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h i g h l i g h t s

� We review studies of thermal comfort and discuss building energy use implications.

� Adaptive comfort models tend to have a wider comfort temperature range.

� Higher indoor temperatures would lead to fewer cooling systems and less energy use.

� Socio-economic study and post-occupancy evaluation of built environment is desirable.

� Important to consider future climate scenarios in heating, cooling and power schemes.
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a b s t r a c t

Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO2

emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews

thermal comfort research work and discusses the implications for building energy efficiency. Predicted

mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive

models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime

conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising

summer set point temperature has good energy saving potential, in that it can be applied to both new and

existing buildings. Further research and development work conducive to a better understanding of ther-

mal comfort and energy conservation in buildings have been identified and discussed. These include (i)

social-economic and cultural studies in general and post-occupancy evaluation of the built environment

and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the

analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy

planning/distribution systems in response to the expected changes in heating and cooling requirements

due to climate change.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a growing concern about fossil energy use and its impli-

cations for the environment. The increasing threat of global warm-

ing and climate change has raised the awareness of the

relationship between economic growth, energy use and the corre-

sponding environmental pollutants. There is a statistically signifi-

cant positive association between economic growth, energy use

and carbon emissions (e.g. in the ASEAN countries [1], China

[2,3] and among a total of 69 countries involving high, middle

and low income groups [4]). There have been marked increases

in energy use in developing countries, and it is envisaged that such

trend will continue in the near future. For instance, during 1978–

2010 China’s total primary energy requirement (PER) increased

from about 570 to just over 3200 Mtce (million tonnes of coal

equivalent), an average annual growth of 5.6%. Although its energy

use and carbon emissions per capita are low, China overtook the US

and became the largest energy consuming and CO2 emissions na-

tion in 2009 [5–7]. In their work on technology and policy options

for the transition to sustainable energy system in China, Chai and

Zhang [8] estimated that China’s PER would increase to 6200 Mtce

in 2050, of which fossil fuels would account for more than 70% and

the corresponding emissions could reach 10 GtCO2e (10 � 109 ton-

nes of CO2 equivalent). It has been estimated that, by 2020 energy

consumption in emerging economies in Southeast Asia, Middle

East, South America and Africa will exceed that in the developed

countries in North America, Western Europe, Japan, Australia and

New Zealand [9].

The building sector is one of the largest energy end-use sectors,

accounting for a larger proportion of the total energy consumption

than both the industry and transportation in many developed

countries. For example, in 2004 the building sector accounted for

40%, 39% and 37% of the total PER in USA, the UK and the European

Union [9,10]. In China, building stocks accounted for about 24.1% in

1996 of total national energy use, rising to 27.5% in 2001, and was

projected to increase to about 35% in 2020 [11,12]. Globally, build-

ings account for about 40% of the total PER and contribute to more

than 30% of the CO2 emissions [13]. This concern has led to a num-

ber of studies conducted worldwide to improve building energy

efficiency: on the designs and construction of building envelopes

(e.g. thermal insulation and reflective coatings [14–20], sensitivity

and optimisation [21–23], and life-cycle analysis [24,25]); techni-

cal and economic analysis of energy-efficient measures for the ren-

ovation of existing buildings [26–31]; and the control of heating,

ventilation and air conditioning (HVAC) installations and lighting

systems [32–35]. A significant proportion of the increase in energy

use was due to the spread of the HVAC installations in response to

the growing demand for better thermal comfort within the built

environment. In general, in developed countries HVAC is the larg-

est energy end-use, accounting for about half of the total energy

consumption in buildings especially non-domestic buildings

[9,36–39]. A recent literature survey of indoor environmental

conditions has found that thermal comfort is ranked by building

occupants to be of greater importance compared with visual and

acoustic comfort and indoor air quality [40]. This also affects the

designs of the building envelope in general, and the windows

and/or glazing systems in particular [41,42]. It is therefore impor-

tant to have a good understanding of the past and recent develop-

ment in thermal comfort and the implications for energy use in

buildings. This paper presents a review of thermal comfort

research and development work and discusses the implications

for energy use in the built environment. The aim is not to conduct

a detailed analysis of or comprehensive comparison between dif-

ferent thermal comfort models and studies (such analysis and

comparison can be found in Refs. [43–46]), but rather highlight is-

sues that are more pertinent to energy conservation in buildings.

