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Abstract

This paper describes the theoretic framework and applications of auto-

matic audio content analysis. After explaining the tools for audio analysis

such as analysis of the pitch or the frequency spectrum, we describe new ap-

plications which can be developed using the toolset. We discuss content-based

segmentation of the audio stream, music analysis and violence detection.

1 Introduction

Looking at multimedia research, the �eld of automatic content processing of mul-
timedia data becomes more and more important. Automatic cut detection in the
video domain [ZKS93, MMZ95, ADHC94], genre recognition [FLE95, ZGST94] or
automatic creation of digital video libraries [ZWLS95, SC95] are key topics ad-
dressed by researchers.

The MoCA project (Movie Content Analysis) at the University of Mannheim
aims at the automatic analysis of streams of video and audio data. We have devel-
oped a workbench to support us in this di�cult task [LPE96]. First results have
been achieved in automatic genre recognition [FLE95]), text recognition [LS96],
video abstracting [PLFE96] and audio content analysis.1

Humans are well able to recognize the contents of anything seen or heard. Our
eyes and ears take in visual and audible stimuli, and our nerves process them. Such
processing takes place in di�erent regions of the brain whose exact functions are
still not understood in detail.

Research in multimedia content analysis has so far concentrated on the video
domain. Few researchers do audio content analysis as well [GLCS95, BC94, Fis94,
Smo94]. We demonstrate the strength of automatic audio content analysis. Anal-
ogous to the specialized areas that have evolved in the human brain, such analysis
merits research in its own right. We therefore explain the algorithms we use, in-
cluding analysis of amplitude, frequency and pitch, and simulations of human audio
perception. We use these algorithms to segment audio data streams into logical
units for further processing, and to recognize music as well as sounds indicative of
violence like shots, explosions and cries.

This paper is organized as follows. Section 2 describes the basic tools necessary
for automatic audio content analysis. Section 3 reports di�erent applications of
audio content analysis. Section 4 concludes the paper.

1For further information on MoCA see http://www.informatik.uni-mannheim.de/informatik/-
pi4/projects/MoCA/
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2 Basic properties of audio

2.1 The theoretical model

The content of audio must be regarded from two angles: �rst there are the mea-
surable properties, from the physics point of view, like amplitude or waveform, and
second, the properties of human cognition such as subjective loudness or harmony.
These will be presented in the following subsections.

2.2 Physical properties

Sound is de�ned as an air pressure change which is modelled as a waveform com-
posed of sinus waves of di�erent amplitude, frequency and phase. Experiments with
di�erent sounds have shown that the human ear does not di�erentiate phases, but it
is well known that we hear amplitude changes as changes in loudness, and frequency
changes as changes in pitch. The phase information is, however, still interesting,
when trying to isolate a sound source based on phase di�erences between both ears.
This shows that the human acoustical system analyzes waveforms directly.

More interesting than the waveform itself, however, is often its composition as
sinus waves and their amplitudes and frequencies. In physics, this is known as the
Fourier Tranformation [Bri74]. The ear also performs such a transformation via a
special reception mechanism in the inner ear [Roe79]. It is the basic step in any
kind of detailed audio analysis. Only with information on the frequencies can we
distinguish between di�erent sounds: every sound we hear is composed of di�erent
frequencies and amplitudes whose change pattern is characteristic. The duration of
such patterns is the �rst basic piece of information for partitioning the audio track
into �single sounds�, which are then classi�able. We will analyze this in more detail
in subsection 3.1.

2.3 Psycho-acoustical properties

When a human hears a sound, he/she does not perceive an amplitude and frequen-
cies, but the human auditory system extracts certain desired information from the
physical information. The information extracted can be very general like �I hear
that somebody is talking� or it can be more accurate like �I hear that Jenny is saying
that she is hungry�. The sound, however, consists only of the physical information
from which it is not easy to derive even general information such as the classi�cation
into speech, music, silence or noise, or perceived loudness and dynamics (changes
in loudness) from the audio wave.

How does the human accomplish this? Using a computer, we have two methods
of simulating the human auditory perception: either we try to model the human
auditory system in every detail that is known, or since we know the input data
(physical properties of sound) and the ouput data (audio content), we try to make
black box models of the processes that happen in the human auditory system and
transfer them into programs. Both methods are rewarding. The �rst one leads to
programs which represent our current biological knowledge of the human auditory
system. As our knowledge is incomplete, we can only model the derivation of certain
basic information (see subsection 2.4). The second method is better for derivation
of higher semantic information. If we do not know how a human identi�es the sound
he/she hears as music, we must wager a guess. Is it a special frequency pattern which
he/she has learned to identify as music? How can a computer program model the
processes which may occur in a human brain?

