

Institut für Energietechnik, Professur Kraftwerkstechnik

Verbrennung und Dampferzeugung

- universitäres Fernstudium -Brennstoffe als Primärenergieträger

Dr.-Ing. Marco Klemm

Walther-Pauer-Bau - Zimmer 302 -

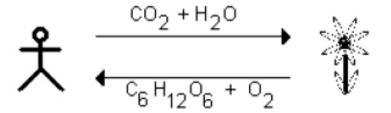
Telefon: 0351 463-33471

Telefax: 0351 463-37753

E-Mail: marco.klemm@tu-dresden.de

Brennstoffe, Abfallstoffe und Biomassen sind chemische Energiespeicher und als solche Energieträger.

Man kann diese nach unterschiedlichen Gesichtspunkten einteilen:


- in natürliche und veredelte oder künstliche
- in fossile und nicht-fossile.

Eine weit verbreitete Einteilung ist die Bezeichnung nach dem Aggregatzustand:

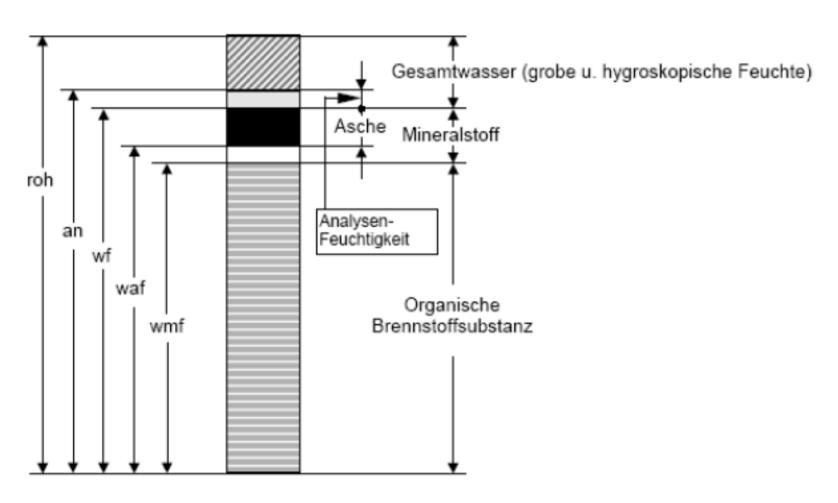
- fest
- flüssig
- gasförmig

Eigenschaften und Analytik

Pflanzen nehmen CO₂ aus der Luft auf und bilden daraus Kohlenhydrate, Eiweiß und Fett. Tiere fressen Pflanzen. In den fossilen Brennstoffen ist also CO₂ gespeichert, das die Pflanzen aus der Luft genommen haben. Bei der Verbrennung fossiler Brennstoffe wird das CO₂ wieder freigesetzt. Daneben entstehen - je nach Art der Verbrennung - auch CO, Stickoxide, Schwefeldioxid, Russ und andere unfreundliche Stoffe.

Verbrennung und Dampferzeugung (Fernstudium)

- Feste Brennstoffe -


Brennstoffe

	Geologisches Alter	Zusammensetzung (Gew%)			Heizwert (kJ/kg)
		С	0	Н	
Holz	Gegenwart	50	44	6	16.720
Torf	12.000 Jahre	55-65	30-40	5-7	20.900- 25.080
Braunkohle	5-40 Mio. Jahre	65-75	20-30	5-6	25.080- 29.260
Steinkohle	500 Mio. Jahre	75-90	5-18	4-6	29.260- 33.440
Anthrazit	1.000 Mio. Jahre	>90	2-3	4	33.440- 37.620
Grafit		100	0	0	

Wichtige Eigenschaften fester Brennstoffe:

- Heizwert
- Elementarzusammensetzung (C, H, O, N, S, Spurenbestandteile)
- Aschegehalt
- Zusammensetzung und Schmelzverhalten der Asche
- Mahlbarkeit
- Wassergehalt
- Schüttdichte
- Flüchtige Bestandteile