The objective is to examine the implications of thermal comfort

for energy consumption in the built environment. It is hoped that

this review can contribute to a better understanding of how

thermal comfort is related to and affects the broader energy and

environmental issues involving social-economic, fuel mix and cli-

mate change. Broadly speaking, there are two main categories of

thermal comfort models – heat balance and adaptive. Heat balance

models have been developed using data from extensive and rigor-

ous experiments conducted in climate chambers, whereas adaptive

models are mainly based on measured/surveyed data from field

studies. Climate chambers tend to have consistent and reproduc-

ible results, but the disadvantage is the lack of realism of the

day-to-day working or living environments that field studies can

represent.

2. Heat balance models

Heat balance models assume that the human body’s thermoreg-

ulatory system is to maintain an essentially constant internal body

temperature. As such, the effects of the immediate thermal envi-

ronment are mediated by the physics of heat and mass transfer be-

tween the body and the surrounding environment. To maintain a

constant internal body temperature people will respond physiolog-

ically to any thermal imbalance with its thermal environment. It is

assumed that people’s thermal sensations (e.g. feeling hot or cold)

are generally proportional to the magnitude of these responses

measured in terms of mean skin temperature and latent heat loss

Fig. 1. Acceptable range of operative temperature and humidity for the thermal

comfort zones (Ref. [49]).
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or wittedness due to sweating. These form the basis for the

development of heat balance thermal comfort models.

2.1. Predicted mean vote (PMV) and predicted percentage of

dissatisfied (PPD)

In the 60s, Fanger [47] wanted to develop a method (an index),

by which HVAC engineers would be able to predict whether a cer-

tain thermal environment would be acceptable to a large group of

people. Through experimental work involving college-age partici-

pants in a climate chamber, linear relationships between (i) mean

skin temperature and the activity level and (ii) sweat secretion and

the activity level were established. These were then substituted

into the heat balance equations to develop the comfort equation,

which could predict the conditions that people would feel ther-

mally neutral. To have practical applications, an index called the

predicted mean vote (PMV) was derived by expanding the comfort

equation to incorporate the seven-point ASHRAE thermal sensation

scale (�3 cold, �2 cool, �1 slightly cool, 0 neutral, +1 slightly

warm, +2 warm and +3 hot) and experimental studies involving

1396 subjects. Like the comfort equation, the PMV equation is

rather complex, details of which can be found in Fanger [47].

Briefly, PMV is a function of the four environmental variables (air

temperature (ta in �C), mean radiant temperature (tmrt in �C), rela-

tive air velocity (v in m/s) and air humidity (i.e. vapour pressure, pa
in kPa)), activity level (i.e. metabolic rate, M in W/m2) and the

clothing insulation (Icl in clo). Thus:

PMV ¼ f ðta; tmrt;v ;pa;M; IclÞ ð1Þ

PMV represents the mean thermal sensation vote on a standard

scale for a group of building occupants for any given combination

of the four environmental variables, prevailing activity level and

clothing. People are not alike, and there will always be a certain

variations in the thermal sensations of a large group of people. It

is important to know the percentage of people who would be dis-

satisfied with the environment, because these are the ones who

would most likely make complaints. Based on experimental stud-

ies in which participants voted on their thermal sensations, an

empirical relationship between PMV and the predicted percentage

of dissatisfied (PPD) was developed as follow:

PPD ¼ 100� 95� expð�0:03353� PMV4 � 0:219� PMV2Þ ð2Þ

Eq. (2) indicates that even at thermal neutrality (i.e. PMV = 0),

about 5% of the people may still be dissatisfied. Instead of trying

to achieve optimum thermal condition, design objective should

therefore be exploring the range of thermal comfort. That is how

cold or warm the thermal conditions could deviate from the opti-

mum and what percentage of dissatisfied would be acceptable.

This has important energy use implications because a wider range

of thermal conditions tends to consume less heating/cooling en-

ergy than a narrow one [48]. The PMV–PPD model has been

adopted by various national and international standards/guide-

lines (e.g. ASHRAE Standard 55 [49] and ISO 7730 [50]). Fig. 1

shows the range of operative temperatures outlined in the comfort

zones of the ASHRAE Standard 55. This corresponds to thermal

conditions that may be acceptable to 80% of the building occupants

and is based on a PPD of 10% (i.e. �0.5 < PMV < +0.5) and an

additional 10% dissatisfaction due to local (partial body) thermal

discomfort. For an indoor relative humidity of 50%, the tempera-

ture range is approximately from 20 �C (lower limit of the winter

zone) to just over 27 �C (upper limit of the summer zone).

