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Super-resolution nanoscopy is an enabling tool for biology 
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Highlights (for review)



1 
 

Quantitative super-resolution microscopy: pitfalls and strategies for image analysis 

Nela Durisic
1
, Lara Laparra Cuervo

1
, Melike Lakadamyali

1*
 

1 
ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av. Carl 

Friedrich Gauss, 3, 08860, Castelldefels (Barcelona), Spain 

*
 Correspondence should be sent to M.L.: melike.lakadamyali@icfo.es 

Abstract 

Super-resolution microscopy is an enabling technology that allows biologists to visualize 

cellular structures at nanometer length scales using far-field optics. To break the diffraction 

barrier, it is necessary to leverage the distinct molecular states of fluorescent probes. At the 

same time, the existence of these different molecular states and the photophysical properties 

of the fluorescent probes can complicate data quantification and interpretation. Here, we 

review the pitfalls in super-resolution data analysis that must be avoided for proper 

interpretation of images.   

Introduction 

The immense toolbox of fluorescence probes has enabled us to tag almost anything 

inside cells with high molecular specificity and in many colors. However, due to diffraction, 

the resolving power of an optical microscope was, until recently, limited to ~200 nm in the 

lateral and ~500 nm in the axial direction. This limitation obscured essential details at the 

nanometer length scales. Fortunately, diffraction limit has now been broken thanks to the 

development of super-resolution microscopy methods including stimulated emission 

depletion microscopy (STED) [1], saturated structured illumination microscopy (SSIM) [2], 

stochastic optical reconstruction microscopy (STORM) [3] and (fluorescence) photoactivated 

localization microscopy (PALM and fPALM) [4,5] among others. These methods are starting 

to enable near molecular-scale spatial resolution in biological imaging. The advent of 

“nanoscopy” has also brought the need for proper data analysis tools to quantify the super-

resolution images. The quantitative information of interest can take several forms including 

characterization of image resolution, measure of nanostructure or nanocluster sizes, 

quantification of spatial (co)-organization of nanoclusters and “molecular counting” of 

protein numbers. The increased resolution imposes stringent conditions on data analysis and 

extra care must be taken to ensure that photophysical properties of the probes, labeling and 

imaging strategies used do not lead to misinterpretation of the data. As the nanoscopy field 

has progressed at a fast pace, several new methods have also been developed for “post-

image” analysis. This review will focus on considerations one must be aware of while 

quantifying super-resolution images. The emphasis will be given to methods based on single 

molecule localization (such as STORM, PALM, fPALM) but similar points are often also 

important for quantifying STED images.    
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Basic principles  

Super-resolution methods that rely on single molecule localization have been the 

subject of several recent reviews and for in depth information the reader is directed elsewhere 

[6-8]. Briefly, the image of a single molecule is referred to as the point spread function (PSF) 

of the microscope. Even though the size of the PSF is determined by diffraction, the 

molecule’s position can be precisely localized by finding the center of the PSF [9]. To avoid 

the problem of overlapping PSFs in a densely labeled sample, it is necessary to control the 

number of molecules that are fluorescently active at any given time. This active control of 

fluorophore density was made possible by the discovery of photoswitchable fluorophores 

[10-12]. In super-resolution imaging, only a small subset of fluorophores is photoactivated at 

any given time such that their PSFs are non-overlapping and their positions can be precisely 

determined. Through iterative cycles of activation and de-activation, the positions of all the 

fluorophores can be precisely determined, and these positions can then be used to reconstruct 

a high resolution image of the underlying structure.  

 

Photoswitchable probes  

A wide range of probes such as fluorescent proteins, small organic fluorophores and 

quantum dots are available for super-resolution imaging with single molecule localization. 

These probes typically fall into two categories [13,14]: (i) reversibly photoswitchable probes 

that can be cycled many times between bright and dark states such as small organic 

fluorophores (e.g. Alexa 647) [15] or photochromic fluorescent proteins (e.g. Dronpa) [16]  

and (ii) irreversibly photoactivatable and photoconvertible probes (e.g. PA-GFP and mEos2) 

[10,17] . These different categories provide complementary advantages for super-resolution 

imaging. Reversible probes lead to smoother images since the same structure is sampled 

many times [15]. However, the uncertainty in each localization makes it impossible to 

identify which localizations arise from the same fluorophore, especially when samples are 

densely labeled, thus making quantification challenging. Therefore, proper care must be taken 

to account for probe photophysical effects when quantifying images as described below. 