Psychoacoustics is the science behind this approach [Roe79]. Researchers in
this area have constructed models to derive higher acoustic semantics and have
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tested them on people. Some of the theories have also been tested on computers for
extraction of higher semantics from digitized sound. We claim that with a knowledge
of biology, psychoacoustics, music and physics, we can set up theories on human
auditory perception and transfer them into computer programs for evaluation.

An example is the description of loudness as perceived by a human. Di�erent
scales have been invented to judge loudness: for example dB-scale, phon-scale, sone-
scale. Each measures a di�erent kind of loudness: dB simply measures amplitude
di�erences, phon compares the loudness of di�erent frequencies but of the same
amplitude, and sone compares the loudness of di�erent sounds. But when a human
expresses that some sound is �loud�, this sensation is also dependent on the du-
ration of that sound, the frequency di�erences present in the sound, that human's
�sound history�, his visual perception of the sound source, his sensitivity and his
expectations (there are probably even more in�uences).

How can we approach such a problem with a computer program? dB, phon and
sone are implemented easily. The impact of the duration of a sound is explained
biologically by adaptation of the auditory nerves - this too can be simulated. In-
volvement of other parameters has to be discussed because some are very subjective
(like that human's sensitivity) or are not extractable from the audio alone (like the
visual perception of the sound source). �Sound history� or the human's expecta-
tions can perhaps be modelled in more detail. For �sound history� we could use a
pro�le of the loudness the human has perceived in the past (for example during the
last 2 min) and the human's expecations can perhaps be derived from the environ-
ment, e.g. that when going to a disco, he/she expects music of a certain loudness.
A kind of �intersubjective� loudness measure will result from such concepts which
can surpass those available so far.

2.4 Biological aspects

Multimedia data can be analyzed in two ways: �rst, characteristic patterns can be
extracted and used for classi�cation. This is done without any regard as to how
humans perceive the contents of the data. Second, the extraction can be done by
simulating the human perception process. This will be described here.

The major di�erence between data analysis with and without perception sim-
ulation is the use of a special �lter. As a perception-independent solution directly
analyzes frequencies, for example those produced by a Fourier transformation, fre-
qencies are �ltered �rst in a perception-simulating analysis. The �lter hereby com-
putes the response a speci�c nerve cell of the auditory nerve will produce. This
response is frequency-dependent. We use the phase-compensated gammatone �lter
gc proposed by [Coo93] to transform the frequency signal.

gc(t) = (tc + t)(n�1)exp(�2�b(t+ tc))cos(2�f0t)

The �lter is a fourth-order �lter(n = 4) where b is related to bandwith, f0 is
the center frequency and tc is a phase- correction constant. The center frequency is
the frequency to which the nerve cell is tuned. We use a �lter bank of 256 di�erent
�lters spaced equally on the frequency scale.

Figure 1 shows three of these �lters. The higher the frequency, the more the
�lter oscillates. Taking the output of a speci�c �lter, the probability of a cell to �re
can be calculated using the Meddis hair-cell model [Med86]. The signal transformed
into nerve-cell response probabilities can now be used to calculate two important
indicators for classifying audio content:

� Onset and o�set which are a measure of how fast a cell responds to a signal.
These indicators are a measure of how fast a signal changes.



4 3 APPLICATIONS AND EXPERIMENTAL RESULTS

� Frequency transitions which describe glides in frequency over time.

Figure 2 shows an onset plot for a cry and for a shot. The shot's onset is much
higher than that of the cry.

            

Figure 1: Gammatone Filters

            

Figure 2: Onset

Frequency-transition maps are calculated using a direction-selective �lter, for
example the second derivative of a normal distribution rotated by an angle �. This
�lter is convolved with the response of the Meddis hair-cell model and describes
glides in frequency over time as perceived by humans. For further details see [BC94].

We have implemented all theoretical constructs that we explained in this section.
We developed algorithms in C and C++ on a Unix Workstation to perform

� a Fourier transform,

� an analysis of waveforms,

� an analysis of the frequency spectrum,

� an analysis of fundamental frequencies,

� a calculation of onset and o�set and

� a calculation of frequency transitions.

These algorithms serve us as tools for further audio content analysis. They are
part of the MoCA workbench. It is our goal to combine these tools to create new
applications. This will be described in the next section.