2.2. Extension of predicted mean vote (PMV) model

Over the past four decades, the PMVmodel has been adopted by

a number of researchers worldwide to assess indoor thermal

environment [44]. In general, PMV model works well in built

environment with HVAC systems. For naturally ventilated (or

free-running) buildings, however, the indoor temperature consid-

ered most comfortable increases significantly in warmer climates,

and decreases in colder climate regions [51,52]. This is not surpris-

ing given the fact that ‘‘Fanger was quite clear that his PMV model

was intended for application by the heating, ventilation and air-

conditioning (HVAC) industry in the creation of artificial climates

in controlled spaces’’ [44]. In non-air-conditioned buildings in

warm climates, people may sense the warmth as being less severe

than that predicted by the PMV model due mainly to low expecta-

tions. To address this, PMV model was extended to include an

expectance factor. The extended PMV model was tested against

measured data from field studies in four cities (Athens, Bangkok,

Brisbane and Singapore). It was found that both the measured

and predicted results showed good agreement [53].

3. Adaptive models

3.1. Adaptive principle

The heat-balanced PMV model does allow the option of chang-

ing the level of activity (hence the corresponding metabolic rate)

and clothing. The experimental works (upon which the PMVmodel

is based), however, was conducted in climate chambers. Such

arrangement did not give any indication of how the occupants

would change these two parameters in an attempt to adapt to

the surrounding environment. In practice, more often than not,

assumptions have to be made about the on-going activity and

clothing. This tends to limit the application of the PMV model to

a more static thermal environment usually associated with air-

conditioned spaces [54]. In general, people are not passive recipi-

ents of their immediate environment, but constantly interacting

with and adapting to it. The return towards comfort is pleasurable.

Therefore, if there is any discomfort due to changes in the thermal

environment, people would tend to act to restore their thermal

comfort. Broadly speaking, there are three different categories of

adaptation – physiological, behavioural and psychological [55].

Physiological adaptation (in terms of acclimatisation) is not likely

to play a major role in affecting occupants’ thermal comfort for

the moderate range of thermal conditions prevailing in the built

environment. Psychological adaption refers to the effects of cogni-

tive, social and cultural variables, and describes how and to what

the extent habits and expectations might change people’s percep-

tions of the thermal environment. Behavioural adaptation is by far

Fig. 2. Correlation between the comfort temperature and the mean indoor

temperature (Ref. [56]).
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the most dominant factor in offering people the opportunity to

adjust the body’s heat balance to maintain thermal comfort, such

as changing the activity and clothing levels & opening/closing

windows and switching on fans. A consequence of adaptive princi-

ple is that occupants try and hopefully become adjusted to their

immediate thermal environment. Adaptive comfort studies should,

therefore, be conducted in people’s everyday routines at home or

in the office. In other words, evidence of adaptation in the built

environment should, ideally, be based on results from field studies.

Fig. 2 shows a correlation between the neutral or comfort temper-

ature and the mean measured indoor temperatures from a number

of field studies [56,57]. Each point represents the results of a

distinct population. It can be seen that the neutral temperature

approximated closely the prevailing temperature measured indoor.

This indicates that people tended to adapt/adjust to the thermal

environment and felt comfortable at the different indoor tempera-

tures. The presence of some outlying points indicates that there

were incidences where adaptation was incomplete. These points

were not confined to the two extremes (i.e. very hot/cold) suggests

that such incompletion was due mainly to the social, psychological

or economic circumstances rather than the thermal environment

itself. The comfort temperature might be as low as 17 �C and as

high as 30 �C.

3.2. Indoor neutral temperature and outdoor temperature

relationships from field studies

One of the key findings from various field studies on adaptive

thermal comfort is correlation between the indoor neutral temper-

ature (Tn) and the corresponding mean outdoor temperature (To)

for the months in question. The early work on worldwide thermal

comfort data from the period during 1935–1975 by Humphreys

[58] resulted in the following relationship for ‘‘free-running’’

building:

Tn ¼ 11:9þ 0:534To ðCoefficient of determination; R2 ¼ 0:94Þ

ð3Þ

More recently, similar adaptive model based on the mean effec-

tive outdoor temperature was developed by de Dear and Brager

[51,59] using a global database of 21000 sets of thermal comfort

results from 160 buildings. Subsequent revisions were made to

raise the precision of the relationships and compare the correla-

tions from these two databases [60]. For naturally ventilated or

‘‘free-running’ buildings:

ðHumphreysÞ Tn ¼ 13:2þ 0:534To

ðCoefficient of determination; R2 ¼ 0:94Þ ð4Þ

ðde Dear& BragerÞTn ¼13:5þ0:546To

ðCoefficient of determination;R2 ¼0:91Þ ð5Þ

For HVAC, heated or cooled buildings:

ðHumphreysÞ Tn ¼ 20:1

þ 0:0077T2
o ðCoefficient of determination;

R2 ¼ 0:44Þ ð6Þ

ðde Dear& BragerÞTn ¼22:2þ0:003T2
o

ðCoefficient of determination; R2 ¼0:49Þ ð7Þ

It can be seen that for naturally ventilated buildings Eqs. (4) and

(5) are very similar. Both have strong correlation, indicating that

more than 90% of the variations in the neutral temperature could

be explained by the changes in the mean outdoor temperature.