  

Image resolution 

The spatial resolution in nanoscopy can be affected by several factors including 

localization precision, labeling density and probe size. The localization precision mainly 

depends on the number of photons emitted, as well as other factors such as background noise, 

and pixel size [9,18,19]. Labeling density can be a major limitation to achieve high spatial 

resolution. Low labeling densities can cause continuous structures to appear discontinuous or 

clustered, resulting in a loss of detail. According to the Nyquist criterion [15,20,21], the 

labeling density must be such that the distance between individual localizations in the 

resulting image is at least half of the desired resolution.  
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In practice, quantifying the final image resolution can be quite difficult. While the 

localization precision alone can be analytically calculated [19] or experimentally determined 

by measuring the standard deviation of a cluster of localizations originating from a single 

fluorophore [3], the effects of labeling density and probe size can be challenging to 

determine. One strategy to quantify the overall resolution is to measure the separation 

distance between two closely spaced, barely resolvable structures in the image (e.g. the two 

walls of a hollow microtubule) [15,22]. However, finding such structures in a given image is 

difficult. Recently, a non-biased method based on Fourier ring correlation (FRC), originally 

developed for electron microscopy of single proteins [23], has been applied to super-

resolution to calculate “intrinsic” image resolution directly from experimental data [24,25]. 

This method works by splitting the single-molecule localization data into two statistically 

independent sets to generate two sub-images. The Fourier transform of the two sub-images is 

then computed and correlated and the largest spatial frequency for which the correlation is 

still considerable is taken as a measure of the resolution. The inverse of this spatial frequency 

is the spatial resolution limit below which two objects cannot be resolved. In addition, FRC 

can also be used to estimate the average number of times a single emitter is localized, 

therefore helping to reduce over-counting artefacts (see below).   

 

Spatial organization and molecular counting 

In single molecule localization microscopy, super-resolution images are built 

molecule by molecule. Therefore, in principle, the imaging strategy should allow determining 

absolute numbers of molecules that exist in specific sub-cellular compartments. However, it 

is important to carefully examine how many molecules are missed or falsely included into the 

analysis.  

 Artificial clustering and over-counting 

Artificial clustering and over-counting can arise due to several reasons. For example, 

if polyclonal primary and/or secondary antibodies are used, multiple antibodies can bind to 

the same protein giving rise to over-labeling. Antibodies can also physically crosslink 

proteins, leading to artificial clustering. Nonetheless, antibody labeling has been used to 

determine the relative amount and heterogeneity of synaptic proteins inside individual 

synapses using super-resolution imaging [26]. For determining absolute protein stoichiometry 

and sub-cellular protein distribution, fluorescent proteins that allow one-to-one tagging of the 

protein of interest may be preferable. Among these fluorescent proteins, irreversibly 

photoactivatable and photoconvertible ones are the best candidates for quantitative imaging, 

since in principle each fluorescent protein is imaged (and counted) only once. However, even 

the irreversible fluorescent proteins undergo transitions to non-fluorescent off states (blinking 

and re-activation) and can reappear multiple times during the imaging [27]. If not taken into 

account, this effect gives rise to over-counting and may make the image look clustered while 

there is no actual physical clustering of the target.  
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One way to account for intermittency of fluorescent protein emission is to take 

advantage of the time dependence of the blinking and photoactivation [28-30] (Figure 1). 

Typically, if the photoactivation is carried out slowly over a long time [30], blinking (or re-

activation) events are closer in time compared to the photoactivation of a new fluorescent 

protein (Figure 1b and c). Therefore, peaks (or localizations) due to blinking can be grouped 

together based on a minimum dark time or cutoff time (τcuttof). In this case, only localizations 

appearing after a time larger than τcuttof are considered to arise from a new fluorescent protein 

(Figure 1d). τcuttof can be determined experimentally, by imaging purified fluorescent 

proteins on glass. When the density of the proteins to be counted is very high, the probability 

of photoactivation increases and blinking and new photoactivations start overlapping in time, 

making counting more challenging. Therefore, fluorescent proteins with low blinking (and re-

activation) rates and short blinking times are preferable (e.g. Dendra2 and PA-mCherry) 

[30,31]. In addition, instead of using a single value, τcuttof can be characterized as a function 

of protein density. An algorithm can then be used that starts with an initial value of τcuttof set 

to zero, counts the number of molecules and adjusts the value of τcuttof  based on this number 

iteratively until it converges [30]. The dark time analysis has mostly been applied to super-

resolution images of fluorescent proteins, since the photophysics of most small organic 

fluorophores (e.g. AlexaFluor647) are more complex and do not allow spatiotemporal 

grouping of localizations. However, recently, Zhao et al. demonstrated that the blinking 

events of rhodamine dyes are also temporally grouped [32]. Therefore, using genetically 

encoded SNAP and Halo tags to link these dyes to RNA polymerase II, they could determine 

the spatial organization and stoichiometry of this motor inside the nucleus.  