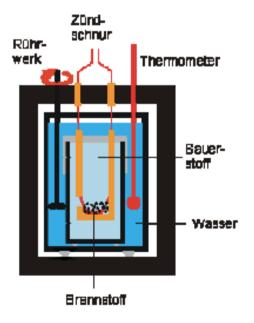
Bestandteile und Bezugszustände von Kohle

Heizwert Einheit: kJ/kg

... ist diejenige Wärmemenge, die bei vollständiger Verbrennung eines Brennstoffes frei wird. (Maß für die im Brennstoff gespeicherte Energie)

Bei den Brennstoffen, die Wasserstoff und somit in den Abgasen auch Wasser enthalten, unterscheidet man nach dem *Brennwert* (früher: oberen Heizwert) H_o und dem *Heizwert* H_u (früher: unterer Heizwert).

Der Brennwert H_o wird mit einem Bombenkalorimeter gemessen...


... und der *Heizwert H_u* wird dann rechnerisch aus dem Brennwert H_o bestimmt:

$$H_{o (wf)} = H_{u (wf)} + 0.22 H$$

mit	H _{o (wf)}	Brennwert der wasserfreien Substanz in MJ/kg
	$H_{u \text{ (wf)}}$	Heizwert der wasserfreien Substanz in MJ/kg
	0,22	Konstante, die die Verdampfungswärme des Wassers und stöchiometrische Koeffizienten beinhaltet, in MJ/kg
	Н	Wasserstoffgehalt der wasserfreien Substanz in % der Masse

Wie wird der Heizwert bestimmt?

Die Brennstoffprobe wird in einem geschlossenen Gefäß in einer reinen Sauerstoffatmosphäre bei einem Druck von 30 bar verbrannt. Aus der Temperaturerhöhung des Systems, dem Gewicht der Probe und der Wärmekapazität des Kalorimetersystems lässt sich der Brennwert errechnen. Man bezeichnet diese Art von Kalorimeter auch Bombenkalorimeter.

Modernes Bombenkalorimeter

prinzipieller Aufbau

Der Heizwert kann nach mit Hilfe von Näherungsformeln berechnet werden, z.B. für Braunkohlen u.ä. nach Boie:

$$H_U = 34800 \cdot \gamma_C + 93800 \cdot \gamma_H + 10460 \cdot \gamma_S + 6280 \cdot \gamma_N - 10800 \cdot \gamma_O - 2450 \cdot \gamma_W$$

In der Regel sind Messungen aber genauer und vorzuziehen

Die Ermittlung der Elementarzusammensetzung erfolgt über eine Elementaranalyse. Sie bestimmt wesentlich den Verbrennungsverlauf und die Abgasemissionen und ist Ausgangspunkt der Verbrennungsrechnung.

Aschegehalt

Die Asche umfasst die nicht brennbare Substanz der Kohle, die im wesentlichen in fester Form bei der Verbrennung anfällt. Nach DIN 51719 wird der Aschegehalt durch Verbrennen einer Probe bei 815 ± 15 °C bestimmt. Er entspricht deshalb nicht den tatsächlichen Verbrennungs- oder Vergasungsrückständen; deren Menge ist vielmehr von den Betriebsbedingungen abhängig.

Der Aschegehalt ist ein Maß für den Mineralstoffgehalt des Brennstoffes. Die Ascheanalyse erstreckt sich üblicherweise auf die Bestimmung von SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, SO₃, P₂O₅ und die Alkalien Na₂O und K₂O.

Typische Werte für Asche-, S-, Cl- und Hg-Gehalte in Regelbrennstoffen

Brennstoff		Braunkohle	Steinkohle	Holz
Art	Einheit	deutsche	Import- und deutsche	(unbehandelt)
Asche	Gew%, wf	1-5	5-20	2
Schwefel	Gew%, waf	0,2-3,2	0,3-1,5	0,1
Chlor	Gew%, waf	0,01-0,1	0,01-0,2	0,01
Quecksilber	mg/kg, waf	0,05-0,11	0,05-0,21	<0,05