For climate-controlled buildings the relation is much looser.

Nevertheless, this shows that when heating/cooling is in operation,

the neutral temperature may vary within a fairly wide zone, with a

modest but clear dependence on the prevailing external climate.

4. Energy savings implications

Findings from the field studies on adaptive models have impor-

tant energy use implications. The acceptance of higher indoor tem-

peratures in summertime conditions would lead to less prevalence

of cooling systems. In situations/locations where air conditioning is

unavoidable, a wider range of indoor thermal environment would

mean less cooling requirements and hence less electricity con-

sumption for the air conditioning systems [48]. There have been

a number of studies investigating the energy use implications in

the built environment. Broadly speaking, these can be grouped into

two areas – case studies (HVAC, cooled or heated buildings) and

implications for thermal comfort standards.

4.1. Case studies (HVAC, cooled or heated buildings)

Most of the case studies emphasised on either simply setting a

higher summer set point temperature (SST) or implementing a

wider/varying range of indoor design temperature for different

time of the day and different outdoor conditions. Two major types

of control techniques have been proposed for the heating and cool-

ing systems. First type involves diverse thermostat strategies such

as changes of the setback period, set point temperature and set-

back temperature [61]. Attempts have also been made to correlate

cooling energy use with corresponding thermostat operation mode

in an effort to have a better understanding of the trade-off between

energy consumption and thermal comfort [62,63]. The second type

deals with the dynamic control of the set point temperature based

on adaptive comfort models [64,65]. Table 1 shows a summary of

some of the case studies involving adaptive comfort models and/

or raising the SST [66–73]. It can be seen that substantial energy

savings could be achieved for both office and residential buildings,

from 6% reduction in HVAC electricity consumption in Australian

office buildings by raising 1 �C in the SST [72] to 33.6% reduction

in total energy cost in hot desert area in Riyadh [71]. Apart from

energy saving potential, raising the SST could also substantially re-

duce the peak electricity demand as demonstrated by the work on

residential buildings in Las Vegas [73]. This could have significant

energy policy implications as it helps alleviate and/or delay the

need for new power plants to meet the expected increase in power

demand due to economic and population growth.

4.2. Implications for thermal comfort standards

It has been shown fromfield studies that PMVmodelworks pret-

ty well in air-conditioned premises, but not in naturally ventilated

buildings. PMV tends to over-predict the subjective warmth in the

built environment, especially in warmer climates. Humphreys [74]

argued that thermal comfort standard like the ISO 7730 based on

PMV model was not entirely suitable for general applications. The

use of ISO-PMV could lead to unnecessary cooling in warmer cli-

mates and unnecessary heating in cooler regions, and if applied in

developing countries would have adverse economic and environ-

mental penalty. Basedon the analysis of 21000 sets of data fromfield

studies in 160 buildings worldwide in different climate zones, the

ASHRAE Standard 55 [49] was revised to include an adaptive model

for naturally ventilated buildings. Fig. 3 shows the acceptable oper-

ative temperature ranges for naturally conditioned spaces. There

havebeenanumberofworkson the implications to thermal comfort

standards since early 2000s. Table 2 summaries some of the recent

studies [52,55,75–83]. In general, these studies suggested that the

L. Yang et al. / Applied Energy 115 (2014) 164–173 167



adaptive model developed tended to be broader than the comfort

temperature range stipulated in either the ASHRAE standard (e.g.

in Chongqing, China [79]) or the local standard (e.g. in India [80]).

In the interest of better building energy efficiency, the local standard

shouldbe revised andfine-tuned tobetter reflect theprevailing local

situation. Consideration should also be given to other factors such as

individual control/differences, climate context and carbon footprint,

rather than simply the conventional thermal comfort and thermal

neutrality [52,77,83].

5. Discussion and further research works

From the studies reviewed so far, it is not unreasonable to state

that the static PMV model works well in air-conditioned buildings

but not in naturally ventilated premises, where occupants could

Table 1

Summary of energy savings in cooled buildings (in chronological order).