 Statistical analysis such as pair-correlation functions can also be used to correct for 

over-counting and artificial clustering to determine the true spatial organization of proteins 

and count their numbers [33-35] (Figure 2). Pair correlation function reports the probability 

to find a second localization a distance r away from a given localization. It is given by the 

sum of correlations arising from multiple appearances of the same probe and the correlations 

due to the spatial distribution of labeled proteins. Therefore, if the first contribution is known, 

it can be used to correct the experimental data for over-counting and determine the true 

spatial distribution of proteins of interest. The correlations arising from multiple appearances 

of the same probe can be computed by using a calibration sample in which the probe is 

randomly distributed on a glass slide and imaged under the same experimental conditions 

(Figure 2a-c). In the absence of blinking (and re-activation) the correlation curve for the 

calibration sample should be flat with a value of one, consistent with random distribution of 

the fluorescent protein on the glass slide. Blinking and re-activation leads to higher 

correlations at small length scales (comparable to the localization precision), which must be 

corrected for in the experimental data. After this correction, the decay of the remaining 

correlation curve is a measure of the spatial extend of clustering (cluster size) and the 

amplitude of the correlation curve is related to the number of proteins within a cluster 

(Figure 2d-f). This type of analysis can also be applied to two-color images to determine the 

level of co-localization of multiple proteins. In this case, multiple appearance of the same 

probe does not influence the cross-correlation curve, making analysis and interpretation 

easier. Spatial co-organization and co-localization of proteins can also be quantified by 



5 
 

determining an “interaction potential” that is most likely to lead to the observed distribution 

of point localizations [36,37].      

Finally, the FRC analysis described above [24] can also be used to extract the average 

number of times a molecule blinks given that the emitter activation follows a known 

distribution (e.g. Poisson statistics when not limited by photobleaching). For intermediate 

spatial frequencies, the influence of multiple localizations of the same emitter dominates the 

cross-correlation. If the decay of the correlation in this regime is fitted, the over-counting due 

to intermittency can be accounted for without the need for a calibration sample.    

 Missed molecules and under-counting 

 Once the effects of blinking and re-activation are corrected, the remaining number of 

localizations is a measure of the detected number of probes. However, many complications 

remain in converting this number to actual biological stoichiometry.  

First, it is important that there is a one-to-one ratio between the protein of interest and 

the label. It is often challenging to achieve this one-to-one ratio with antibodies. While 

polyclonal antibodies can lead to overlabeling, the large size of the antibody can also lead to 

underlabeling due to steric hindrance. In practice, determining the labeling efficiency of an 

antibody is quite challenging and smaller probes such as aptamers and nanobodies have been 

demonstrated to lead to denser labeling of certain targets and higher spatial resolution in 

super-resolution images [38,39]. In principle, fluorescent proteins avoid this complication, 

giving rise to a one-to-one labeling ratio; however, the expression strategy used can cause 

additional problems. Transient transfection, the most common way of tagging proteins with 

fluorescent proteins in mammalian cells, leads to a mixture of endogenous unlabeled and 

over-expressed labeled protein. Ideally, one would like to determine the stoichiometry and 

spatial distribution of endogenous and not overexpressed proteins. With advances in genome 

editing, it is now possible to endogenously tag target proteins with fluorescent proteins 

[40,41]. 

Second, the imaging strategy must be such that multiple probes are not photoactivated 

simultaneously within a diffraction limited volume, since their images will overlap leading to 

missed events. The number of photoactivated probes is proportional to the power of the 

photoactivation laser and the total number of the remaining un-activated probes. Therefore, 

an imaging strategy must be followed in which the power of the photoactivation laser starts 

out very low and is progressively and slowly increased over time [30,42]. Similarly, the 

imaging period must be long enough such that all the probes are exhaustively imaged. 

Plotting a cumulative curve of localized molecules in each frame can give an indication of 

whether this condition has been satisfied [42]. The cumulative curve should increase slowly, 

reaching a plateau once most of the probes have been imaged.  

    Last but not least, failed photoactivation can lead to missed events and undercounting. 