3 Applications and Experimental Results

3.1 Content-based segmentation

In order to retrieve content of audio, it is necessary to �rst structure the audio.
This is similar to determining content in still images: a decent object segmentation
is the basis. The structure of audio can be manifold: a �rst classi�cation should
distinguish music, speech, silence, and other sound sequences, because handling of
content is fundamentally di�erent for each of these classes. A second segmentation
step could result in determining syllable, word or sentence boundaries for speech, or
note, bar or theme boundaries for music. Other sounds, i.e. any kind of environmen-
tal sounds that a human may encounter, may be classi�ed, too. In subsections 3.2
and 3.3 we go into more detail on classi�cation of the content of music and of a
speci�c environmental sound class: sounds indicating violence.
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How can the general classi�cation into silence, speech, music and other sound be
achieved? A human determines silence on a relative scale: a loudness of 0 dB is not
very common in any natural environment, let alone in digitized sound. Therefore,
an automatic recognition of silence must be based on comparison of loudness levels
along a timeline and an adapting threshold. In that way, silence can be distinguished
from other sound classes.2

Speech and music are distinguishable simply by the spectrum that they cover:
speech lies in the area between 100 and 7000 Hz and music between about 16 and
16000 Hz. Unfortunately, the latter also applies to environmental sounds (�noise�).
Therefore, a distinction between music and other sounds was made by analyzing
the spectrum for orderliness: tones and their characteristic overtone pattern do not
appear in environmental sounds, neither is a rhythmic pattern present there.

A segmentation of audio must be performed based on the recognition of acous-
tical content both in the temporal and the frequency domains. For example, an
analysis of amplitude (loudness) statistics belongs to the temporal domain whereas
an analysis of pitch or frequency patterns belongs to the frequency domain.

Other work is based on amplitude statistics. One psychoacoustic model pre-
sented a segmentation of speech signals based on amplitude statistics [Sch77] and
was able to describe speech rhythm and to extract syllables.

The recognition of music and speech has already been a goal in electrical engi-
neering research: Schulze [Sch85] tried to separate them on the basis of amplitude
statistics alone. His goal was to determine the signal dynamics in view of the re-
stricted transmission capacity of radio channels. He found out that the spectrally
split up amplitude distribution changes over the years because of changing produc-
tion and listening habits. He therefore used a distribution-density function of the
amplitude statistics. This function needed a few seconds to reach the necessary
stationariness of the signals, but could then distinguish music and speech.

Köhlmann [Köh84] presented a psychoacoustic model for distinction between
music and speech based on a rhythmic segmentation of the sound. He used loudness
and pitch characteristics to determine event points (a rhythmic pattern) and found
that the metric structure of a sound sequence was already su�cient to determine
whether the sound was speech or music.

We have performed experiments in distinguishing silence, speech, music and
noise [Ger96]. Our prototype uses characteristic tone-color vectors to de�ne the
classes and a comparison of tone-color vectors with an adapting di�erence threshold
to decide upon the classi�cation. Tone-color vectors are de�ned according to the
psychoacoustical literature (see [Ben78]). For our special examples, we have found
good characteristic tone-color vectors. An example for a distiction between a speech
and a music passage is shown in Figures 3 and 4: the �rst shows the wave pattern
of the analyzed audio piece and the second the di�erence computation where a zero
value implies a segmentation point.

3.2 Music Analysis

Human music cognition is based on the analysis of temporal and frequency patterns,
just like any other human sound analysis.

The analysis of temporal structure can be based on amplitude statistics. We
have used amplitude statistics to derive the beat in modern music pieces. While an
amplitude analysis may be a �rst step towards the temporal analysis of audio, it
does not su�ce: spectrum analysis is necessary, too. For example, a segmentation
of musical harmony (chords) can be performed by analyzing the spectrum and

2Such silence detection is easily exploited for surveillance of rooms. A vault room, for example,
may be supervized less noticeably by several microphones than by cameras.
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Figure 3: Waveform of �le youtook.au

            

Figure 4: Distance diagram of �le
youtook.au

retrieving any regularities. Because typical music consists of a series of chords
which are frequently changed, the chords are visible in the spectrum as a group
of frequencies being simultaneously present for a longer time. In that way, we
get a segmentation of music into entities similar to written music. Based on this
segmentation, we can perform a fundamental frequency (fuf) determination on the
chords.

The sequence of fuf's of a piece of music is very important for the human attri-
bution of content to a piece of music: it determines the perception of melody and
is one of the parameters most important to determining the structure of a piece of
music.

Human fuf perception is not trivial. A human hears the fuf of a sound even
though the fuf itself might not be present. For example, the fuf of an adult male
voice lies at about 120 Hz, that of an adult female voice at about 220 Hz. When
voice is transmitted via a common telephone line, only the frequencies between
300 and 3400 Hz are transmitted (the lower boundary results from signal-distortion
restrictions and the upper boundary from signal resolution). We hear the restricted
quality of the speech signal, but we don't realize that the fuf is lacking because
our auditory system completes this missing frequency from the rest of the heard
frequencies.