City (climate) (year) Reference Building Measure Energy savings

Hong Kong SAR (subtropical)

(1992)

[66] Office Raise SST from 21.5 �C to 25.5 �C (SST = summer set

point temperature).

Cooling energy reduced by 29%.

Montreal (humid continental)

(1992)

[67] Office Raise SST from 24.6 �C to 25.2 �C (during 09:00–15:00)

and up to 27 �C (during 15:00–18:00).

Chilled water consumption reduced by 34–

40% and energy budget for HVAC by 11%.

Singapore (tropical) (1995) [68] Office Raise SST from 23 �C to 26 �C. Cooling energy reduced by 13%.

Islamabad (humid subtropical)

and Karachi (arid) (1996)

[69] Office Change the 26 �C SST to a variable indoor design

temperature (Tc = 17 + 0.38To; Tc = comfort temperature,

To = mean monthly outdoor temperature).

Potential energy savings of 20–25%.

Hong Kong SAR (subtropical)

(2003)

[70] Office Change SST from 24 �C (average) to adaptive comfort

temperature (Tc = 18.303 + 0.158To).

Energy consumption by cooling coil reduced

by 7%.

Riyadh (hot desert) (2008) [71] No

specific

building

type

Change yearly-fixed Thermostat setting (21–24.1 �C) to

optimised monthly fixed settings (20.1–26.2 �C).

Energy cost reduced by 26.8–33.6%.

Melbourne (oceanic), Sydney

(temperate) and Brisbane

(humid subtropical) (2011)

[72] Office Static (raise SST 1 �C higher) and dynamic (adjust SST in

direct response to variations in ambient conditions).

HVAC electricity consumption reduced by 6%

(static) and 6.3% (dynamic).

Las Vegas (subtropical desert)

(2012)

[73] Home Raise SST from 23.9 �C to 26.1 �C (during 16:00–19:00). Peak electrical energy demand reduced by

69%.

Fig. 3. Acceptable operative temperature ranges for naturally conditioned spaces

(Ref. [49]).

Table 2

A summary of works on implications of adaptive models on thermal comfort standards (in chronological order).

Country/

region (year)

Reference Building Key remarks/findings

Global (2002) [52] General 5 key issues: (i) Satisfaction and inter-individual differences, (ii) climate context, (iii) role of countries

(especially personal/individual), (iv) beyond thermal neutrality, and (v) beyond thermal comfort.

Netherlands

(2006)

[75] Office The 90% acceptability is allowed to exceed in 10% of the occupancy time (i.e. at least 90% satisfied for at least 90%

of the time), and indoor temperature limits are given as a function of mean outdoor temperature.

Nigeria

(2008)

[76] Classrooms, studios

and residential

The thermal comfort survey was underpinned by the adaptive thermal comfort paradigm, in which

physiological and adaptive factors are equally important in the perception and interpretation of thermal

comfort. The comfort range was 2–3 �C less than that suggested by the ASHRAE standard, probably due to higher

relative humidity.

Global (2009) [77] General New standards are needed that put the sustainable buildings at a premium, and the adaptive thermal comfort

approach is conducive to defining conditions compatible with the low-carbon objective. Such standards will be

building-based rather than environment-based, resulting in greater design freedom to achieve sustainability.

Europe

(2010)

[78] Office The differences between European Standard EN 15251 and ASHRAE 55 were discussed. Suggested allowance in

EN 15251 for air speed using fans can be applied to the equation for naturally ventilated buildings.

Global (2010) [55] General New thermal comfort standards that allow occupants to choose and control their preferred temperature will be

used. In future, buildings will be increasingly classified based on their energy use and carbon footprint.

China (2010) [79] University Classroom The Chongqing adaptive comfort range is broader than that of the ASHRAE Standard 55-2004.

India (2010) [80] Residential Temperature range based on adaptive model 26–32.5 �C, far higher than the Indian Standard 23–26 �C. This has

far-reaching energy use implications for building and HVAC designs, and should be further developed to be

included in the Indian Standard.

Portugal

(2011)

[81] Residential and ‘‘small

services’’

Based on an adaptive comfort protocol, the gain utilization factor was used to assess over-heating risks and

cooling needs. The criterion of the percentage of hours above 28 �C is much more demanding than the adaptive

comfort approach. Revised requirement (lower threshold values) would improve building thermal performance

during summer.

Korea (2012) [82] Office Occupants would feel comfortable even at 28 �C depending on the previous running mean outdoor temperature,

2 �C higher than the 26 �C stipulated in the Korean Standard.