A number of recent papers have used calibration standards to calculate the percentage of 

successful photoactivation during super-resolution imaging for a number of fluorescent 

proteins [31,43,44]. Durisic et al. took advantage of an in vivo “nanotemplate” with a well-



6 
 

defined subunit stoichiometry, the human glycine receptor (GlyR) [31] (Figure 3). When 

expressed in Xenopus oocytes, which do not endogenously express this receptor, GlyR forms 

hetero-pentameric ion channels with three α- and two β-subunits [45]. The known 

stoichiometry made it possible to use binomial statistics to characterize fluorescent protein 

photoactivation efficiency by counting “steps” in single-step photobleaching or “peaks” in 

super-resolution intensity-time traces. Similarly, generating tandem repeats of fluorescent 

proteins attached to membrane proteins [44] or cytoplasmically expressing these tandem 

repeats at very low densities [43] allowed the use of binomial statistics to characterize the 

percentage of photoactivation. These results have shown that typically only 50-60% of 

fluorescent proteins are actually photoactivated into a fluorescent form and this number must 

be taken into account as a correction factor to properly count proteins in super-resolution 

images.    

 

Conclusions and Outlook  

Enormous amount of progress has been made in recent years in the field of super-

resolution microscopy. New imaging methods with different capabilities (3D, multi-color) 

and new analysis methods to reconstruct super-resolution images from raw data and extract 

quantitative information have been developed. While the photophysical properties of the 

probes, labeling and imaging strategies make image analysis complex, with adequate care, it 

is possible to measure protein stoichiometry (multimeric, dimeric or oligomeric) [43,46], 

count protein numbers [30,42,44,47,48] and characterize the spatial nano-organization of 

proteins [33,49]. A number of open-source (typically ImageJ-based) software is now 

available for biologists who wish to quantify their super-resolution images [24,37].  As the 

field moves forward, researchers will greatly benefit from the development of new probes or 

identification of buffer and imaging conditions that lead to high photon outputs, high 

photoactivation efficiencies and low blinking or re-activation rates.   

 

 

 

 

 

 

 

 

 



7 
 

 

Figure Captions 

Figure 1: Dark time analysis and spatiotemporal grouping of localizations: (a) PALM image 

of a HeLa cell expressing SrcN15-mEos2 as a negative clustering control. (b) Plot of 

localizations color-coded in time. Mono-chromatic clusters are indicative of artificial 

clustering due to the reappearance of the same mEos2 molecule multiple times. (c) 

Kymograph of the spatial clusters also confirms that the localizations are clustered in time. 

(d-e) Setting τcuttof = 10 seconds and grouping localizations that appear in time intervals 

shorter than τcuttof removes artificial clustering. (f) PALM image of a HeLa cell expressing 

β2-AR-mEos2 as a positive control of clustering. (g-h) Spatial clusters remain even after 

setting τcuttof = 10 seconds as expected. Reproduced with permission from reference 27. 

 

Figure 2: Pair correlation analysis to identify spatial organization of proteins: (a) Calibration 

sample consisting of purified fluorescent protein randomly immobilized on glass slide. (b) 

PALM image of the calibration sample (PA-GFP). (c) Pair-correlation analysis to determine 

and correct for the contribution from multiple appearances of the same fluorescent protein 

(blue curve). (d-f) Application of pair correlation analysis to the PALM image of membrane 

proteins (red curve is before correction, blue curve is the contribution from multiple 

appearances of the same fluorescent protein and green curve is after correction for this 

effect). Reproduced with permission from reference 33. 

 

Figure 3: Determination of fluorescent protein photoactivation (PA) efficiency using 

calibration samples: Drawing of the human glycine receptor (GlyR) with fluorescent 

protein tagged β- and untagged α-subunit expressed in Xenopus oocyte membrane is 

shown. The green fluorescent protein refers to the native form of a photoconvertible 

fluorescent protein (e.g. mEos2) and the red fluorescent protein refers to the 

photoconverted form. Single step-photobleaching intensity-time traces can be obtained 

after photoconversion of the fluorescent proteins. Alternatively, the fluorescent proteins 

can be imaged with PALM to generate intensity-time traces containing peaks. Steps or 

peaks in intensity-time traces are counted; sufficient statistics are built and fit to the 

binomial distribution to obtain the photoactivation efficiency. Shown is the 

photoactivation efficiency of mEos2 (red curve) as a function of illumination time by 

405 nm laser light to induce photoactivation. For more details, see reference 30. 
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