Wichtige Bestandteile einer Stein- und Braunkohlenasche in %

		Steinkohlenasche	Braunkohlenasche	
Siliziumdioxid	SiO ₂	30 – 50	1 – 10	
Aluminiumoxid	Al ₂ O ₃	15 – 30	1 – 8	
Eisenoxid	Fe ₂ O ₃	2 – 22	4 – 25	
Magnesiumoxid	MgO	1 – 8	1 – 12	
Schwefeldrioxid	SO ₃	1 – 5	1 – 40	
Calciumoxid	CaO	1 - 15	15 – 60	

Ascheschmelzverhalten Bestimmung

Das Ascheschmelzverhalten wird nach DIN 51730 an einem Asche-Schmelz-Analysator bestimmt. Die Probe wird zunächst nach DIN 51719 verascht und die entstandene Asche zu einem prismenförmigen Probenkörper verpresst. Der Probenkörper wird anschließend in einem Ofen bis zu 1500°C mit 10°C/min in oxidierender Atmosphäre erhitzt. Durch ein Beobachtungsfenster werden die Proben während der Aufheizung mit einer Videokamera beobachtet und unter Einblendung der Ofentemperatur aufgezeichnet.

Verbrennung und Dampferzeugung (Fernstudium)

Zylindrischer Presskörper von 3 mm Durchmesser und Höhe

Sinterpunkt (-beginn)

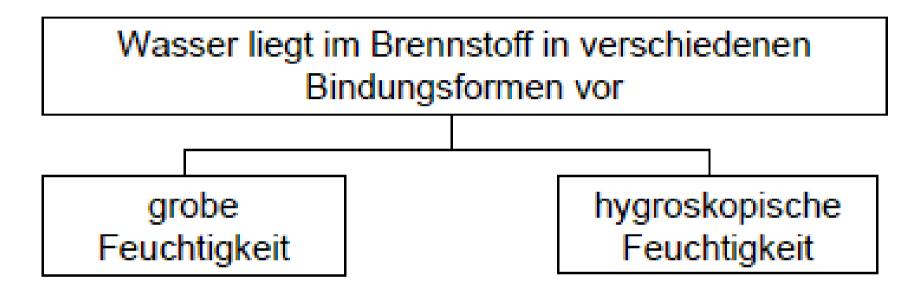
Temperatur, bei der ein Zusammenkleben der Aschepartikel an ihren Grenzflächen auftritt

Erweichungspunkt

erste Anzeichen des Erweichens (Veränderungen an der Oberfläche, Rundwerden der Kanten, Beginn des Blähens)

Schmelzpunkt (Halbkugelpunk)

Probekörper nimmt angenähert die Form einer Halbkugel an und ist halb so hoch wie seine Grundlinie


Fliesspunkt

Probekörper ist auf ein Drittel der ursprünglichen Höhe auseinandergeflossen

Mahlbarkeit

wird gekennzeichnet durch die Hardgrove-Zahl

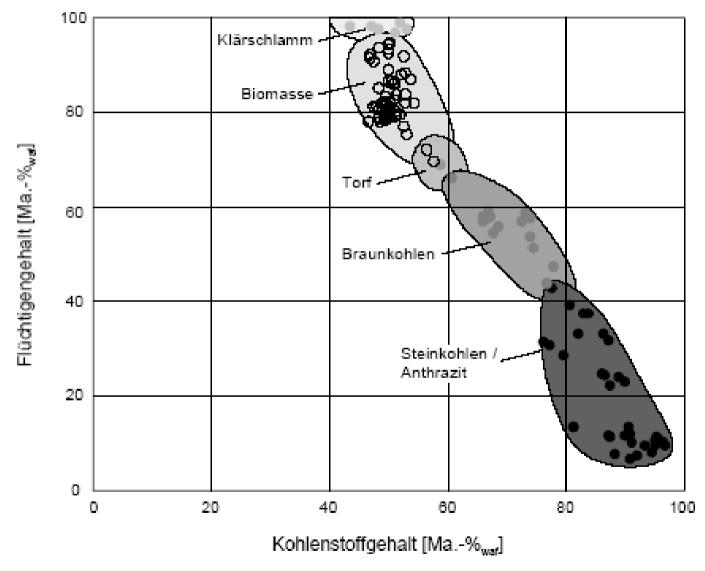
kennzeichnet die Mahlhärte von Kohle nach der amerikanischen ASTM Norm D 409. Der nach dem Vermahlen erhaltenen Siebdurchgang steht im Zusammenhang mit der Mahlhärte. Je kleiner der Hardgrove-Index, desto härter ist die Kohle. Der Hardgrove-Index der Ibbenbürener Nusskohle liegt bei ca. 34 °H.