The same e�ect occurs when listening to music on a cheap transistor radio:
because of the small loudspeakers, frequencies below 150 Hz are not played. The
low frequencies are perceived nevertheless.

The fuf results from overlying the higher frequencies. For example, if two fre-
quencies f1; f2 are played, which are a musical �fth apart from each other, the
frequency f0 of the resulting sound is calculated as follows:

f2 =
3
2f1 (i.e. f2 is a �fth above f1)

f0 =
1
2

Looking at the frequency diagram in �gure 5, it can be seen that the period
belonging to the fuf is the smallest common multiple of the periods of the frequencies
it consists of. Table 1 shows this result for di�erent intervals.

This result can now be used to determine the fuf of a musical chord by a program.
It works for intervals, notes with harmonic overtones and harmonic chords.

1. Determine the lowest frequency appearing in the spectrum with an amplitude
above a certain threshold, called f1.

2. Check whether a frequency a �fth, fourth, major or minor third above f1
appears in the sound: fx =

I+1
I

f1; for I = 2; ::; 5.
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Figure 5: Overlying frequencies f1 and f2

Interval frequency relation fundamental frequency

Fifth f2 =
3
2f1 I=2 f0 =

1
2f1

Fourth f2 =
4
3f1 I=3 f0 =

1
3f1

Major Third f2 =
5
4f1 I=4 f2 =

I+1
I

f1 f0 =
1
4f1 f0 =

1
I
f1

Minor Third f2 =
6
5f1 I=5 f0 =

1
5f1

Table 1: Correlation between intervals and their perceived fundamental frequency

3. If yes, choose f0 =
1
I
f1 as fuf.

4. Otherwise, choose f1 as the fundamental frequency.

The compression of a music piece into a sequence of fuf's is a means to produce
a characteristic signature of music pieces. Such a signature can be used for au-
dio retrieval, where music must be recognized and longlasting pattern recognition
processes are not acceptable.

We see an example in advertising analysis: having a multimedia database, we
store all TV commercials, including the video and audio tracks in digital format,
together with the respective product name. Most commercials contain an iden-
tifying melody on which we perform our fuf-recognition algorithm. These results
are also stored in the database. Now, we are interested to know, how often a spe-
ci�c commercial is run in a certain time period on all channels. Provided that all
our commercials contain the identifying melody, we simply record all commercials
from all channels (commercial recognition and segmentation is easily performed on
the picture track [LS96]), digitize them and perform the fuf recognition on the au-
dio tracks. Then, we compare the resulting fuf sequences with the fuf sequences
stored in the database. One title would have a signi�cantly higher correlation to
the queried piece such that we could automatically decide on the corresponding
product name. If there is no such title, we have run across a �new�commercial,
i.e. one which is not yet part of the database, and will add it (see �gure 6).

We have experimented with the retrieval of music titles based on the fuf recog-
nition and compared it to retrieval based on amplitude or frequency characteristics.
Our prototype database consisted of only 17 pieces of digitized music, but included
di�erent kinds of music, like classical and pop music. We tested the retrieval against
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Music Pieces

Comparison

fuf recognition fuf recognition

Queried Piece

above threshold:
found

at threshold area:
indecided

below threshold:
new piece

Signature
Signature

Figure 6: Retrieval of commercials

di�erent digitization qualities, di�erent music lengths and di�erent musicians play-
ing the same piece. Results for di�erent music length can be seen in Figures 7 and 8
for two music pieces [Höf96]. As can be seen, retrieval based on frequency or fuf
statsitics gives much better results than retrieval based on amplitude statistics. As
we only worked on 8000 Hz sampled audio pieces, the frequency resolution resulting
from Fourier Transform is not very detailed and therefore the fuf recognition not
very good. This will be changed in the future.
            

Figure 7: Comparison of recognition
rates for James Bond title music

            

Figure 8: Comparison of recognition
rates for a piece by Jule Neigel

3.3 Violence Detection

Automatic violence detection will be described next. Violence in movies can have
a bad in�uence on children which is why movies are rated. Although a computer
system will never be able to rate movies in a fully automated fashion, it can assist
in the process. Movie sequences which contain violence could be cut out via such a
computer-aided �lm-rating system.

