Universal Shaping Engine turns out to be not quite universal in this sense either. But it’s
pretty darn close, and is a remarkable achievement.

In summary, this is my advice for type designers and font technicians making fonts for the Uni-
versal Shaping Engine:

•	Know your script: do research; understand how the writing system functions as a system;

•	Know how Unicode encodes your script; be aware of the possible role of control charac-
ters, such as the Zero-Width Joiner and Non-Joiner, which might need to be included in
GSUB lookups;

•	Know how the Universal Shaping Engine works: review the specification and watch for
updates; review this presentation (which I’ll publish online in a couple of weeks); ask ques-
tions;

•	Plan your glyph set carefully, considering in advance everything you might need, how it
will be processed by the shaping engine, and how you will handle the layout in GSUB and
GPOS; consider making a spreadsheet to manage the project;

•	Check your workflow and toolset: make sure the font creation software you are using lets
you do everything you want to do in terms of feature coding and lookup ordering;

•	Always remain aware of the order of glyphs in the cluster at different stages of processing,
and hence the input and output of sequential lookups;

•	Enjoy the freedom and flexibility that the Universal Shaping Engine model provides, but be
ready to embrace what that means in terms of responsibility for making the font work.

Select links and acknowledgements

microsoft.com/typography/OpenTypeDev/USE/intro.htm
Universal Shaping Engine specification (watch for updates and fixes)

blogs.windows.com/windowsexperience/2015/02/23/windows-shapes-the-worlds-languages/
Introductory article on the Universal Shaping Engine in Windows 10

tiro.com/John/Hudson-Soyombo-DECK.pdf
Soyombo script test case for the Universal Shaping Engine (Unicode conference 2014)

tiro.com/John/Hudson_IUC39_Beyond_Shaping.pdf
General overview and critique of OTL implementation (Unicode conference 2015)

Many thanks, for their contributions and assistance, to Andrew Glass & Peter Constable (Micro-
soft) ; Behdad Esfahod & Roozbeh Pournader (Google) ; Martin Hosken (SIL) ; Anshuman Pand-
ey ; Ben Mitchell.

With gratitude to Jürgen Siebert and Jörg Schweinsberg at Monotype for the invitation to
speak at TYPO Labs, and to the conference organisers and staff, especially Franziska Parschau.

https://www.microsoft.com/typography/OpenTypeDev/USE/intro.htm
https://blogs.windows.com/windowsexperience/2015/02/23/windows-shapes-the-worlds-languages/
http://www.tiro.com/John/Hudson-Soyombo-DECK.pdf
http://www.tiro.com/John/Hudson_IUC39_Beyond_Shaping.pdf