Äußerlich anhaftendes Wasser (Grubenwasser, Waschwasser aus der Aufbereitung, Regen Schnee aus der Lagerung)

Von der Oberfläche absorbiertes Wasser, das auch bei Lagerung nicht an die Luft abgegeben wird.

Schüttdichte

... nach DIN 51 704 ist der Quotient aus der Masse eines Stoffes und jenem Volumen, das dieser Stoff beim Schütten einnimmt, die Zwischenräume eingeschlossen


Steinkohle	720 890 kg/m ³
Braunkohle, stückig	650 780 kg/m ³
Braunkohlenstaub	450 500 kg/m ³
Asche	900 kg/m ³
Flugstaub	500 kg/m ³
Schlacke	750 kg/m ³

Flüchtige Bestandteile

Gasförmige Verbindungen, die unter festgelegten Bedingungen beim Erhitzen und Zersetzen organischer Brennstoffe entweichen. Der Gehalt an Flüchtigen Bestandteilen dient zur Kennzeichnung u.a. der Steinkohlenarten.

Zu den flüchtigen Bestandteilen gehören: Wasserstoff H₂; Kohlenwasserstoffverbindungen C_nH_m; Sauerstoff O₂; Stickstoff N₂; Kohlenmonoxid CO und Kohlendioxid CO₂

Verbrennung und Dampferzeugung (Fernstudium)

Bedeutung der Brennstoffeigenschaften für den Einsatz

Physikalische Parameter (1)

Wassergehalt Lagerfähigkeit,

Trockensubstanzverlust,

Selbstentzündungsgefahr,

Anlagenauslegung

Heizwert Anlagenauslegung

Aschegehalt Staubemissionen, Ascheverwertung

Physikalische Parameter (2)

Ascheschmelzverhalten Betriebssicherheit,

Verbrennungstechnik,

Regelungstechnik

Schüttdichte Brennstofflogistik

Form und Korngrößenverteilung

Fördertechnik, Trocknungstechnik, Verbrennungstechnik, Betriebssicherheit, Staubemission

Chemische Parameter (1)

Chlor CI HCl-, PCDD/F-Emissionen,

Korrosion

Stickstoff N NO_x -, N_2 O-Emission

Schwefel S SO_x -Emission, N_2 O-Emission

Fluor F HF-Emission, Korrosion

Chemische Parameter (2)

Natrium Na Korrosion, Verringerung der

Ascheschmelztemperaturen,

Ascheverwertung

Kalzium Ca Erhöhung der

Ascheschmelztemperaturen,

Ascheverwertung

Phosphor P Ascheverwertung

Chemische Parameter (3)

Kalium K

Korrosion, Verringerung der Ascheschmelztemperaturen, Aerosolbildung, Ascheverwertung

Schwermetalle

Emissionen, Ascheverwertung, Aerosolbildung Verbrennung und Dampferzeugung (Fernstudium)

- Flüssige und gasförmige Brennstoffe -

flüssige Brennstoffe

Heizwert	Schwefelgehalt
Dichte	Flammpunkt
Wassergehalt	Viskosität

gasförmige Brennstoffe

Heizwert	Zünd-
	geschwindigkeit
Dichte	Zündtemperatur

Viskosität

Als Viskosität bezeichnet man die Kraft des inneren Widerstands, den eine Flüssigkeit der Verschiebung ihrer Moleküle entgegensetzt. Sie ist bei Heizöl EL wie die Dichte eine temperaturabhängige Größe und ist ein Merkmal für die Strömungseigenschaften des Heizöls in Rohrleitungen und bestimmt auch die Zerstäubungsgüte in einer Ölbrennerdüse.