Taiwan

(2012)

[83] School Building envelope energy regulation had a significant impact on the level of thermal comfort in naturally

ventilated buildings. Adaptive comfort model was developed and suggested to be integrated with other building

design variables in the energy regulation.
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interact with their surroundings to make themselves more com-

fortable through adaption. Adaptive models tend to have a wider

range of comfort temperature, which could have significant energy

savings in both air-conditioned and naturally ventilated buildings.

Based on this, we believe there are three specific issues that need

to be addressed and warrant further research and development

work:

� Firstly, is the adoption of the PMV–PPD and Adaptive mod-

els mutually exclusive? Can one model complement the

other?

� The second issue is about the socio-economic and cultural

context. How will social norm (e.g. dress code) and envi-

ronmental awareness/attitudes affect people’s thermal

acceptability of their immediate thermal environment?

� The third issue is about the responses to climate change in

terms of mitigation and/or adaptation.

5.1. PMV–PPD versus adaptive models

The heat balance model is based on a fairly linear, deterministic

logic, and has been tested with extensive and rigorous laboratory

experiments yielding pretty consistent, reproducible results. But

the direct cause-and-effect approach embodied in the two-equa-

tion PMV–PPD heat balance model is not so easily applied to the

more complex environments within real buildings populated by

real people as opposed to subjects. It has been suggested that the

adaptive perspective complements rather than contradicts the sta-

tic heat balance. The heat balance model is more correctly regarded

as a partially adaptive model, since it acknowledges the effects of

behavioural adjustments made by the occupants to the thermal

parameters, clothing, and metabolic rate [43]. Based on linear

regression technique, it has been demonstrated that PMV can be

expressed as a function of temperature and relatively humidity

for a wide range of clothing thermal insulation [84]. On the other

hand, it is argued that the simple regression-based adaptive ap-

proach tends to produce varying results (in terms of the regression

coefficients and predicted comfort temperature ranges) from dif-

ferent field studies. It is suggested that findings from various field

studies should be employed to improve the performance and appli-

cability of the PMV–PPDmodel. A recent survey of thermal comfort

field studies in different climate zones worldwide has shown that

individuals are likely to perceive the same environment differently

and environments lacking adaptive means tend to receive poor

comfort ratings [85]. More efforts are required to reconcile and

unify the different adaptive models [86]. Besides, how can a com-

bination of thermal and environmental parameters be considered

unacceptable in a HVAC setting, and yet be regarded as acceptable

in a naturally ventilated or mixed-mode situation? A new ap-

proach to thermal comfort modelling based on alliesthesia has

been discussed [87]. The paradigm shift from the relatively simple,

instrumentally assessable criteria towards a much more complex

parameterization of spatial and temporal dimensions of alliesthe-

sia is a significant challenge, but not insurmountable. More work

is required especially on the multi-node physiological models to

resolve the requisite alliesthesia [88].

5.2. Socio-economic and cultural issues

Energy is a key component in any overall sustainable develop-

ment strategy, and it is important to monitor the effects of energy

policy on thermal comfort in the social, economic and environ-

mental dimensions [89–91]. It has been argued that a positive

attitude towards energy and sustainability needs to be encour-

aged and maintained among the general public, and guiding

households towards energy-conserving behaviours is considered

a key energy policy option [92]. It has been found that people

with ‘‘pro-environmental’’ attitude tend to be more ‘‘forgiving’’

in accepting their immediate indoor built environment in green

buildings [93–95]. This could have far-reaching implications for

energy savings in that the adaptive thermal comfort could be

more widely adopted in both naturally ventilated and air-condi-

tioned buildings if the general public are willing to tolerate a lar-

ger temperature range in buildings. Relaxing culturally-induced

clothing norm and occupant expectations of closely controlled in-

door environments could lead to significant progress in achieving

a proper balance between thermal comfort, energy use and min-

imum environmental impact [96]. For instance in UK, habitual

behaviours are important drivers of household energy consump-

tion, and it has been suggested that social marketing programmes

could be employed to promote the wide variation in thermostat

settings as the foundation of a ‘‘social norm’’ campaign aimed

at reducing temperatures and energy use in ‘‘overheated’’ homes

[97,98]. Similarly, in Australia it has been shown that people’s

ability to respond to heat is shaped by the elements of prevailing

cooling practices and it is possible to acclimatise ‘‘air condition-

ing addicts’’ to warmer indoor environment indoor environment

without compromising their thermal acceptability [99,100].