As violence itself contains many aspects and is strongly dependent on the cul-
tural environment, a computer system cannot recognize violence in all its forms. It
is most unlikely that a computer would be able to recognize mental violence. It is
not our goal to recognize every form of violence, we concentrate on the recognition
of a few forms of violence to start to explore this �eld.
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A variety of sounds exist which indicate violence and which are independent of
the cultural environment of the user: among them shots, explosions and cries.

The algorithm we propose for their recognition is the following:

1. Compute for each ms amplitude, frequency, pitch, onset, o�set and frequency-
transition maps statistics of a window of 30 ms of the audio �le to be tested.

2. Compare these statistics with signatures of explosions, cries and shots calcu-
lated earlier and stored on disk. The comparison can be made either by using
the correlation of the two patterns or the Euclidean distance of both patterns.

3. If a similarity between test pattern and stored pattern is found the event is
recognized.

Statistics represent only the mean values of the time period examined. To be
able to examine changes of the test pattern in time we compare the test pattern
with several stored patterns. We store the mean statistics for the entire event: the
beginning, the end and that time window which contains the greatest change. The
amount of change is hereby determined by the variance. The correlation between
30-ms test patterns and stored patterns of a few seconds length but of the same
event type is still very good.

In our experiments we extracted shots, explosions and cries out of audio tracks
manually and stored the calculated signature of the whole event on disk.
We then tried to locate these events in the same tracks. Therefore a 30-ms audio
track test pattern was calculated and compared with the stored pattern, the time
window was incremented by 2 ms and the process repeated until the end of the
audio track. The question was if the correlation between the test patterns and the
much longer stored pattern was high enough to be able to recognize the event. The
correlation between the 30-ms test patterns and the stored pattern in all of the 20
tests exceeded 90 percent. Our test-data set therefore contains four test sets for
each event and several sets of the same event. The database currently contains data
on 20 cries, 18 shots and 15 explosions.

For every indicator (loudness, frequency, pitch, onset, o�set, frequency transi-
tions), we compute minimum, maximum, mean, variance and median statistics. In
our experience a linear combination of minimum, maximum, mean, variance and
median yields the best results. The weights for such a combination cannot be equal
as the correlation is di�erent. Obviously in most cases the correlation between
mean and variance is higher than that between mean and maximum. The weights
we determined heuristically are shown in Table 2.

Statistical Elements
Maximum Minimum Mean Variance Median

P

33.33 3.33 33.33 20 10 100

Table 2: Weights of statistical instruments

Figures 9 and 10 show plots of frequency transitions for a cry and for a shot. It
is evident that these two events can already be distinguished on the basis of this
indicator alone.

As the indicators do not have the same importance for the recognition process
we also use di�erent weights to outline their importance. These weights di�er from
event to event (see table 3). Using these weights we are able to calculate a mean
correlation between test pattern and stored pattern.

To be able to recognize an event we de�ned three decision areas. If the corre-
lation of the two patterns is below 60 percent, we reject, if it is beween 60 and 85
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Figure 9: Freqency transition for shot

            

Figure 10: Freqency transition for cry

Indicator Event
Shot Cry Explosion

Loudness 10 5 11
Frequency 30 42 27
Pitch 12 21 17
Onset 27 8 26
O�set 9 11 2
Frequency Transition Map 12 13 17P

100 100 100

Table 3: Weights of indicators

percent we are undecided, and if the correlation is above 85 percent we accept that
the test pattern and the stored pattern are identical.

Our experiment series contained a total of 80 tests. The series contained 27 �les
which did not contain cries, shots or explosions. Test results are shown in Table 4.

Event Results in percent
P

correctly classi�ed no recognition possible falsely classi�ed

Shot 81 10 9 100
Cry 51 32 17 100
Explosion 93 7 0 100

Table 4: Classi�cation Result

The percentage of correctly classi�ed events is not very high for cries. An impor-
tant detail of the classi�cation is the very low percentage of falsely classi�ed events.
A possibility to avoid uncertain decisions is either to ask the user if the movie part
should be shown or not to show at all a part which might contain violence.

4 Conclusion

In this paper, we have described algorithms to analyze the contents of audio auto-
matically. Information on amplitude, frequency, pitch, onset, o�set and frequency
transitions can be used to classify the contents of audio. We distinguish between
algorithms simulating the human perception process and those seeking direct rela-
tions between the physical properties of an audio signal and its content.
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Further we showed exemplary applications we have developed to classify audio
content. These include segmentation of audio into logical units, detection of violence
and analysis of music.

We strive to develop more new algorithms to extract information from audio-
data streams. These include harmony analysis as well as instruments for tone
analysis.

Our e�orts in the �eld of music analysis focus on the distinction of di�erent
music styles like pop music and classical music.
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