Dichte

Die Dichte ist das Verhältnis von Masse zu Volumen und wird in g/ml, kg/l oder kg/m³ angegeben. Sie ist temperaturabhängig und wird in der Norm auf eine Temperatur von 15°C bezogen.

Brennstoff	Dichte in kg/l
Heizől HEL	0,84
Heizől S	0,96
Methanol	0,79
Äthanol	0,79

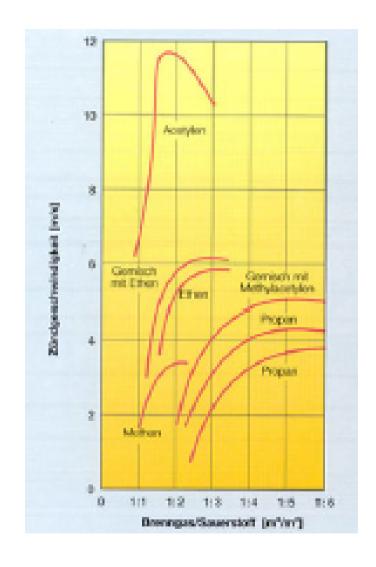
Verbrennung und Dampferzeugung (Fernstudium)

Der Flammpunkt ist die Temperatur, bei der eine brennbare Flüssigkeit nach Zündung mit einer Zündflamme erstmals kurz aufflammt.

Vergleich verschiedener Kraftstoffarten

	Einheit	Diesel	Rapeči	RME (Norm)
Dichte	g/cm²	0,85	0,92	0,86-0,9
Viskosität	mmF/s	4,7	67	6,5-9,0
Heizwert	MJ/kg	43,6	37,3	36,4
Flammpunkt	*c	60	200	< 55
Cetanzahi	-	51	41	< 48
Schwefel	Gew%	0,2	0,0012	< 0,02
Phosphat	mg/kg	-	22	-

Quelle: Energletechnik GmbH


Bestandteile von Brenngasen

Brenngase bestehen im wesentlichen aus folgenden Einzelbestandteilen:

		Heizwert H _u in MJ/m ³
Kohlenmonoxid	CO	12,75
Wasserstoff	H ₂	10,75
Methan	CH₄	35,80
Äthan	C₂H ₆	47,42

Zündgeschwindigkeit

Kennzeichnet das
Brennverhalten eines Gases.
Damit ein Rückzünden in den
Behälter ausgeschlossen ist,
muss die
Ausströmgeschwindigkeit
höher als die
Zündgeschwindigkeit sein.

Analysenwerte gasförmiger Brennstoffe

Brennstoff	(%)	H2 (%)	CH4 (%)	Cn Hn (%)	CO2 (%)	N2 (%)	Heizwert kJ/kg
Erdgas	1,0	5,0	75,0	0,5	0,5	18,0	29 400
Generatorgas	30,0	15,0	SHEE	10 1	5,0	50,0	5 000
Braunkohlen- Schwelgas	3,6	32,4	54,0	4,0	3,0	3,0	12 200
Stadtgas	20,0	54,0	16,1	2,2	4,5	3,2	16 800
Koksofengas	7,5	60,0	20,0	4,5	4,0	4,0	17 600

Die Analysewerte sind Mittelwerte für asche- und wasserhaltige Substanz.

Zündtemperatur

Die Zündtemperatur (auch Zündpunkt oder Entzündungspunkt) ist jene Temperatur einer Flüssigkeit, bei der der Dampfdruck so hoch ist, dass sich das entstehende Gas/Luft-Gemisch ohne eine separate Zündquelle selbst entzündet. Allgemein haben alle brennbaren Stoffe, auch feste Stoffe, eine Zündtemperatur.

Verbrennung und Dampferzeugung (Fernstudium)

Brennstoff	Zündtemperatur
Torf	225 - 280
Braunkohle	135 - 220
Steinkohle	215 - 400
Benzin	330 - 520
Heizöl	210 - 290
CO	600 - 650
Erdgas	630 - 670

Beispiele Zündtemperaturen in °C