However, not all climate variables have similar salience for hu-

man perception, and expectations, culture, religion, education

and experience tend to mediate our perception of the thermal

environment. Recent building surveys have indicated that the

thermal environment within ‘‘green buildings’’ tends to be on

the cold side in winter and on the hot side in summer

[101,102]. More work in the socio-economic and cultural area is

required, and post-occupancy evaluation of the built environ-

ment and the corresponding energy consumption would lead to

a better understanding of the underlying issues affecting indoor

thermal comfort and the corresponding energy use in the built

environment [103].

5.3. Impact of climate change

It is generally agreed that our climate is changing and the tem-

perature will rise gradually. This could have significant impact on

the built environment [104] as well as the energy/power sector

[105,106], especially that involves renewable power generation

[107,108]. Recent studies on human bioclimates have found that

heat stress shows an increasing trend and cold stress exhibits a

decreasing trend in different climate zones during the 20th and

21st centuries [109–111]. A reduction in cold stress would lead

to less space heating requirement in winter; whereas an increase

in heat stress would increase the risk of summer overheating in

naturally ventilated buildings. For air-conditioned buildings, this

would result in more space cooling requirement during the hot

summer months. Whether there is a net increase or decrease in

the overall energy use for space conditioning depends on the pre-

vailing climates, building types and mitigation/adaptation mea-

sures adopted. In severe cold climates (e.g. high latitude/

altitude regions), reduction in energy use for heating would most

likely outweigh the increase in cooling requirement. In mid-lati-

tude areas where both heating and cooling requirements are sig-

nificant, the magnitude of increase in cooling and reduction in

heating could be comparable. The most obvious increase in en-

ergy use for space conditioning in the built environment would

occur in low latitude regions with warmer climates [112]. More

cooling requirement would mean more energy consumption,

which in turn could exacerbate climate change. Mitigation mea-

sures are therefore needed to alleviate the envisaged impact.

These measures can be explored in two specific aspects – increase

in cooling requirement and the question of cooling versus

heating:
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� Increase in cooling requirement – Global warming would

result in more cooling requirements, especially in cool-

ing-dominated buildings in warmer climates. Greater

attention should be paid to two particular mitigation mea-

sures. First, it has been found that adaptive comfort has

great energy saving and mitigation potential, especially

in warmer climates where building cooling load is the

major design consideration [113]. More work is required

to investigate how and to what extent would warmer

weather conditions in future years affect the applicability

of adaptive comfort models already established in differ-

ent climate zones and regions around the world. Second,

solar-powered cooling, though not yet widely adopted,

has good energy-saving and mitigation potential espe-

cially in hot climates because building peak cooling load

and maximum solar intensity tend to occur at about the

same time [114–117]. More work is required particularly

on the economic viability of active solar systems as com-

pared with conventional electrical-driven vapour com-

pression refrigeration plants.

� Heating versus cooling – Changes in the space heating and

cooling requirements would vary from climates to cli-

mates and from one region to another. At the national or

global energy policy level this could have serious implica-

tions. Firstly, in most large cities or developed economies,

space heating is usually provided by oil- or gas-fired boiler

plants, whereas air conditioning (space cooling) relies

mainly on electricity. In terms of final/delivered energy

use demand, there would certainly be a shift towards elec-

trical power. This would put more pressure on the electri-

cal power supply systems worldwide. Secondly, in terms

of CO2 emissions, this would increase even in severe cold

climates where the reduction in heating outweighs the

increase in cooling [112,113]. This is because of the much

higher carbon footprint of electricity. For instance, in

China the carbon footprint of electricity was 1.073 kg

CO2e per kWh based on about 80% coal in the fuel mix in

2007 as compared with an average of 0.184 kg CO2e per

kWh for natural gas [118]. This leads to the question about

fuel mix and the role of renewable energy in the national

and global energy policy. In terms of climate mitigation,

it has been revealed that implementing energy savings,

renewable energy and more energy conversion technolo-

gies can have positive socio-economic impacts, and 100%

renewable energy systems will be technically feasible in

the future [119]. It has also been shown that photovoltaic

(PV) plays a key role in the development of zero energy

buildings [120,121] and large scale integration of PVs in

cities can produce 35% of the total electricity consumption

in an entire district [122]. More work is required especially

on a more integrated approach to solar energy utilization

(i.e. PV, solar-powered cooling and solar thermal for heat-

ing purposes [123,124]). It has also been demonstrated

that, from a global point of view, the application of high

efficiency co- and tri-generation schemes for HVAC appli-

cations in buildings could result in great energy savings

and CO2 emissions reductions [125–127]. The operation

mode of combined cooling, heating and power (CCHP) sys-

tems depends very much on the building thermal and

electrical loads [128,129]. Much of these building loads

tend to vary according to the outdoor ambient conditions.

It is therefore important that analysis of CCHP systems and

the corresponding operation strategies should take future

climate scenarios into consideration to cater for the

expected variations in cooling and heating requirements

in different climate zones. Last but not least, the growing

importance of distributed energy resources (renewable

and otherwise) in the energy grids tends to result in a mis-

match between supply and demand. More work on both

the supply- and demand-side management in terms of

urban energy planning is required [130,131]. Again, partic-

ular attention should be paid to the expected variations in

cooling and heating demands due to global warming in the

design and analysis of district heating [132,133] and/or

cooling [134,135] systems for thermal comfort condition-

ing in the built environment.

6. Conclusions

We have reviewed a number of studies of thermal comfort in

general and those pertinent to building energy efficiency in partic-

ular in different parts of the world. The emphasis is on the broader

energy and environmental issues concerning social-economic, fuel

mix and climate change. The conclusions are:

� The static PMV model works well in air-conditioned build-

ings but not in naturally ventilated premises, where occu-

pants could interact with their surroundings to make

themselves more comfortable through adaption. The

regression-based adaptive approach tends to produce

varying results (in terms of the regression coefficients

and predicted comfort temperature ranges) from different

field studies. More efforts are required to reconcile and

unify the different adaptive models

� Adaptive comfort models tend to have a wider range of

comfort temperature, which could have significant energy

savings in both air-conditioned and naturally ventilated

buildings. The acceptance of higher indoor temperatures

in summertime conditions would lead to less prevalence

of cooling systems. In situations/locations where air condi-

tioning is unavoidable, a wider range of indoor thermal

environment would mean less cooling requirements and

hence less electricity consumption for the air conditioning

systems. Apart from energy saving potential, raising the

summer set point temperature could also substantially

reduce the peak electricity demand. This could have signif-

icant energy and environmental policy implications as it

helps alleviate and/or delay the need for new power plants

to meet the expected increase in power demand due to

economic.

� People with ‘‘pro-environmental’’ attitude tend to be more

‘‘forgiving’’ in accepting their immediate indoor built envi-

ronment in green buildings. This could have far-reaching

implications for energy savings in that the adaptive ther-

mal comfort could be more widely adopted in both natu-

rally ventilated and air-conditioned buildings if the

general public are willing to tolerate a larger temperature

range in buildings. Relaxing culturally-induced clothing

norm and occupant expectations of closely controlled

indoor environments could lead to significant progress in

achieving a proper balance between thermal comfort,

energy use and minimum environmental impact. How-

ever, not all climate variables have similar salience for

human perception, and expectations, culture, religion,

education and experience tend to mediate our perception

of the thermal environment. More work in the socio-eco-

nomic and cultural area is required, and post-occupancy

evaluation of the built environment and the corresponding

energy consumption would lead to a better understanding

of the underlying issues affecting indoor thermal comfort

and the corresponding energy use in the built environ-

ment and population growth.
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� It is generally agreed that our climate is changing and the

temperature will rise gradually. A reduction in cold stress

would lead to less space heating requirement in winter;

whereas an increase in heat stress would increase the risk

of summer overheating in naturally ventilated buildings.

For air-conditioned buildings, this would result in more

space cooling requirement during the hot summer

months. Changes in the space heating and cooling require-

ments would vary from climates to climates and from one

region to another. At the national or global energy policy

level this could have serious implications. Firstly, in most

large cities or developed economies, space heating is usu-

ally provided by oil- or gas-fired boiler plants, whereas air

conditioning (space cooling) relies mainly on electricity. In

terms of final/delivered energy use demand, there would

certainly be a shift towards electrical power. This would

put more pressure on the electrical power supply systems

worldwide. Secondly, CO2 emissions would increase due to

the much higher carbon footprint of electricity. In terms of

climate mitigation, the application of high efficiency co-

and tri-generation schemes for HVAC applications in

buildings could result in great energy savings and CO2

emissions reductions. The operation mode of combined

cooling, heating and power (CCHP) systems depends very

much on the building thermal and electrical loads, which

tend to vary according to the outdoor ambient conditions.

It is therefore important that analysis of CCHP systems, the

corresponding operation strategies and the associated

energy planning/distribution systems should take future

climate scenarios into consideration to cater for the

expected variations in cooling and heating requirements

in different climate zones.
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